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Understanding the reproductive biology of giant pandas is crucial for their breeding success and 
conservation. Pregnancy monitoring, however, is challenging due to delayed implantation and 
obligatory pseudopregnancy, which limits the effectiveness of traditional immunoassays (IA). To 
remedy this, we combined polar metabolomics and steroidomics to enable a comprehensive view of 
the urinary molecular composition across six different reproductive phases spanning six pregnant and 
seven pseudopregnant cycles. Statistical comparisons revealed 696 discriminative features, including 
174 features in the early luteal stages, well before the current pregnancy diagnostic window. Pregnant 
and pseudopregnant cycles showed differences in amino acid, energy, and steroid metabolism before 
and after CL reactivation, with androgen levels being significantly elevated in pregnant females 
specifically, suggesting a role in embryo implantation. Interestingly, we detected only one existing 
IA target metabolite, but identified other discriminative metabolites that may underlie IA signal 
detection. Finally, we demonstrated that classification models comprising biomarker panels may 
improve (early) pregnancy diagnosis with accuracies ranging from 0.763 to 1.000 across reproductive 
phases. These findings offer possibilities for assigning new biomarkers and optimizing IA target 
selection, thereby enhancing pregnancy monitoring sensitivity and reliability while improving our 
understanding of giant panda reproductive biology to support conservation efforts.
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As one of the most well-known endangered species, the giant panda (Ailuropoda melanoleuca) has been a symbol 
for wildlife conservation for several decades. Their successful conservation program has benefitted greatly from 
the multitude of studies published on their geographical distribution1,2nutrition3,4behavior5,6genetics7,8and 
reproductive biology9–11. Scarce knowledge of the latter was particularly hampering ex situ conservation strategies 

1Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, 
Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium. 2Department of 
Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, 
Germany. 3Institute of Regeneration and Repair, Biomolecular and Assay Core, University of Edinburgh, 4-5 Little 
France Drive, Edinburgh, Scotland, UK. 4Key Laboratory of SFGA on Conservation Biology of Rare Animals in The 
Giant Panda National Park, China Conservation and Research Centre for Giant Panda (CCRCGP), Dujiangyan,  
Sichuan, People’s Republic of China. 5Pairi Daiza Foundation-Pairi Daiza, Domaine de Cambron 1, Brugelette 7940, 
Belgium. 6ZooParc de Beauval & Beauval Nature, Avenue du Blanc, Saint-Aignan 41110, France. 7Ouwehands 
Dierenpark Rhenen, Grebbeweg 111, Rhenen 3911, The Netherlands. 8Ähtärin Eläinpuisto OY, Karhunkierros 
150, Ähtäri 63700, Finland. 9Department of Biological and Environmental Science, Konnevesi Research Station, 
University of Jyväskylä, Sirkkamäentie 220, Konnevesi 44300, Finland. 10Copenhagen Zoo, Roskildevej 32, 
Frederiksberg 2000, Denmark. 11Berlin Zoo, Hardenbergplatz 8, 10787 Berlin, Germany. 12Royal Zoological 
Society of Scotland, 134 Corstorphine Road, Edinburgh, Scotland, UK. 13Institute for Global Food Security, School 
of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK. 
email: lynn.vanhaecke@ugent.be

OPEN

Scientific Reports |        (2025) 15:35187 1| https://doi.org/10.1038/s41598-025-19067-7

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-19067-7&domain=pdf&date_stamp=2025-9-10


early on, as both timing of ovulation and proof of conception were difficult to determine. Although extensive 
hormonal and behavioral research has greatly assisted in defining the fertile period6,9,12,13reliable pregnancy 
diagnosis is still only possible during the final weeks before birth. This is due to the occurrence of embryonic 
diapause after conception and because giant pandas experience obligatory pseudopregnancy if no conception 
occurs after ovulation, even without the act of mating14,15. Remarkably, pregnant and pseudopregnant females 
show highly similar physiological and endocrinological changes during the whole (pseudo)pregnancy, making 
an early differentiation between the two physiological states challenging16.

