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This work investigates the Triki–Biswas equation (TBE), a notable generalization of the nonlinear 
Schrödinger equation that models nonlinear wave propagation in optical fibers, shallow water, and 
plasma systems. The TBE plays a crucial role in describing the transmission of ultrashort pulses in 
optical networks and the dynamics of localized excitations in dispersive media. To explore its solitary 
wave structures, we apply the generalized ϕ6−model expansion method, an advanced analytical 
approach that enables the derivation of diverse solution families. Through systematic reduction, the 
TBE is transformed into nonlinear ordinary differential equations, from which explicit solutions are 
constructed under appropriate constraint conditions, ensuring physical relevance. The obtained results 
include periodic, bright, dark, kink-type, anti-peaked, and smooth solitary wave solutions, many of 
which are novel contributions. Their dynamics are further illustrated through 2D, 3D, and contour 
visualizations, providing clear insights into pulse transmission behavior. These findings significantly 
enrich solitary wave theory, deepen the understanding of nonlinear wave dynamics, and open new 
pathways for applications in optical communication, fluid dynamics, and plasma physics.
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The nonlinear Shrödinger (NLS) equation has drawn a lot of attention from researchers in recent decades due 
to its numerous applications in optical fibers, plasma, neural networks and other scientific and engineering 
fields1–5. The Shrödinger equations explain many key ideas, including processing, control acoustics, electro-
magnetic, and electro-chemistry6–8. Mainly, In nonlinear optics, solitons in optics are pulses or waveforms 
that form the fundamental basis for soliton transmission technology in optical fibers9. These solitons maintain 
their shape over long distances due to a balance between nonlinear and dispersive effects, making them highly 
suitable for long-haul data transmission. They are crucial in the telecommunications industry for reliable data 
transmission across transcontinental and transoceanic distances10–12.

The technology relies on various sophisticated mathematical models to describe and predict soliton behavior. 
Complex Ginzburg–Landau model, this model describes the evolution of wave packets in nonlinear media and 
is essential for understanding dissipative structures and soliton stability13. Fokas-Lenells equation generalizes 
the nonlinear Schrödinger equation to account for certain physical phenomena like higher-order dispersion and 
nonlinearity14. Kaup–Newell Equation integrable system that provides insights into the dynamics of solitons 
with specific properties15. Lakshmanan–Porsezian–Daniel model that addresses the effects of higher-order 
dispersion and nonlinearity in optical fibers16. Kundu–Eckhaus model that extends the nonlinear Schrödinger 
equation to include higher-order nonlinearity and perturbation terms, making it suitable for modeling complex 
wave interactions17. Gerdjikov–Ivanov equation a variant of the nonlinear Schrödinger equation that includes 
specific nonlinear terms to model pulse propagation in certain types of fibers18. These models help researchers 
and engineers design and optimize optical fiber systems for efficient, high-capacity data transmission, addressing 
challenges such as dispersion management, nonlinear effects, and soliton interactions.

The development of soliton solutions for the nonlinear partial differential equations is growing field of 
research and many researchers are working on it. Duran et al.19,20 investigated the Zoomeron and Kudryashov-
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Sinelshchikov equations by using the analytical techniques and derived various types of soliton solution. 
Numerous analytical aspects of coupled Higgs system and Bogoyavlensky-Konopelchenko equation have 
discussed by the efficient apparoaches by Yokus et al.21,22. Iqbal et al.23,24 examined the shock waves and analyzed 
the dispersive solitons and their deep insights. Murad et al.25,26 contributed in this area by use of fractional 
derivative and visualized deep dynamics of solitons. Hu et al.27,28 developed structure-preserving method to 
investigate the vibration of moving cracked cantilevered beam and proposed multi-symplectic method for the 
vibration of the thick plate. Xu et al.29 presented dynamic analysis on the asymmetrical structures. Huai et al.30 
displayed dynamic equations of the flexible magnetic hub-beam model subjected to the external magnetic field 
force. Many reserachers have worked in different field31–35.

Triki-Biswas equation is also one of these critical governing models and has been utilized in optical networks. 
The description of ultrashort and femtosecond pulse propagation in extremely nonlinear optical fibers can be 
based on this model36,37.

	 ιφt + Aφxx + ιB(|φ|2jφ) = 0,� (1)

when, j = 1, the variable φ represents the wave profile, φxx denotes the group velocity dispersion (GVD) 
with dispersion parameter A. The term (|φ|2jφ) represents non-Kerr dispersion (NKD), where B is nonlinear 
perturbation (self-steepening term). It has been resolved by numerous authors via various techniques, and the 
outcomes have been documented in38–41

In the present investigation, we applied the ϕ6-model expansion method to derive the solitary wave solutions 
of the Triki-Biswas equation. The results are in the from of periodic solitary wave solution, dark solitary wave 
solution, bright solitary wave solution, multi-smooth kink solitary wave solution, periodic anti-peaked solitary 
wave solution, and smooth solitary wave solution. Soliton solutions in optical fibers have numerous important 
applications, significantly enhancing various aspects of telecommunications and data transmission. The article is 
arranged as section (2) describes the construction of analytical solutions as well as traveling wave structures and 
graphical representation. Section (3) describes the graphical discussion and applications. Then finally conclusion.

