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Black-box stochastic optimization involves sampling in both the solution and data spaces. Traditional 
variance reduction methods mainly designed for reducing the data sampling noise may suffer from 
slow convergence if the noise in the solution space is poorly handled. In this paper, we present a novel 
zeroth-order optimization method, termed Population-based Variance-Reduced Evolution (PVRE), 
which simultaneously mitigates noise in both the solution and data spaces. PVRE uses a normalized-
momentum mechanism to guide the search and reduce the noise due to data sampling. A population-
based gradient estimation scheme, a well-established evolutionary optimization technique, 
is incorporated to further reduce noise in the solution space. We show that PVRE exhibits the 
convergence properties of theory-backed optimization algorithms and the adaptability of evolutionary 
algorithms. In particular, PVRE achieves the best-known function evaluation complexity of O(nϵ−3) 
for finding an ϵ-accurate first-order optimal solution, up to a logarithmic factor, with any initial step-
size. We assess the performance of PVRE through numerical experiments on benchmark problems as 
well as a real-world task involving adversarial attacks against neural image classifiers.

We consider the unconstrained optimization problem

	
min
x∈Rn

f(x) = Eξ∼D[F (x; ξ)],� (1)

where x ∈ Rn is the solution to be found, D is the data distribution, and ξ denotes a random data sample. As in 
most real-world scenarios, we assume that computing the expectation is intractable due to the large number of 
data samples or the lack of prior knowledge of the distribution.

Problems in the form of (1) are usually solved by stochastic methods1 in which the objective function f(x) is 
replaced by some ease-to-compute estimates F (x; ξ). The stochastic gradient descent (SGD)2 and its modern 
variants3 are representative of these methods. They typically draw a random sample ξ from D at each iteration 
and evaluate the stochastic gradient ∇F (x; ξ) as an estimate of the true gradient ∇f(x). First-order information 
(i.e., the gradient oracle) plays a vital role in these methods since it gives the descent directions for exploring 
the solution space. These methods are not applicable, however, when gradients are not accessible. This situation, 
which we call the black-box setting, arises either when the gradient is nonexistent (e.g., the objective value 
is obtained from physical simulations), or when access to the intrinsic structure of the objective is restricted 
for security reasons4. Even in the ideal situation where automatic differentiation techniques5 are available, the 
memory overheads and the strict software requirements can become a bottleneck6 and limit the usability of 
gradient-based methods.

This work considers zeroth-order approaches to the problem (1) in the sense that we only have access to the 
stochastic objective value F (x; ξ). Gaussian smoothing7 is one of the most popular techniques for estimating 
gradients in zeroth-order optimization. The key idea is first to sample a Gaussian vector in the solution space 
and then output the finite difference along this vector as a stochastic gradient estimator. Gaussian smoothing is 
computationally efficient, theoretically sound, and easily integrated into most first-order methods8. However, 
Gaussian smoothing in the stochastic setting involves sampling in both data and solution spaces, inducing 
strong gradient noise which can slow down the convergence. Although various variance reduction methods9 
have been developed to address the noise issue, they are mostly restricted to the data sampling procedure, and 
their effectiveness can be limited due to the noise in the solution space. They also need extensive hyperparameter 
tuning or periodic gradient evaluations on mega-batches10.
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Evolutionary algorithms (EAs)11,12 are a family of meta-heuristics that act as a powerful alternative to 
Gaussian smoothing-based gradient methods for zeroth-order optimization. Compared to traditional gradient-
based methods relying on single-point iterations, EAs evolve a population of solutions and possess inherent 
tolerance to the noise in the solution space13. In addition, modern EAs such as evolution strategies14,15 are valued 
for their strong adaptation ability and robustness to complex landscapes16. These properties make them very 
suitable for handling complicated problems such as reinforcement learning17, combinatorial optimization18, and 
neural architecture search19. The limitation of EAs, however, is that they have no theoretical guarantees unless 
on a small number of benchmark problems.