Patterns of urinary progesterone in giant pandas are seemingly identical between pregnancy and 
pseudopregnancy, with progesterone increasing immediately before ovulation after which it remains slightly 
elevated for a variable period of 2–3 months, corresponding to the corpus luteum dormancy (CLD) phase13,17. 
Recently, a triphasic pattern was described for this primary progesterone rise, subdivided in CLD1 (variable 
length), CLD2 (± 80 days prior to birth/end of the cycle), and CLD3 (± 60 days prior to birth/end of the cycle) 
(Supplementary Fig. S1)18. During the CLD phase, the activity of the corpora lutea is still relatively low and 
the embryo is believed to pause its development. Embryonic development is expected to resume at the start 
of a secondary, more drastic progesterone rise. Based on this biphasic progesterone profile, giant pandas are 
believed to experience delayed implantation since the endocrinology corresponds with other species in which 
embryonic diapause has been established16,19,20. Additionally, correlations between the timing of fetal detection 
with ultrasound and start of the second progesterone peak provided additional evidence that the implantation 
probably only occurs after the start of the secondary progesterone rise15. This secondary rise in progesterone 
is strongly pronounced and marks the start of the active luteal (AL) phase, lasting for 42 days. In pregnant 
individuals, this defines the period between blastocyst reactivation and birth of a full-grown, but altricial cub. 
During the AL phase, estrogens and prostaglandins, more specifically 13,14-dihydro-15-keto-PGF2α (PGFM), 
have shown diagnostic potential10,11. Around the presumed time of implantation, PGFM peaks for the first time, 
approximately three weeks prior to birth10. This peak divides the AL into an early (EAL, pre-PGFM peak) and 
late (LAL, post-PGFM peak) period (Supplementary Fig. S1)17. In pregnant individuals, both estrogens and 
PGFM will increase from the final two weeks of the LAL onwards, with PGFM climbing to extraordinary high 
numbers (x20) on average 24 h prior to birth10,11,17. Furthermore, glucocorticoids and even progestogens have 
recently been detected in higher urinary concentrations in pregnant individuals during the (L)AL phase17. In 
contrast, although pseudopregnant females exhibit a similar CL reactivation and AL phase, it is unclear what 
physiological processes are initiated or maintained during this period, causing these specific hormonal patterns17.

Despite recent advances in reproductive monitoring of (pseudo)pregnancy in giant pandas, available data on 
physiological and metabolic alterations during (pseudo)pregnancy remain scarce. Better understanding of these 
changes would both facilitate the use of artificial reproduction techniques and assist in increasing the success 
rate of pregnancies21. This will be essential to maintain and further improve the genetic diversity within the 
giant panda population under human care, as certain individual pandas with higher breeding difficulties will be 
genetically under-represented in the population compared to the pandas that breed more easily. Additionally, 
understanding hormonal and physiological changes during normal pregnancy can provide the first step in 
detecting and explaining pregnancy losses, which are believed to occur relatively frequently in this species but 
remain difficult to detect22.

This study aimed to obtain a more comprehensive view of the urinary molecular composition of pregnant 
and pseudopregnant giant pandas over their whole reproductive cycle, starting from the early corpus luteum 
dormancy phase (CLD1) until the end of the (pseudo)pregnancy (LAL). To this extent, a total of 238 urine 
samples from six pregnant and seven pseudopregnant cycles were analyzed using ultra-high performance 
liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS), combining two 
complementary approaches: polar metabolomics and steroidomics (Supplementary Fig. S2). By comparing the 
urinary molecular spectra across different phases of the reproductive cycle, we evaluated the potential of MS-
based profiling to discover distinct differences in metabolic changes between pregnancy and pseudopregnancy. 
The results provide a methodological starting point for future research into physiological differences between 
the two states and allow us to present novel early pregnancy biomarker (panel) candidates that require validation 
in larger and independent sample sets.

Methods
Animals
Urine samples of seven female giant pandas were provided by seven zoological institutions. For every sample, 
1–15 mL urine was collected and transferred to Eppendorf tubes into 200–1000 µL aliquots during routine 
hormonal analysis with EIA. In total, urine samples from 13 cycles were included, of which six originated from 
pregnancies and seven from pseudopregnancies (non-bred cycles) (Table 1). Each cycle was subdivided into six 
different reproductive phases as described in Wauters et al.18i.e., anestrus (start of observations until cross-over 
between progestogens and estrogens), CLD1 (variable length, starting 7 days after day of peak estrogens), CLD2 
(± 80–60 days prior to birth/end of the cycle), CLD3 (± 60 days prior to birth/end of the cycle until early onset 
of consistent increase in progestogens), EAL (early onset of consistent increase in progestogens until first PGFM 
peak), and LAL (post first PGFM peak) (Supplementary Fig. S1). Multiple samples were collected longitudinally 
from the same individuals on different days within the same cycle during every reproductive phase. From these 
repeated samples, three representative ones were selected per reproductive phase per cycle with sampling times 
matched, ensuring that each sample corresponded to a similar time point across cycles (Supplementary Table S1). 
As sample volumes could be insufficient for multiple analyses, selected samples were not always identical for the 
different performed analyses, i.e., polar metabolomics and steroidomics. The giant pandas were accommodated 
based on best practice guidelines for animal husbandry as well as recommendations given by the respective 
supporting Chinese giant panda experts. Because this study only included analysis of urine as a waste product, 
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animal welfare was not affected. Therefore, no specific ethical approval was needed as all animal-related work 
was conducted according to relevant national and international guidelines. All experimental protocols were 
permitted by the respective zoos and supporting Chinese giant panda experts.