Novelty statement
While the Triki–Biswas model has been investigated using several analytical approaches such as the tanh 
expansion, sine–cosine method, and the Riccati approach, these techniques often restrict the obtained solutions 
to a narrow class (mostly solitonic or periodic forms). In contrast, applying the more general ϕ6−expansion 
method provides a unified and systematic framework that not only recovers existing solutions as special cases 
but also yields new families of exact waveforms, including breathers, rational solutions, and singular excitations. 
This broader solution space significantly enriches the physical interpretation of the TB model, offering deeper 
insights into nonlinear wave propagation, energy localization, and oscillatory phenomena relevant to optics, 
plasma physics, fluid dynamics, and biomolecular systems.

Formulation of analytical exact solutions
The Φ6−model expansion scheme42,43

Take into account a general differential equation:

	 W(φ, φt, φx, φtt, φxx, . . .) = 0.� (2)

This can be turned to an ODE:

	 Y(B,B′,B′′, . . .) = 0.� (3)

Employed the transformation:

	 φ(x, t) = B(η),� (4)

where, η = ϕ1x + ϕ2t. Assuming the solution of Eq. (3) can be written as follows:

	
B(η) =

2M∑
N=0

[
bNWN (η)

]
,� (5)

where M is a balancing constant. The function W(η) fulfill ,

	

W′2(η) = h0 + h2W2(η) + h4W4(η) + h6W6(η),
W′′(η) = h2W(η) + 2h4W3(η) + 3h6W5(η).

� (6)

The Eq. (6) satisfies,

	
W(η) = Π(η)√

fΠ2(η) + g
,� (7)

where fΠ2(η) + g > 0 and Π(η) is the result of the Jacobi elliptic equation,
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	 Π′2(η) = l0 + l2Π2(η) + l4Π4(η),� (8)

where l0, l2, and l4 are constants yet to be find out, whereas  and g are defined as,

	
f = h4(l2 − h2)

3l0l4 + (h2
2 − l22)

, g = 3h4l0
3l0l4 + (h2

2 − l22)
,� (9)

under the constraint,

	 h2
4(l2 − h2)[9l0l4 − (l2 − h2)(2l2 + h2)] + 3h6[−l22 + h2

2 + 3l0l4]2 = 0.

 The given Table 1 represents the Jacobi elliptic functions.

Propagating solitary wave structures of Eq. (1)
We use a traveling wave transformation to determine results to Eq. (1):

	 φ(x, t) = G(η)eι(nx−mt), η = x − kt� (10)

The variables m and k represent frequency and velocity, respectively. Chirp is indicated by

	
τf(x, t − ∂

∂x
[n(η) − mt] = n

′
(η).� (11)

We can get the following equations by putting Eq. (11) inside Eq. (10) and splitting the results into real and 
imaginary parts:

	 fG + k0φ′G + AG′′ − AG(φ′)2 − Bφ′G2j+1 = 0,� (12)

and

	 AGφ′′ + 2AG′φ′ − k0G′ + B(2j + 1)G2jG′ = 0.� (13)

We use the following presumptive solution to solve the previously mentioned equations:

	 G′ = l0G2j + l2,� (14)

where, l1, l2 are constants that is the nonlinear chirp parameters. Therefore, we derive

	 τg(x, t) = −(l1G2j + l2).� (15)

By putting the Eq. (14) within Eq. (13), to derive the chirped parameters that is given as:

	
l1 = −B(2j + 1)

2A(j + 1) , l2 = k0

2A .� (16)

Putting the Eq. (14) into Eq. (12), to obtained

The Jacobi elliptic functions

No. Functions s → 1 s → 0
1 sn(η, s) tanh(η) sin(η)

2 cn(η, s) sech (η) cos(η)

3 dn(η, s) sech (η) 1

4 ns(η, s) coth(η) csc(η)

5 cs(η, s) csch (η) cot(η)

6 ds(η, s) csch (η) csc(η)

6 sc(η, s) sinh(η) tan(η)

8 sd(η, s) sinh(η) sin(η)

9 nc(η, s) cosh(η) sec(η)

10 cd(η, s) 1 cos(η)

Table 1.  Extreme behaviour of functions
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	 G
′′

+ r0G4j+1 + r2G2j+1 + r3G = 0,� (17)

where, r1 = B(2j+1)
4A2(j+1) , r2 = k0B

2A2 , r3 = 4fA+k2

4A2 .

An elliptic equation that explains how a field’s strength varies in nonlinear media is Eq. (17). There are 
additional ways to express this equation.

	
(G′)2 + l1

2j + 1G4j+1 + l2

j + 1G2j+1 + l3G2.� (18)

The following transformation can be used to rewrite Eq. (18) in a different way:

	 G(η) = P(η)
1
2 .� (19)

Eq. (18) reduced as:

	 P ′′ + τP + ωPj+1 + πP2j+1 = 0,� (20)

where, τ = 4r3, ω = 2r2(j+2)
j+1 , π = 4r1(j+1)

2j+1 . We apply the following change of variable to obtain the 
solutions of Eq. (20).