In this paper, we combine the theoretical soundness of Gaussian smoothing-based gradient algorithms 
and the adaptability of EAs for tackling zeroth-order stochastic problems (1). The main novelty of our method 
lies in two aspects: 1) unlike existing variance-reduction approaches that primarily target data sampling noise 
in the data space, our method simultaneously reduces both data sampling noise and solution space sampling 
noise by integrating a recursive momentum rule with a population-based search strategy; 2) it introduces a 
normalization-based step-size adaptation mechanism that ensures global and adaptive convergence with any 
initial step-size settings, eliminating the need for delicate hyperparameter tuning. We demonstrate that the 
proposed Population-based Variance-Reduction (PVRE) algorithm attains an ϵ-accurate first-order optimal 
solution (i.e., a solution with gradient norm below ϵ) within Õ(nϵ−3) function evaluations, matching the best-
known complexity bounds10,20.

Notations ∥ · ∥ denotes ℓ2 norm. N denotes the n-dimensional isotropic Gaussian distribution. E denotes 
taking expectation. [τ ] denotes the set {1, . . . , τ}.

Preliminaries and assumptions
We review two related techniques, namely the Gaussian smoothing method7 for zeroth-order gradient estimation 
and the STORM method21 for data-induced gradient noise reduction. We also list the assumptions required for 
performance analyses.

Gaussian smoothing
We start by defining the smoothness of a function, as it impacts the accuracy of Gaussian smoothing-based 
gradient estimation. The detailed proof is provided in Appendix A.

Definition 1  (Smoothness) Let h be a differentiable function. We say h is L-smooth if its gradient is L-Lipschitz 
continuous, i.e.,

	 ∥∇h(x) − ∇h(y)∥ ≤ L∥x − y∥, ∀x, y,

holds for some constant L ∈ R+.
The L-smoothness of a function h implies the following quadratic bounds:

	
|h(y) − h(x) − ⟨∇h(x), y − x⟩| ≤ L

2 ∥x − y∥2 , � (2)

	 |h(x + v) − h(x − v) − 2⟨∇h(x), v⟩| ≤ L∥v∥2, � (3)

for all x, y, and v.
The Gaussian smoothing of a function at solution x is the expected objective value over a Gaussian distribution 

with mean x and a predefined variance:

Definition 2  (Gaussian smooth approximation) Fix a function h : Rn → R. The Gaussian smooth approxima-
tion of h is defined as

	 hη(x) = Ev∼N[h(x + ηv)]

where η ∈ R+ is called the smoothing radius.
The approximation above has a nice property that it is differentiable even when the original function is not. 
Moreover, it has closed-form gradients depending only on objective function values. This property was given in 
Theorem 2 of the work7, and for completeness we restate it below:

Proposition 1  (Gradient estimation based on Gaussian smoothing) Assume a function h : Rn → R is differen-
tiable. Let v ∈ Rn be a perturbation vector and g ∈ Rn the finite-difference of h along v as

	
g = h(x + ηv) − h(x − ηv)

2η
v,� (4)

where η ∈ R+. Then g is an unbiased estimator of ∇hη(x) if v is Gaussian distributed and independent of x, i.e.,

	 Ev∼N[g] = ∇hη(x).
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Proposition 1 is critical as it provides a way to compute an unbiased gradient estimator via evaluating only two 
solutions. In the next section, we will apply Gaussian smoothing to the component function F (x; ξ) in problem 
(1) to obtain a gradient estimator.

STORM
STORM, short for STOchastic Recursive Momentum21, is a mechanism for reducing the variance due to 
data sampling in first-order settings. Considering the problem (1) and supposing that the stochastic gradient 
∇F (x; ξ) is available, STORM applies the following descent step

	 xt+1 = xt − γtdt,� (5)

with the momentum term dt ∈ Rn defined recursively as

	

dt = (1 − at−1)dt−1 + at−1∇F (xt; ξt)︸ ︷︷ ︸
momentum

+(1 − at−1) (∇F (xt; ξt) − ∇F (xt−1; ξt))︸ ︷︷ ︸
error correction

,
� (6)

where γt ∈ R+ is the descent step-size, at−1 ∈ (0, 1) is the momentum learning rate, and ξt is a data sample 
drawn from D. The momentum dt is intended to capture the deterministic gradient ∇f(xt), provided that 
the component function F (x; ξ) is smooth. One may view dt as a combination of standard momentum and 
correction terms. The term (1 − at−1)dt−1 + at−1∇F (xt; ξt) acts as a classical heavy-ball momentum22 that 
incorporates stochastic gradient estimations into previous descent step. The term ∇F (xt; ξt) − ∇F (xt−1; ξt) 
corrects the momentum term via including the gradient difference evaluated with the same data sample, 
aiming to reduce the variance introduced in previous data sampling. The effectiveness of STORM depends on 
a prerequisite that the error correction term must approach 0 when the iterations converge, in which case the 
momentum term acts as a Monte Carlo gradient estimator averaged over t.