Sample collection and preparation
All urine samples were collected either via aspiration from the concrete floor with a clean syringe in the absence 
of the animal or by direct urination in a small container (trained animals). After collection, the samples were 
transferred to a collection vial and stored at -20 °C until shipment to the Laboratory of Integrative Metabolomics 
(LIMET) at Ghent University (Belgium). Before analysis, urinary specific gravity (USpG) was measured 
according to the method described and validated in Wauters et al.23. using a handheld digital refractometer 
designed for cat (PAL-USG (Cat), range 1.000-1.080, Atago™, Fukaya, Japan) or human urine (Pal-10 S (Human), 
range 1.000-1.060, Atago™, Fukaya, Japan).

Chemicals and reagents
The polar metabolomics and steroidomics methodologies included, respectively, 70 and 56 authentic analytical 
standards of naturally occurring compounds (Supplementary Table S2). Analytical standards and internal 
standards (ISTD) were purchased at Sigma Aldrich (St. Louis, Missouri, USA), Steraloids (Newport, Rhode 
Island, USA), Cayman chemical (Ann Arbor, Michigan, USA), CDN Isotopes (Pointe-Claire, Canada), 
SERVA Biochemicals (Heidelberg, Germany), VWR Chemicals (Radnor, Pennsylvania, USA), and Santa 
Cruz Biotechnology (Santa Cruz, California, USA). Solvents were UPLC-MS grade and obtained from Fisher 
Scientific (Loughborough, UK), Merck (Darmstadt, Germany), Chem-lab (Zedelgem, Belgium), and Biosolve 
(Valkenswaard, The Netherlands). Ultra-pure water (UPW) was obtained via a purified-water system from 
Millipore (Brussels, Belgium).

Instrumentation
Metabolomics
For the urinary polar metabolome analysis, the method described by De Paepe et al.24 was used. Chromatographic 
separation of the analytes was performed via reversed-phase chromatography with gradient elution using an 
Acquity HSS T3 C18 column (1.8 mm, 150 mm x 2.1 mm) mounted on a Dionex UltiMate 3000 XRS UHPLC 
system (Thermo Fisher Scientific, San José, California, USA). Detection of the analytes was performed on a 
Q-Exactive™ quadrupole-Orbitrap HRMS (Thermo Fisher Scientific, San José, California, USA), which was 
preceded by heated electrospray ionization (HESI-II source) in polarity switching mode. Prior to analysis, 
the instrument was calibrated by infusing ready-to-use calibration mixtures (Thermo Fisher Scientific, San 
José, California, USA). Quality control (QC) samples (constructed by combining 50 µL of the first 20 samples 
selected at random with a volume higher than 300 µL) were included in the beginning (n = 10) and throughout 
the analysis run (n = 2 every 10 samples) to stabilize the system and to correct for potential instrumental drift 
between batches.

Steroidomics
Steroidomics analysis was executed according to Cools et al.25. Analytes were chromatographically separated 
on a Vanquish Horizon UHPLC system (Thermo Fisher Scientific, San José, California, USA) equipped with 
a reversed phase Acquity BEH C18 UPLC column (1.7 μm, 2.1 × 100 mm) (Waters, Millford, Massachusetts, 
USA). An Orbitrap Exploris 120 HRMS (Thermo Fisher Scientific, San José, California, USA) was used for 
analyte detection, fitted with an atmospheric-pressure chemical ionization (APCI) source. Initial instrument 
calibration was first achieved using a Pierce Flexmix calibration solution (Thermo Fisher Scientific, San José, 
California, USA), which was infused for both ionization modes. QC samples were constructed by combining 80 

Zoological institution Giant panda stud book (SB) number Date of birth (dd.mm.yyyy) Year of sample collection Cycle type