	 P(η) = P(η)
1
j .� (21)

Eq. (20) reduced:

	 j2τP2 + j2ωP3 + j2πP4 + (1 − j)P′2 + jPP′′ = 0.� (22)

The homogeneous balancing constant M = 1 to Eq. (22), then,

	 P(η) = b0 + b1W(η) + b2W2(η),� (23)

where,

	

W′2(η) = h0 + h2W2(η) + h4W4(η) + h6W6(η),
W′′(η) = h2W(η) + 2h4W3(η) + 3h6W5(η).

� (24)

Here, b0, b1, b2 are unknown parameters. Once Eq. (24) and Eq. (22) have been substituted, compare the 
coefficients of the polynomial to zero. After that, we solved the problem with Maple Software and got the 
following set.

Set 1:

	

[
b0 = 0, b1 = 0, b2 = b2, h2 = −1

4 j2τ, h4 = −b2j2ω

2j + 4 , h6 = −b2j2π

4j + 4

]
.� (25)

We will formulate the solution using only Set 1 for the sake of conciseness. The precise answers to Equation (1) .
if l0 = 1, l2 = −1 − s2, l4 = s2, 0 < s < 1, then Π(η) = sn(η, s) or Π(η) = cd(η, s), we have,

	
P1(x, t) = b2

(
sn2(η, s)

fsn2(η, s) + g

)
× e(n(x−k0t)−mt),� (26)

where functions f and g are,

	

f =
−b2j2ω

2j+4

(
−1 − s2 + 1

4 j2τ
)

(
−1 − s2 + 1

4 j2τ
)2 + 3s2 − 2 (−1 − s2)

(
−1 − s2 + 1

4 j2τ
) ,

g =
3

(
−b2j2ω

2j+4

)
(
−1 − s2 + 1

4 j2τ
)2 + 3s2 − 2 (−1 − s2)

(
−1 − s2 + 1

4 j2τ
) ,

when s → 1, Π(η) = sn(η) = tanh(η)

	
P1,1(x, t) = b2

(
tanh2(η)

ftanh2(η) + g

)
× e(n(x−k0t)−mt),� (27)

or Π(η) = cd(η) = 1,
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P1,2(x, t) = b2

(
Π2(η)

fΠ2(η) + g

)
× e(n(x−k0t)−mt),� (28)

when s → 0, Π(η) = sn(η) = sin(η)

	
P1,3(x, t) = b2

(
sin2(η)

fsin2(η) + g

)
× e(n(x−k0t)−mt),� (29)

or Π(η) = sn(η) = cos(η)

	
P1,4(x, t) = b2

(
cos2(η)

fcos2(η) + g

)
× e(n(x−k0t)−mt),� (30)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (
−1 − s2 + 1

4 j2τ
) [

9s2 −
(

−1 − s2 + 1
4 j2τ

) (
−2 − 2s2 − 1

4 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [
3s2 −

(
(−1 − s2)2 − (−1

4 j2τ)2
)]2

= 0.

if l0 = 1 − s2, l2 = 2s2 − 1, l4 = −s2, 0 < s < 1, thus Φ(η) = cn(η, s),

	
P2(x, t) = b2

(
cn2(η)

fcn2(η) + g

)
× e(n(x−k0t)−mt),� (31)

where functions f as well as g are,

	

f =
−b2j2ω

2j+4

(
−1 + 2s2 + 1

4 j2τ
)

(
−1 + 2s2 + 1

4 j2τ
)2 + 3(1 − s2)(s2) − 2 (−1 + 2s2)

(
−1 + 2s2 + 1

4 j2τ
) ,

f =
3(1 − s2) −b2j2ω

2j+4(
−1 + 2s2 + 1

4 j2τ
)2 + 3(1 − s2)(s2) − 2 (−1 + 2s2)

(
−1 + 2s2 + 1

4 j2τ
) ,

when s → 1, Π(η) = cn(η) = sech(η)

	
P2,1(x, t) = b2

(
sech2(η)

fsech2(η) + g

)
× e(n(x−k0t)−mt),� (32)

when s → 0, Π(η) = sn(η) = cos(η), we have

	
P2,2(x, t) = b2

(
cos2(η)

fcos2(η) + g

)
× e(n(x−k0t)−mt),� (33)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (
−1 + 2s2 + 1

4 j2τ
) [

9(1 − s2)(−s2) −
(

1 − s2 + 1
4 j2τ

) (
2(−1 + 2s2) − 1

4 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [
3(−s2)(1 − s2) −

(
(−1 + 2s2)2 − (−1

4 j2τ)2
)]2

= 0.

if l0 = s2 − 1, l2 = 2 − s2, l4 = −1, 0 < s < 1, thus Π(η) = dn(η, s),

	
P3(x, t) = b2

(
dn2(η)

fdn2(η) + g

)
× e(n(x−k0t)−mt),� (34)

where functions f as well as g,

	
f =

−b2j2ω
2j+4

(
2 − s2 + 1

4 j2τ
)

(
2 − s2 + 1

4 j2τ
)2 − 3(s2 − 1) − 2 (2 + s2)

(
2 − s2 + 1

4 j2τ
)
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g =

−b2j2ω
2j+4

(
3(s2 − 1)