Assumptions
We make the following assumptions regarding the problem (1).

Assumption 1  (Boundedness of the objective value) The objective value is lower bounded by some constant 
f∗ ∈ R, i.e.,

	 f(x) ≥ f∗, ∀x.

Assumption 2  (Unbiasedness and boundedness of the data sampling) The data sampling is unbiased, i.e.,

	 Eξ∼D[∇F (x; ξ)] = ∇f(x), ∀x.

In addition, there exists some constant σ ∈ R+ such that

	 Eξ∼D[∥∇F (x; ξ) − ∇f(x)∥2] ≤ σ2, ∀x.

Assumption 3  (Smoothness of the component function) The component function F (x; ξ) is L-smooth in x for 
all ξ.

Assumption 4  (Boundedness of the gradient norm) The norm of the gradient is upper bounded by some constant 
G ∈ R+, i.e.,

	 ∥∇f(x)∥ ≤ G, ∀x.

Assumptions 1 and 2 are customary in analyzing stochastic optimization algorithms. Assumption 3 is relatively 
restrictive, as it necessitates the smoothness of each component function. Nevertheless, it is the key in achieving 
the O(T − 1

3 ) convergence rate and was typically made in recent studies relying on STORM. Notice that almost all 
existing works using Gaussian smoothing, to our knowledge, require this assumption to establish convergence 
theorems, even for getting a slower rate of O(T − 1

4 )23. This means, compared to existing Gaussian smoothing 
based zeroth-order algorithms, we can achieve a speedup in convergence for free. Assumption 4 is used in 
guaranteeing the adaptability. We note that this is looser than the uniform bound (i.e., ∥∇F (x; ξ)∥ ≤ G for all 
ξ) typically used in STORM based methods21,24.

Hereinafter we denote the Gaussian smooth approximations of f and F by fη  and Fη , respectively, i.e.,

	 fη(x) = Ev∼N[f(x + ηv)], Fη(x; ξ) = Ev∼N[F (x + ηv; ξ)].

PVRE: Population-based variance-reduced evolution
We present the PVRE method for handling problem (1) in black-box settings. PVRE combines Gaussian 
smoothing and STORM to reduce the sampling noise in both the data space and the solution space. It also uses 
a normalized descent rule to achieve adaptability.

Adaptive descent with normalized momentum
PVRE employs the following normalized descent rule
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xt+1 = xt − γt

dt

∥dt∥
� (7)

where dt ∈ Rn is a descent step. The use of normalization is critical to achieving adaptability. To see this, denote 
ϵt as the difference between dt and ∇fηt (xt):

	 ϵt = dt − ∇fηt (xt).� (8)

Then we can bound the per-iteration progress using ϵt.

Lemma 1  (Per-iteration progress) The detailed proof is provided in Appendix B. Under Assumption 3, the itera-
tions {xt} generated by (7) satisfy

	
fηt+1 (xt+1) ≤ fηt (xt) − γt

3 ∥∇fηt (xt)∥ + 8
3γt∥ϵt∥ + L

2
(
γ2

t + (η2
t + η2

t+1)n
)

.

Lemma 1 states that, once the estimation error ϵt is small, sufficient descent in the smoothed objective fηt  can be 
ensured. Moreover, this property is ensured adaptively in two aspects: 1) it is independent of the data noise (as it 
does not rely on Assumption 2), and 2) knowledge of the problem-dependent constant L is not required, as the 
L-related term in the bound can be made arbitrarily small by decreasing the hyperparameters γt, ηt, and ηt+1.

It is now clear that all we need is to make sure dt ≈ ∇fηt (xt) so that ϵt can be bounded. We achieve this by 
using the following update rule:

	

{
dt = (1 − at−1)dt−1 + at−1gt + (1 − at−1)(gt − g̃t−1)
d0 = g0

� (9)

where at−1 ∈ (0, 1) is a constant, and gt, g̃t−1 ∈ Rn are intended to satisfy

	 E[gt] = ∇fηt (xt) and E[g̃t−1] = ∇fηt−1 (xt−1).