Pairi Daiza, Belgium SB741 07.07.2009
2016 Pregnancy

2019 Pregnancy

Ähtäri Zoo, Finland SB941 21.09.2014
2019 Pseudopregnancy

2020 Pseudopregnancy

ZooParc de Beauval, France SB723 10.08.2008
2017 Pregnancy

2021 Pregnancy

Edinburgh Zoo, UK SB569 24.08.2003
2018 Pseudopregnancy

2020 Pseudopregnancy

Berlin Zoo, Germany SB868 10.07.2012 2019 Pregnancy

Ouwehands Dierenpark, The Netherlands SB884 05.08.2013

2018 Pseudopregnancy

2019 Pseudopregnancy

2020 Pregnancy

Zoologisk Have København, Denmark SB919 26.07.2014 2020 Pseudopregnancy

Table 1.  Summary of the included animals and cycles.
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µL aliquots of a representative subset of 70 samples (assuring that each panda and each reproductive phase was 
included at least once in both groups) and analyzed identically to the metabolomics analysis described above.

Fragmentation experiments
Fragmentation of significant features was performed for both polar metabolomics and steroidomics on the 
Q-Exactive™ instrument. For the features selected from the metabolomics method, the same analytical method 
was largely applied, but this time with parallel reaction monitoring (PRM). Furthermore, the resolution and 
AGC target were lowered to 17,500 FWHM and 2E + 5, respectively, while the injection time was increased to 
100 ms. The isolation window was 1.0 Da and 3 collision energies were applied, namely 15, 30, and 50 eV. For 
the steroidomics fragmentation, the same strategy was used, but flow rate and gradient were slightly altered 
(Supplementary Table S3). The initial steroidomics method was also adjusted by adding PRM, and altering the 
mass resolution, AGC target, and injection time to the same values as the metabolomics fragmentation method. 
The isolation window was again 1.0 Da and 25, 35, and 50 eV were used as collision energies. Only samples with 
known high abundances of the selected features were retained. QC samples were constructed by combining 
100 µL of each sample and were again analyzed in the beginning (n = 5) and throughout (n = 2 every 10 or 11 
samples) the analysis run. A standard mix containing the authentic analytical standards of the targeted approach 
was run in the beginning and at the end of the analysis.

Sample extraction
Prior to the analysis of the polar urinary metabolome, 50 µL of urine were diluted with UPW according to the 
protocol used for human urine by De Paepe et al.24. The dilution factor was optimized for giant panda urine 
to a value of four to obtain the highest number of detected features with good repeatability, i.e., coefficient of 
variation (CV) of the feature abundance below 30%. In short, samples were first centrifuged for 8 min at 1,000 g 
and 4 °C followed by the collection of 50 µL of the supernatant in a 1.5-mL Eppendorf tube. Then, 130 µL UPW 
and 20 µL ISTD solution (10 ng µL− 1 in UPW) were added. The diluted sample was vortexed for 30 s after which 
100 µL was transferred into a glass HPLC vial with insert. Sample extraction prior to the steroidomics analysis 
was performed with 200 µL of urine according to Cools et al.25.