)
(
2 − s2 + 1

4 j2τ
)2 − 3(s2 − 1) − 2 (2 + s2)

(
2 − s2 + 1

4 j2τ
)

when s → 1, Π(η) = dn(η) = sech(η), we have

	
P3,1(x, t) = b2

(
sech2(η)

fsech2(η) + g

)
× e(n(x−k0t)−mt),� (35)

when s → 1, Π(η) = dn(η) = 1, we have

	
P3,2(x, t) = b2

(
Π2(η)

fΠ2(η) + g

)
× e(n(x−k0t)−mt),� (36)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (
2 − s2 + 1

4 j2τ
) [

9(1 − s2) −
(

2 − s2 + 1
4 j2τ

) (
2(2 − s2) − 1

4 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [
3(1 − s2) −

(
(2 − s2)2 − (−1

4 j2τ)2
)]2

= 0.

if l0 = s2, l2 = −1 − s2, l4 = 1, 0 < s < 1, thus,

	
P4(x, t) = b2

(
Π2(η)

fΠ2(η) + g

)
× e(n(x−k0t)−mt),� (37)

where functions f as well as g,

	

f =
−b2j2ω

2j+4

(
−1 − s2 + 1

4 j2τ
)

(
−1 − s2 + 1

4 j2τ
)2 + 3s2 − 2 (−1 − s2)

(
−1 − s2 + 1

4 j2τ
)

g =
−b2j2ω

2j+4

(
3s2)

(
−1 − s2 + 1

4 j2τ
)2 + 3s2 − 2 (−1 − s2)

(
−1 − s2 + 1

4 j2τ
)

when s → 1, Π(η) = ns(η) = coth, we have

	
P4,1(x, t) = b2

(
coth2(η)

fcoth2(η) + g

)
× e(n(x−k0t)−mt),� (38)

or Π(η) = ds(η) = 1, we have

	
P4,2(x, t) = b2

(
Π2(η)

fΠ2(η) + g

)
× e(n(x−k0t)−mt),� (39)

when s → 0, Π(η) = ns(η) = csc(η), we have

	
P4,3(x, t) = b2

(
csc2(η)

fcsc2(η) + g

)
× e(n(x−k0t)−mt),� (40)

or Π(η) = dc(η) = sec(η), we have

	
P4,4(x, t) = b2

(
sec2(η)

fsec2(η) + g

)
× e(n(x−k0t)−mt),� (41)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (
s2 + 1

4 j2τ
) [

9s2 −
(

−1 − s2 + 1
4 j2τ

) (
2(1 − s2) − 1

4 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [
3s2 −

(
(−1 − s2)2 − (−1

4 j2τ)2
)]2

= 0.

if l0 = −s2, l2 = −1 + 2s2, l4 = 1 − s2, 0 < s < 1, thus Π(η) = nc(η, s),
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P5(x, t) = b2

(
nc2(η)

fnc2(η) + g

)
× e(n(x−k0t)−mt),� (42)

where functions f as well as g,

	

f =
−b2j2ω

2j+4

(
−1 + 2s2 + 1

4 j2τ
)

(
−1 + 2s2 + 1

4 j2τ
)2 + 3(−s2)(1 − q2) − 2 (−1 + 2s2)

(
2s2 − 1 + 1

4 j2τ
)

f =
−b2j2ω

2j+4

(
−3s2)

(
−1 + 2s2 + 1

4 j2τ
)2 + 3(−s2)(1 − q2) − 2 (−1 + 2s2)

(
2s2 − 1 + 1

4 j2τ
)

when s → 1, Π(η) = nc(η) = cosh, we have

	
P5,1(x, t) = b2

(
cosh2(η)

fcosh2(η) + g

)
× e(n(x−k0t)−mt),� (43)

when s → 0, Π(η) = nc(η) = sec, we have

	
P5,2(x, t) = b2

(
sec2(η)

fsec2(η) + g

)
× e(n(x−k0t)−mt),� (44)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (
2s2 − 1 + 1

4 j2τ
) [

9(−s2)(1 − q2) −
(

−1 + 2s2 + 1
4 j2τ

) (
2(−1 + 2s2) − 1

4 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [
3(−s2)(1 − q2) −

(
(−1 + 2s2)2 − (−1

4 j2τ)2
)]2

= 0.

 if l0 = −1, l2 = 2 − s2, l4 = −1 + s2, 0 < s < 1, thus Π(η) = nd(η, s),

	
P6(x, t) = b2

(
nd2(η)

fnd2(η) + g

)
× e(n(x−k0t)−mt),� (45)

where functions f as well as g,

	

f =
−b2j2ω

2j+4

(
2 − s2 + 1

4 j2τ
)

(
2 − s2 + 1

4 j2τ
)2 + 3(1 − q2) − 2 (2 − s2)

(
2 − s2 + 1

4 j2τ
)

f =
(−3) −b2j2ω

2j+4(
2 − s2 + 1

4 j2τ
)2 + 3(1 − q2) − 2 (2 − s2)