Comparing (9) with (6), it is found that the descent step dt follows the momentum update rule of STORM, with 
the exception that we replaced the objective function f with its Gaussian smoothing. Our idea here is to obtain 
gt and g̃t−1 by applying the finite-difference rule (4) to the component function F and then inject them into (9). 
One core difficulty exists, however, in that whereas the correction term in (6) only reduces the noise due to data 
sampling, applying finite-differences would introduce additionally noise due to solution sampling. Technically 
speaking, the error correction term may not diminish (i.e., ∥gt − g̃t−1∥ ̸→ 0) even when the iterations converge, 
which would impact the variance reduction effect. We overcome this by using a population mechanism and a 
perturbation reuse strategy in gradient estimation.

Population-based gradient estimation with perturbation reuse
We show how to compute gt and g̃t−1 in (9). To obtain gt, we generate a set of Gaussian perturbations 
{vt,k ∼ N}k∈[τ ] where τ  is the population size. We also draw a set of data samples {ξt,k ∼ D}k∈[τ ]. Then, 
apply the finite-difference rule (4) to F with pairs of ξt,k  and vt,k  as

	
gt = 1

τ

τ∑
k=1

gt,k, gt,k = F (xt + ηtvt,k; ξt,k) − F (xt − ηtvt,k; ξt,k)
2ηt

vt,k,� (10)

where ηt ∈ R+ is the corresponding smoothing radius.

Lemma 2  (Population based variance reduction) The detailed proof is provided in Appendix B. Suppose Assump-
tions 4 and 2 hold and let

	
ρt = L2

2 η2
t (n + 6)3 + 2(n + 4)(G2 + σ2).

Then, we have

	
E

[
∥gt − ∇fηt (xt)∥2]

≤ ρt

τ
.

We now proceed on computing g̃t−1 for estimating ∇fηt−1 (xt−1). Intuitively, one can draw another population 
of Gaussian perturbations and perform Gaussian smoothing similarly as in (10). But we propose that a better 
way is to reuse the population {vt,k}k∈[τ ] that has been used for gradient estimation at xt. Specifically, given 
the population {vt,k}k∈[τ ] and the corresponding data samples {ξt,k}k∈[τ ] used in (10), we perform gradient 
estimation at solution xt−1 as
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g̃t−1 = 1

τ

τ∑
k=1

g̃t−1,k, g̃t−1,k = F (xt−1 + ηt−1vt,k; ξt,k) − F (xt−1 − ηt−1vt,k; ξt,k)
2ηt−1

vt,k,� (11)

where ηt−1 is the smoothing radius that may differ from ηt.
The perturbation reuse in (11) is the key step of PVRE. At first glance, g̃t−1 is simply an unbiased estimator 

of ∇fηt−1 (xt−1), according to Proposition 1. But we notice that the underlying reason lies in that the difference 
between these two gradient estimators can be upper bounded when they are constructed with the same 
population of perturbations.

Lemma 3  (Boundedness of the correction term) The detailed proof is provided in Appendix B. Under Assumption 
3, the gradient estimations given in 10 and 11 satisfy

	
E

[
∥gt,i − g̃t−1,i∥2]

≤ 3L2(η2
t + η2

t−1)
4 (n + 6)3 + 3(n + 4)L2γ2

t−1.

Lemma 3 implies that, when ηt, ηt−1, and γt−1 are sufficiently small, the correction term in (9) (i.e., gt − g̃t−1) 
is negligible, and the iterations will converge (i.e., xt ≈ xt−1). The momentum dt then behaves as a Monte Carlo 
estimator of ∇fηt (xt) whose variance reduces over iterations. This is confirmed by the following lemma.

Lemma 4  (Boundedness of gradient estimation errors) The detailed proof is provided in Appendix B. Consider 
the iterations generated from (7) with the settings 9 to 11.

Choose the hyperparameters as

	
ηt = η0(t + 1)−2/3, γt = γ0(t + 1)−2/3, at = (t + 1)−2/3, η0 = γ0

n + 6 .� (12)

Under Assumptions 2 to 4, the gradient estimation error defined in (8) can be bounded as

	

T −1∑
t=0

γtE[∥ϵt∥] ≤ 9γ0(γ0L + G + σ)(1 + log T )
√

n + 6
τ

.

