Table 1 Summary of research works on the AFID dataset focuses on patch-based VIT and transfer learning models.
Author | Method | Activiation function | Objective function | Evaluation |
---|---|---|---|---|
Cao et al.17 | VIT | Unknown | Mean Square Error | Accuracy: 94.5%; ROC AUC: 97.9% |
Rabbi et al.18 | VGG19, InceptionV3, DenseNet201 | Unknown | Unknown | Accuracy: 85.0%; ROC AUC: 92.3%, Accuracy: 78.0%; ROC AUC: 85.9%, Accuracy: 83.0%; ROC AUC: 91.0% |
Alkahtani et al.19 | MobileNet, VGG-16 | softmax | Cross Entropy | Accuracy: 92.0%; Recall: 92.0%; F1 score: 92.0%, Accuracy: 82.1%; Recall: 82.0%; F1 score: 82.0% |
Alam et al.16 | Xception, ResNet-50 | Unknown | Cross Entropy | Accuracy: 95.0%; ROC AUC: 98.0%; Precision: 95.0%, Accuracy: 94.0%; ROC AUC: 96.0%; Precision: 94.0% |
Mujeeb Rahman and Subashini20 | Xception, EfficientNetB1 | softmax | Cross Entropy | Accuracy: 90.0%; Recall: 88.4%; Specificity: 91.6%; ROC AUC: 96.6%, Accuracy: 89.6%; Recall: 86.0%; Specificity: 94.0%; ROC AUC: 95.0% |
Alsaade and Alzahrani14 | Xception, VGG-19 | softmax | Unknown | Accuracy: 91.0%; Recall: 88.0%; Specificity: 94.0%, Accuracy: 80.0%; Recall: 78.0%; Specificity: 83.0% |
Hosseini et al.15 | MobileNet | softmax | Unknown | Accuracy: 94.6% |
Akter et al.13 | MobileNet, DenseNet-121 | Unknown | Unknown | Accuracy: 92.1% Accuracy: 83.6%; Recall: 83.6%; Specificity: 83.6% |