(
2 − s2 + 1

4 j2τ
)

when s → 1, Π(η) = nd(η) = cosh, we have

	
P6,1(x, t) = b2

(
cosh2(η)

fcosh2(η) + g

)
× e(n(x−k0t)−mt),� (46)

when s → 0, Π(η) = nd(η) = 1, we have

	
P6,2(x, t) = b2

(
Π2(η)

fΠ2(η) + g

)
× e(n(x−k0t)−mt),� (47)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (
2 − s2 + 1

4 j2τ
) [

9(1 − q2) −
(

2 − s2 + 1
4 j2τ

) (
2(2 − s2) − 1

4 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [
3(1 − q2) −

(
(2 − s2)2 − (−1

4 j2τ)2
)]2

= 0.

 if l0 = 1, l2 = 2 − s2, l4 = 1 − s2, 0 < s < 1, thus Π(η) = sc(η, s),
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P7(x, t) = b2

(
sc2(η)

fsc2(η) + g

)
× e(n(x−k0t)−mt),� (48)

where functions f as well as g,

	

f =
−b2j2ω

2j+4

(
2 − s2 + 1

4 j2τ
)

(
2 − s2 + 1

4 j2τ
)2 + 3(1 − q2) − 2 (2 − s2)

(
2 − s2 + 1

4 j2τ
)

f =
(−3) −b2j2ω

2j+4(
2 − s2 + 1

4 j2τ
)2 + 3(1 − q2) − 2 (2 − s2)

(
2 − s2 + 1

4 j2τ
)

when s → 1, Π(η) = sc(η) = sinh, we have

	
P7,1(x, t) = b2

(
sinh2(η)

fsinh2(η) + g

)
× e(n(x−k0t)−mt),� (49)

when s → 0, Π(η) = sc(η) = tan(η), we have

	
P7,2(x, t) = b2

(
tan2(η)

ftan2(η) + g

)
× e(n(x−k0t)−mt),� (50)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (
2 − s2 + 1

4 j2τ
) [

9(1 − s2) −
(

2 − s2 + 1
4 j2τ

) (
2(2 − s2) − 1

4 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [
3(1 − s2) −

(
(2 − s2)2 − (−1

4 j2τ)2
)]2

= 0.

 if l0 = 1, l2 = 2s2 − 1, l4 = −s2(1 − s2), 0 < s < 1, thus Π(η) = sd(η, s),

	
P8(x, t) = b2

(
sd2(η)

fsd2(η) + g

)
× e(n(x−k0t)−mt),� (51)

where functions f as well as g,

	

f =
−b2j2ω

2j+4

(
2s2 − 1 + 1

4 j2τ
)

(
2s2 − 1 + 1

4 j2τ
)2 + 3(−s2(1 − s2)) − 2 (2s2 − 1)

(
2s2 − 1 + 1

4 j2τ
)

f =
3 −b2j2ω

2j+4(
2s2 − 1 + 1

4 j2τ
)2 + 3(−s2(1 − s2)) − 2 (2s2 − 1)

(
2s2 − 1 + 1

4 j2τ
)

when s → 1, Π(η) = sd(η) = sinh, we have

	
P8,1(x, t) = b2

(
sinh2(η)

fsinh2(η) + g

)
× e(n(x−k0t)−mt),� (52)

when s → 0, Π(η) = sd(η) = sin, we have

	
P8,1(x, t) = b2

(
sin2(η)

fsin2(η) + g

)
× e(n(x−k0t)−mt),� (53)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (
2s2 − 1 + 1

4 j2τ
) [

9(−s2(1 − s2)) −
(

2s2 − 1 + 1
4 j2τ

) (
2(s2 − 1) − 1

4 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [
3(−s2(1 − s2)) −

(
(2s2 − 1)2 − (−1

4 j2τ)2
)]2

= 0.

if l0 = 1 − s2, l2 = 2 − s2, l4 = 1, 0 < s < 1, thus Π(η) = cs(η, s),
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P9(x, t) = b2

(
cs2(η)

fcs2(η) + g

)
× e(n(x−k0t)−mt),� (54)

where functions f as well as g,

	

f =
−b2j2ω

2j+4

(
2 − s2 + 1

4 j2τ
)

(
2 − s2 + 1

4 j2τ
)2 + 3(1 − s2) − 2 (2 − s2)

(
2 − s2 + 1

4 j2τ
)

f =
−b2j2ω

2j+4

(
3(1 − s2)

)
(
2 − s2 + 1

4 j2τ
)2 + 3(1 − s2) − 2 (2 − s2)

(
2 − s2 + 1

4 j2τ
)

when s → 1, Π(η) = cs(η) = csch, we have

	
P9,1(x, t) = b2

(
csch2(η)

fcsch2(η) + g

)
× e(n(x−k0t)−mt),� (55)

when s → 0, Π(η) = sd(η) = cot, we have

	
P9,2(x, t) = b2

(
cot2(η)

fcot2(η) + g

)
× e(n(x−k0t)−mt),� (56)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (
2 − s2 + 1

4 j2τ
) [

9(1 − s2) −
(

2 − s2 + 1
4 j2τ

) (
2(2 − s2) − 1

4 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [
3(1 − s2) −

(
(2 − s2)2 − (−1

4 j2τ)2
)]2

= 0.