Main results
We now present the PVRE method by putting all above details together. The pseudocode is given in Algorithm 1. 
Below we establish the convergence theorem of the proposed method. The detailed proof is provided in Appendix 
C.

Algorithm 1.  Population-based Variance-Reduced Evolution (PVRE).

Theorem 1  Consider solving problem (1) using Algorithm 1 with settings in (12). Suppose Assumptions 4 to 3 hold. 
Then the iterations satisfy
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1
T

T −1∑
t=0

E[∥∇f(xt)∥] ≤ 72T − 1
3

(
∆f

γ0
+ (γ0L + G + σ)(1 + log T )

√
n + 6

τ
+ γ0L

)
+ 2L

√
n + 6γ0T − 2

3 ,

where ∆f = f(x0) − f∗.

Remark  (Function evaluation complexity) The bound given above can be tightened when choosing 

γ0 = Θ




√
∆f

L

(
1+

√
n+6

τ

)

, which yields

	

1
T

T −1∑
t=0

E[∥∇f(xt)∥] = Õ

(
1 + log T

T
1
3

(√
∆f L

(
1 +

(
n

τ

) 1
4
)

+ (G + σ)
√

n

τ

))

where the Õ notation hides the negligible log T  term. Now choose τ = Θ(n) and consider L, ∆f , G, and σ 
as constants. Then PVRE guarantees min

0≤t<T
E[∥∇f(xt)∥] ≤ ϵ within T = Õ

(
1

ϵ3

)
 iterations. As 4τ  function 

evaluations are performed at each iteration, we conclude that the function evaluation complexity for PVRE to 
output an ϵ-accurate first-order optimal solution is Õ

(
n
ϵ3

)
. This aligns with the best known result given in25, 

up to a log T  factor, which is caused by the diminishing step-size rule. We note that the main advantage of 
PVRE over existing methods lies in its adaptive convergence, which requires no prior knowledge of the problem 
landscape characteristics (e.g., L and σ).

Experiments
We evaluate the performance of PVRE on several benchmark problems and a real-world adversarial attack task. 
Additional studies on the impact of population size and initial step size are also present.

Binary classification based benchmark problems
We evaluate PVRE on three binary classification models, including logistic regression (LR), non-convex support 
vector machine (NSVM), and linear support vector machine (LSVM). The objective function is given by:

	

F (x; ξ) = loss(x; z, y) =




log(1 + exp(−y(x⊤z))) (LR)
1 − tanh(y(x⊤z)) (NSVM)
max

{
0, 1 − y(x⊤z)

}
(LSVM)

where each data sample ξ is a pair of input feature z ∈ Rn and the associated label y ∈ {−1, 1}. LR is the 
simplest model as it is convex and smooth; we choose it to test the algorithm’s exploitation ability. NSVM is 
smooth but nonconvex, and we use it to verify the global exploration performance of an algorithm. LSVM 
deviates from the smoothness assumption, and is used mainly for testing whether an algorithm is robust to 
irregularities on the landscape.

The data distribution D consists of N data samples, i.e., D = {ξ1, . . . , ξN }, and is constructed using 
four widely-used benchmark datasets: covtype, gisste, rcv1, and real-sim. Table 1 provides a brief 
summary of these statistics.

We compare PVRE with five state-of-the-art algorithms, including ZO-SGD23, ZO-SignSGD26, ZO-
AdaGrad27, ZO-Adam28, and ZO-STORM21. Since the original STORM method was not designed for a zeroth-
order setting, we construct its zeroth-order variant, referred to as ZO-STORM, by replacing its gradient oracles 
with a Gaussian smoothing-based gradient estimator. All algorithms use the finite-difference gradient estimator 
(10) with τ = 20. The minibatch size is set to 1000 for all algorithms. In Gaussian smoothing, we set the initial 
smoothing radius as η0 = 10−6, and adopt a diminishing schedule given by ηt = η0/(1 + t)2/3. All algorithms 
are initialized at x0 = (0, . . . , 0)⊤ and employ a diminishing step-size schedule γt = γ0/(1 + t)2/3 throughout 
the optimization process. The initial step-size γ0 is fine-tuned by a grid-search in {10−4, 10−3, . . . , 104}. Every 
algorithm is run independently 11 times on each dataset. The results from the median run (whose final training 
loss is the median among the 11 outputs) are reported.

dataset n N

covtype 54 581,012

gisste 5,000 6,000

rcv1 47,236 677,399

real-sim 20,958 72,309

Table 1.  Statistical summary of the datasets used.
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Figure  1 shows the convergence performance of the algorithms. PVRE is clearly the best performer and 
enjoys faster convergence speed. We also notice that PVRE performs consistently well on NSVM even though 
this problem does not satisfy the componentwise smoothness assumption. This implies PVRE is robust against 
irregular landscape features.

Impact of population size
PVRE uses a population-based search mechanism to guide the optimization process. To evaluate the impact of 
this mechanism, we conduct experiments to examine how the population size parameter τ  affects performance. 
Specifically, we test the LR model on the real-sim dataset where the population size parameter τ  is set 
to {1, 10, 100}. All other settings are the same as those in Section "Binary classification based benchmark 
problems".

Figure 2 shows the experimental results. When the population size is set to 1, the PVRE algorithm essentially 
degenerates into a strategy similar to a single-point search. In this case, due to the lack of support for population 

Fig. 1.  Comparison on benchmark problems. The curve displays the training loss versus the number of 
function evaluations.
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diversity, PVRE cannot effectively use the differences and complementarities within the population to guide the 
search direction. With the increase in population size, PVRE clearly outperforms the comparison algorithm. It 
is probably due to that a larger population size increases the diversity of search directions, therefore enhancing 
exploration of the search space and solution quality.

Impact of initial step size
Here we examine the influence of the initial step size on the performance of the PVRE algorithm, where the 
model is LR and the experiments are conducted on the covtype dataset. The initial step size γ0 is set to 
{0.01, 0.1, 1}, while keeping all other experimental settings identical to those in Section "Binary classification 
based benchmark problems".

Figure 3 presents the results on all test instances using performance profiles measured by the loss values. 
It is evident that the choice of initial step size significantly affects the convergence behavior of PVRE. When 
γ0 = 0.01, the algorithm converges steadily but relatively slowly, resulting in stable yet gradual loss reduction 
across test instances. Increasing the initial step size to γ0 = 0.1 leads to faster initial progress and lower loss 
values. However, when the initial step size is set to γ0 = 1, the loss curve rises initially before decreasing and 
exhibits noticeable fluctuations throughout the optimization process.

Black-box adversarial attacks
We consider a real-world task for adversarial perturbation generalization29. Given a neural network-based image 
classifier, the task is to find a perturbation that, when universally applied, degrades the classifier’s accuracy. The 
data sample ξ in this task consists of an image z and its true label t. The objective of this task reads:

	

F (x; ξ) = max{0, log πt(x ⊕ z) − max
j ̸=t

πj(x ⊕ z)}
︸ ︷︷ ︸

attack loss

+ λ

2 ∥x ⊕ z − z∥2

︸ ︷︷ ︸
distortion

,

where λ is a regularization coefficient, x ⊕ z denotes applying the perturbation x to an image z, and πj(x ⊕ z) 
is the corresponding probability that the perturbed image is predicted into class j. The objective penalizes the 
top-1 prediction accuracy and therefore encouraging misclassification due to the perturbation. The use of an ℓ2 
regularization is to prevent the magnitude of the image distortion from growing too fast.

Fig. 3.  Comparison under different initial step sizes. The curve displays the training loss versus the number of 
function evaluations.

 

Fig. 2.  Comparison under different population size settings. The curve displays the training loss versus the 
number of function evaluations.
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We use the CIFAR-10 dataset30 in the experiment and choose 1000 images to build the data distribution. 
The regularization coefficient λ is fixed to 10. The VGG16 model31 is used as the image classifier. Suppose this 
model only receives images in the range [−0.5, 0.5]n where n is the dimension of the image space. We can then 
use the following perturbation operator to make sure the solution space becomes Rn:

	
x ⊕ z = 1

2 tanh
(
tanh−1(2z) + x

)
.

The five algorithms considered in the previous experiment are chosen here for comparison. We set η0 to 10−5 
and tune γ0 in {10−7, 10−6, . . . , 102}. In the data sampling, we use a minibatch of size 5. All other settings are 
kept the same as in Section "Binary classification based benchmark problems".