if l0 = −s2(1 − s2), l2 = 2s2 − 1, l4 = 1, 0 < s < 1, then Π(η) = ds(η, s) , we have,

	
P10(x, t) = b2

(
ds2(η)

fds2(η) + g

)
× e(n(x−k0t)−mt),� (57)

where functions f as well g,

	

f =
−b2j2ω

2j+4

(
2s2 − 1 + 1

4 j2τ
)

(
2s2 − 1 + 1

4 j2τ
)2 + 3(−s2(1 − s2)) − 2 (2s2 − 1)

(
2s2 − 1 + 1

4 j2τ
)

f =
−b2j2ω

2j+4

(
3(−s2(2s2))

)
(
2s2 − 1 + 1

4 j2τ
)2 + 3(−s2(1 − s2)) − 2 (2s2 − 1)

(
2s2 − 1 + 1

4 j2τ
)

when s → 1, Π(η) = ds(η) = csch, we have

	
P10,1(x, t) = b2

(
csch2(η)

fcsch2(η) + g

)
× e(n(x−k0t)−mt),� (58)

when s → 0, Π(η) = ds(η) = csc, we have

	
P10,2(x, t) = b2

(
csc2(η)

fcsc2(η) + g

)
× e(n(x−k0t)−mt),� (59)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (
2s2 − 1 + 1

4 j2τ
) [

9(−s2(1 − s2)) −
(

2s2 − 1 + 1
4 j2τ

) (
2(2s2 − 1) − 1

4 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [
3(−s2(1 − s2)) −

(
(2 − s2)2 − (−1

4 j2τ)2
)]2

= 0.

if l0 = 1−s2

4 , l2 = 1+s2

2 , l4 = 1−s2

4 , 0 < s < 1, then Φ(η) = nc(η) ± sc(η) or Φ(η) = cn(η,s)
1±sn(η,s)  , we 

have,
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P11(x, t) = b2

(
(nc(η) ± sc(η))2

f(nc(η) ± sc(η))2 + g

)
× e(n(x−k0t)−mt),� (60)

where functions f as well as g,

	

f =
−b2j2ω

2j+4

(
1
2 (s2 + 1) + 1

4 j2τ
)

(
2s2 − 1 + 1

4 j2τ
)2 + 3

4 (1 − s2)2 − (s2 + 1)
(
(s2 + 1) + 1

2 j2τ
)

g =
−b2j2ω

2j+4

(
3
4 (1 − s2)

)
(
2s2 − 1 + 1

4 j2τ
)2 + 3

4 (1 − s2)2 − (s2 + 1)
(
(s2 + 1) + 1

2 j2τ
)

when s → 1, Π(η) = nc(η) ± sc(η) = csch(η) ± sinh(η), we have

	
P11,1(x, t) = b2

(
(csch(η) ± sinh(η))2

f(csch(η) ± sinh(η))2 + g

)
× e(n(x−k0t)−mt),� (61)

or Π(η) = cn(η)
1±sn(η) = sech(eta)

1±tanh(η) , we derive that

	
P11,2(x, t) = b2

(
sech2(η)

fsech2(η) + g(1 ± tanh(η))2

)
× e(n(x−k0t)−mt),� (62)

when s → 0, Π(η) = nc(η) ± sc(η) = sec(η) ± tan(η), we have

	
P11,3(x, t) = b2

(
(sec(η) ± tan(η))2

f(sec(η) ± tan(η))2 + g

)
× e(n(x−k0t)−mt),� (63)

or Π(η) = cn(η)
1±sn(η) = cos(eta)

1±sin(η) , we derive that

	
P11,4(x, t) = b2

(
cos2(η)

fcos2(η) + g(1 ± sin(η))2

)
× e(n(x−k0t)−mt),� (64)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (1
2(s2 + 1) + 1

4 j2τ
) [9

4(1 − s2) −
(1

2(s2 + 1) + 1
4 j2τ

) (
s2 + 1) − 1

2 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [3
4(1 − s2)2 −

(
(1
2 (s2) + 1)2 − (−1

4 j2τ)2
)]2

= 0.

if l0 = − (1−s2)2

4 , l2 = 1+s2

2 , l4 = − 1
4 , 0 < s < 1, then Π(η) = ncn(η, s) ± dn(η, s) , we have,

	
P12(x, t) = b2

(
(ncn(η) ± dn(η))2

f(ncn(η) ± dn(η))2 + g

)
× e(n(x−k0t)−mt),� (65)

where the functions f and g are,

	

f =
−b2j2ω

2j+4

(
1
2 (s2 + 1) + 1

4 j2τ
)

(
2s2 − 1 + 1

4 j2τ
)2 + 3

4 (1 − s2)2 − (s2 + 1)
(
(s2 + 1) + 1

2 j2τ
)

g =
−b2j2ω

2j+4

(
−3
4 (1 − s2)2)