Figure 4 shows the trajectory of the attack loss versus the number of function evaluations. It is found that 
PVRE exhibits the fastest convergence rate among all algorithms. We also present the attack success rate, the final 
loss, and the averaged distortion (measured by 1

N

∑N

i=1 ∥x ⊕ zi − zi∥2) in Table 2, obtained within a budget 
of 50000 function evaluations. PVRE obtains the highest attack success rate and the lowest objective value. 
The perturbation obtained by PVRE exhibits the largest distortion magnitude, but we note that the obtained 
perturbation is almost imperceptible when applied to the images. In Fig. 5 we present several example images to 
confirm this. It is found that there is no significant difference between the perturbed images output by different 
algorithms.

Related work
First-order stochastic algorithms such as SGD achieve a gradient evaluation complexity of O(ϵ−4) when the 
objective function f is smooth32. When the component objective F, the complexity of zeroth-order methods may 
align with their first-order counterparts in terms of the ϵ-dependence, but suffer an n-dependence slowdown—
this being the price paid for not knowing the gradient.

On functions with smooth components, various variance reduction methods exist that improve the 
complexity of first-order algorithms to O(ϵ−3). Remarkable examples include STORM21, SVRG33, and 
SPIDER10. Extending these methods to zeroth-order settings, however, is not straightforward. For example, it 
is found that the convergence rate of zeroth-order SVRG methods cannot match the original SVRG in terms 
of the ϵ-dependence34,35. The zeroth-order SPIDER requires periodic gradient evaluations with a megabatch of 
data samples and a huge population of perturbations along the coordinate directions10. The best known result 
achieved by zeroth-order methods is found in the work20 where the authors proved an n3/4ϵ−3 complexity with 
a stronger assumption. Our result matches theirs if using the same assumption.

How to achieve adaptability is an active research topic in first-order stochastic optimization. Representative 
methods such as AdaGrad27 and Adam36 employ a second-order momentum to perform coordinate-wise 

Algorithm Attack success rate Total loss Averaged distortion

PVRE 79.60% 30.72 21.20

ZO-SGD 43.10% 55.29 7.40

ZO-SignSGD 44.10% 56.11 7.10

ZO-AdaGrad 39.70% 62.60 6.17

ZO-Adam 58.70% 39.72 10.40

ZO-STORM 33.40% 70.05 5.86

Table 2.  Final results on universal adversarial perturbation after using a budget of 50000 function evaluations.

 

Fig. 4.  Attack loss versus the number of function evaluations.
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normalization, aiming to address the ill-conditioning issue. The STORM method24 incorporates an AdaGrad-
style momentum rule and simultaneously achieves adaptive convergence and variance reduction. Adam and 
AdaGrad has also been extended to zeroth-order settings28,37, yet they lack employ a variance-reduction 
mechanism.

EAs in the literature are seldom used for solving stochastic problems, possibly due to the fact that the standard 
comparison-based evolution operator may yield bias in gradient estimation38. We addressed this in a previous 
work39 by using megabatch sampling in distributed settings. It has also been seen that classical evolution gradient 
search can work well in reinforcement learning and enjoy strong scalability40. The main advantage of using EAs 
is that they typically have better exploration ability on nonconvex landscapes compared to those employing 
single-solution iterations41.

Conclusion
In this paper, we propose a method called PVRE, which combines Gaussian smoothing and population-based 
variance reduction techniques. We show that PVRE reaches the objective function complexity of Õ(nϵ−3) in 
finding an ϵ-accurate first-order optimum while ensuring the convergence with any initial step-size. PVRE 
demonstrates promising performance in several experiments on both benchmark problems and real-world 
applications.

Data availability
The datasets used in this study are all publicly available. Specifically, we use four benchmark datasets from the 
LIBSVM repository—covtype, gisste, rcv1, and real-sim—available at ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​c​s​i​​e​.​n​​t​u​.​e​​​d​u​.​t​w​/​~​c​j​l​i​n​/​l​i​b​s​v​
m​t​o​o​l​s​/​d​a​t​a​s​e​t​s​/, as well as the CIFAR-10 dataset, which is accessible from ​h​t​t​p​s​:​/​/​w​w​w​.​c​s​.​t​o​r​o​n​t​o​.​e​d​u​/​~​k​r​i​z​/​
c​i​f​a​r​.​h​t​m​l​​​​​.​​
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