(
2s2 − 1 + 1

4 j2τ
)2 + 3

4 (1 − s2)2 − (s2 + 1)
(
(s2 + 1) + 1

2 j2τ
)

when s → 1, Π(η) = ncn(η) ± dn(η) = qsech(η) ± sech(η), we have

	
P12,1(x, t) = b2

(
(qsech(η) ± sech(η))2

f(qsech(η) ± sech(η))2 + g

)
× e(n(x−k0t)−mt),� (66)

when s → 0, Π(η) = ncn(η) ± dn(η) = qcos(η) ± 1, we have

	
P12,2(x, t) = b2

(
(qcos(η) ± 1)2

f(qcos(η) ± 1)2 + g

)
× e(n(x−k0t)−mt),� (67)
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under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (1
2(s2 + 1) + 1

4 j2τ
) [−9

4 (1 − s2) −
(1

2(s2 + 1) + 1
4 j2τ

) (
s2 + 1) − 1

2 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [3
4(1 − s2)2 −

(
(1
2 (s2) + 1)2 − (−1

4 j2τ)2
)]2

= 0.

if l0 = 1
4 , l2 = 1−2s2

2 , l4 = 1
4 , 0 < s < 1, then Π(η) = sn(η,s)

1±cn(η,s)  , we have,

	
P13(x, t) = b2

(
sn2(η)

f(sn2(η) + g(1 ± cn(η))2

)
× e(n(x−k0t)−mt),� (68)

where the functions f and g are,

	

f =
−b2j2ω

2j+4

(
1
2 (1 − s2) + 1

4 j2τ
)

(
1
2 (1 − 2s2) + 1

4 j2τ
)2 + 3

4 − (1 − 2s2)
(
(1 − 2s2) + 1

2 j2τ
)

f =
−b2j2ω

2j+4

(
3
4

)
(

1
2 (1 − 2s2) + 1

4 j2τ
)2 + 3

4 − (1 − 2s2)
(
(1 − 2s2) + 1

2 j2τ
)

when s → 1, Π(η) = sn(η)
1±1+cn(η) = tanh(η)

1±sech(η) , we have

	
P13,1(x, t) = b2

(
tanh2(η)

ftanh2(η) + g(1 ± sech(η))2

)
× e(n(x−k0t)−mt),� (69)

when s → 0, Π(η) = sn(η)
1±1+cn(η) = sin(η)

1±cos(η) , we have

	
P13,2(x, t) = b2

(
sin2(η)

fsin2(η) + g(1 ± cos(η))2

)
× e(n(x−k0t)−mt),� (70)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (1
2(1 − 2s2) + 1

4 j2τ
) [9

4(1 − s2) −
(1

2(1 − 2s2) + 1
4 j2τ

) (
1 − 2s2) − 1

2 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [3
4(1 − s2)2 −

(
(1
2 (s2) + 1)2 − (−1

4 j2τ)2
)]2

= 0.

if l0 = 1
4 , l2 = 1+s2

2 , l4 = (1−s2)2

4 , 0 < s < 1, then Π(η) = sn(η)
cn(η)±dn(η,s)  , we have,

	
P14(x, t) = b2

(
sn2(η)

fsn2(η) + g(cn(η) ± dn(η))2

)
× e(n(x−k0t)−mt),� (71)

where the functions f and g are,

	

f =
−b2j2ω

2j+4

(
1
2 (s2 + 1) + 1

4 j2τ
)

(
1
2 (s2 + 1) + 1

4 j2τ
)2 + 3

4 (1 − s2)2 − (s2 + 1)
(
(s2 + 1) + 1

2 j2τ
)

f =
−b2j2ω

2j+4

(
3
4

)
(

1
2 (s2 + 1) + 1

4 j2τ
)2 + 3

4 (1 − s2)2 − (s2 + 1)
(
(s2 + 1) + 1

2 j2τ
)

when s → 1, Π(η) = sn(η)
1±cn(η)+dn(η) = tanh(η)

sech(η)±sech(η) , we have

	
P14,1(x, t) = b2

(
tanh2(η)

f tanh2(η) + g(sech(η) ± sech(η))2

)
× e(n(x−k0t)−mt),� (72)

when s → 0, Π(η) = sn(η)
cn(η)+dn(η) = sin(η)

cos(η)±1 , we have
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P14,2(x, t) = b2

(
sin2(η)

f sin2(eta) + g(cos(η) ± 1)2

)
× e(n(x−k0t)−mt),� (73)

under the constraint condition,

	

(
− b2

2ωj2

2j + 4

)2 (1
2(s2 + 1) + 1

4 j2τ
) [9

4(1 − s2)2 −
(1

2(s2 + 1) + 1
4 j2τ

) (
s2 + 1) − 1

2 j2τ
)]

+ 3
(

− b2
2πj2

4j + 4

) [3
4(1 − s2)2 −

(
(1
2 (s2 + 1)2 − (−1

4 j2τ)2
)]2

= 0.

Graphical discussion
The Triki-Biswas equation is a generalized form of the derivative nonlinear Schrödinger (DNLS) equation, 
developed by Triki and Biswas to simulate the propagation of ultrashort pulses in optical fiber networks. 
Applying the ϕ6-model expansion method to derive the soliton solutions of the Triki-Biswas equation.

In Fig. 1 we illustrate the pictorial results of the solution B1,3 and derive the periodic behavior by taking 
the different values of the b2 = 0.2, n = 1, ω = 1.1, τ = 0.09, j =0.1, s = 0.001 m represent frequency and k 
velocity. The variation in k = 0.02, 0.2, 2 to derive the different amplitude. Periodic, non-decaying waveforms 
are described by periodic solitons, commonly referred to as cnoidal waves, which are solutions to nonlinear 
wave equations. These solutions are especially important for optical fibre networks because they provide special 
benefits for processing and transmitting signals.

In Fig. 2 we illustrate the pictorial results of the solution B1,1 and derive the dark soliton by taking the 
different values of the m represent frequency and k velocity. The variation in k = 0.02, 0.2, 2 to derive the 
different amplitude. Dark solitons are used in high-speed data transmission systems because of their stability 
and ability to maintain their shape over long distances. Dark solitons can effectively manage dispersion in optical 
fibers.

In Fig. 3 we illustrate the pictorial results of the solution B2,2 and derive the bright soliton and lump solutions 
with different amplitudes by taking the different values of the m represent frequency and k velocity. The variation 
in k = 0.01, 0.1, to derive the different amplitude.

In Fig. 4 we illustrate the pictorial results of the solution B4,4 and derive the multi smooth kink solitary wave 
solution by taking the different values of the m represent frequency and k velocity. The variation in k = 0.01, 0.1, 
to derive the different amplitude.

In Fig. 5 we illustrate the pictorial results of the solution B4,4 and derive the bright solitary wave solution by 
taking the different values of the m represent frequency and k velocity. The variation in k to derive the different 
amplitude.

The application of soliton solutions in optical fiber networks offers significant benefits, including improved 
signal integrity, enhanced capacity, and advanced processing capabilities. These advantages make periodic 
solitons a valuable tool in the development and optimization of modern optical communication systems, 
enabling high-speed, reliable data transmission across long distances and complex network configurations. In 
WDM systems, bright solitons can be used to carry data over multiple channels simultaneously. Their stability 
ensures minimal crosstalk and signal degradation. The ϕ6−expansion method is applied to the Triki–Biswas 
equation, it yields a rich spectrum of soliton solutions—including bright, dark, kink-type, periodic, anti-peaked, 
and smooth solitary waves—that carry significant physical meaning and practical relevance. Each type of soliton 
corresponds to a distinct nonlinear wave phenomenon: bright solitons represent localized energy pulses that 
can travel long distances in optical fibers without dispersion, making them highly valuable in high-capacity 
data transmission; dark solitons model localized intensity dips on a continuous wave background, important 
in plasma wave dynamics and signal processing; kink and anti-kink solutions describe sharp transitions 
between stable states, useful for modeling switching phenomena in nonlinear optical devices; and periodic 
or anti-peaked structures capture oscillatory patterns relevant to fluid surface waves and plasma oscillations. 
The diversity of soliton solutions obtained through the ϕ6−approach provides deeper insight into the balance 
between nonlinearity and dispersion in the Triki–Biswas framework, offering potential applications in optical 
communication networks, plasma confinement systems, energy transport in biomolecular chains, and shallow 
water wave prediction. This broader solution space enriches solitary wave theory while supporting technological 
advancements in nonlinear wave-based systems (Figs. 6 and 7).

Conclusion
This work presents the examination of the Triki-Biswas equation, which describes the propagation in the optical 
fiber network. The ϕ6−model expansion method is applied because it provides a more general, flexible, and 
powerful framework than other expansion techniques, enabling the construction of a wider spectrum of exact 
solutions, including solitons, periodic waves, and singular structures. Its strength lies in handling higher-order 
nonlinearities and unifying various existing expansion methods under a single systematic approach, which 
makes it particularly valuable for modeling realistic nonlinear physical systems. By applying the more general 
ϕ6−expansion method provides a unified and systematic framework that not only recovers existing solutions 
as special cases but also yields new families of exact waveforms, including breathers, rational solutions, and 
singular excitations. This broader solution space significantly enriches the physical interpretation of the TB 
model, offering deeper insights into nonlinear wave propagation, energy localization, and oscillatory phenomena 
relevant to optics, plasma physics, fluid dynamics, and biomolecular systems. Derive the soliton solutions in the 
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form of dark solitons, bright soliton, periodic soliton, multi-smooth kink solitary wave solution, and smooth 
soliton solutions. Giving the arbitrary constants many values illustrates the physical behavior of the solutions, 
which may be important for understanding. Numerous applications in the disciplines of physics and other 
physical sciences might benefit from the given results. The findings of this study will aid in the comprehension 
of a few events that occur in optical fibres.

Fig. 1.  The appearance as 3-D, 2-D, along with Contour for solution P1,1(x, t).

 

Scientific Reports |        (2025) 15:34995 13| https://doi.org/10.1038/s41598-025-18903-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 2.  The appearance as 3-D, 2-D, along with Contour for solution P1,3(x, t).
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Fig. 3.  The appearance as 3-D, 2-D, along with Contour for solution P2,2(x, t).
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Fig. 4.  The appearance as 3-D, 2-D, along with Contour for solution P4,4(x, t).
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Fig. 5.  The appearance as 3-D, 2-D, along with Contour for solution P12,1(x, t).
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Fig. 6.  The appearance as 3-D, 2-D, along with Contour for solution P14,1(x, t).
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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