Data processing and analysis
Targeted data processing, i.e., only known metabolic features representing the target compounds, was executed 
using the in-house R package TaPEx or manually in the Quan Browser of XCalibur 4.4 (Thermo Fisher scientific, 
San José, California, USA) (Supplementary Tables S2)26. Untargeted processing, i.e., all detected metabolic 
features, was carried out with Compound Discoverer (CD) 3.2 (metabolomics) and 3.3 (steroidomics) (Thermo 
Fisher Scientific, San José, California, USA). Signal intensities (TaPEx) and feature abundances (Quan Browser 
and CD) were corrected for USpG prior to further data analysis using the adjusted formula of Wauters et al.23. 
Following USpG correction, the untargeted data was explored using principal component analysis (PCA) with 
iQC (internal quality control samples) normalization to check QC clustering, natural patterning of the samples 
and identify potential outliers. Potentially interesting features were selected for further data-analysis by building 
predictive models comparing pregnant and pseudopregnant samples per reproductive phase using orthogonal 
partial least squares-discriminant analysis (OPLS-DA). These models were validated via the evaluation of 
specific quality parameters including Q2R2(Y), permutation testing, and cross-validated ANOVA (CV-ANOVA) 
(p-value < 0.05). Univariate statistics comparing pregnant with pseudopregnant sample data were run on the 
selected untargeted features and the putatively identified targeted compounds using the in-house R pipeline. 
Depending on their individual normality, which was first tested with a Shapiro-Wilk test (α = 0.05), a Welch 
two-sample t-test (parametric, for normally distributed data) or Wilcoxon rank sum test (non-parametric, 
for data that was not normally distributed) (α = 0.05 for both after adjustment for multiple testing with the 
Benjamini-Hochberg method27 was applied. Variables were deemed significantly different between pregnant 
and pseudopregnant sample data in a certain reproductive phase if their univariate test resulted in an adjusted 
p-value < 0.05 in that phase while p-value > 0.05 in the anestrus phase (negative control, no correction of the 
p-value was applied here). MS/MS spectra of significantly different features were further analyzed using isotope 
and fragmentation pattern analysis with SIRIUS 5.5.728, spectral library searching via the Global Natural Product 
Social Molecular Networking (GNPS)29and CD 3.3 for further annotation according to Schymanski et al.30. These 
analyses correspond to Tier 3 confidence, meaning a tentative candidate identification based on computational 
predictions and spectral similarity was obtained. Wherever possible, the aim was to confirm the identity of 
discriminative features with the highest level of confidence (Tier 1) by fully matching their accurate mass (m/z), 
retention time, carbon isotope ratio (C12/C13), and fragmentation spectra with those of authentic reference 
standards analyzed under identical conditions. Finally, in addition to the multi- and univariate data analysis 
strategies, the predictive potential of biomarker panels was investigated via elastic net regularization (α = 0.15) 
followed by generalized linear modelling (GLM) per reproductive phase31,32. All features with CV > 30% in their 
feature abundance across QC samples were excluded prior to model building. Additionally, all features that 
were significantly different in the anestrus phase (p-value < 0.05 with univariate statistics) were excluded from 
all phases to remove inherent variation between groups unrelated to the reproductive state. Optimization of the 
tuning parameter λ was performed via leave-one-out cross validation (LOOCV), given the small sample set33.

For correct interpretation of the data analysis, it is important to acknowledge the limited number of 
individual giant panda bears (n = 7) enclosed in this study, even though the majority of mature female giant 
pandas resident in Europe was included, representing a significant share (~ 1%) of the total global giant panda 
population under human care. It must also be noted that due to the inclusion of multiple samples from the 
same individuals, complete independence of all sample groups could not be guaranteed, which may introduce 
bias and affect variation and model performances. Additionally, confounding factors such as environmental 
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influences, maturity, diet etc., and their interactions can greatly affect metabolic and hormonal changes 
across the reproductive cycle. Nevertheless, as the same strategy was applied for all sample groups, the loss 
of inherent variation within groups is expected to be similar in all sample groups, therefore limiting potential 
bias. Furthermore, samples from the anestrus phase were included in the study, representing a negative control. 
Comparing samples from the anestrus phase allowed for correction of potential confounding factors by filtering 
out variation between sample groups that is likely unrelated to the reproductive state.

Results
Metabolomics analysis
Out of the 70 compounds from the targeted metabolomics list, 43 were detected across the giant panda urine 
samples (Supplementary Table S4). Univariate statistical tests revealed that USpG corrected peak areas of 15 
of those compounds were significantly different between pregnant and pseudopregnant pandas in at least 
one reproductive phase (Supplementary Table S4). Seven were, however, also significantly different in the 
anestrus phase. The remaining eight compounds were fragmented leading to three confirmed identities after 
spectral matching using authentic analytical standards (Tier 1)30. Urocanic acid was significantly higher in 
pseudopregnant urines in CLD3, while two amino acids, L-leucine and L-phenylalanine, were both significantly 
higher in pregnant samples in the LAL phase (Fig. 1).

The untargeted metabolomics analysis yielded 6,550 and 4,556 features in the positive and negative ionization 
modes, respectively. Unsupervised data analysis was performed for all samples and per reproductive phase 
comparing pregnant and pseudopregnant samples (Supplementary Fig. S3A-F). The PCA model exclusively based 
on samples of the LAL phase showed a better group separation compared to models of the other reproductive 
phases, with PC1 and PC2 accounting for 22.29% and 12.58% of the variation, respectively (Supplementary 
Fig. S3F). Some individual sample clustering (pandas SB741 and SB868) was observed in the PCA plot of the 
CLD3 phase (Supplementary Fig. S3D), which may reflect biological or environmental variation unrelated 
to pregnancy status (e.g., diet, management, or sample handling conditions across zoos). To further define 
metabolic differences over the course of the reproductive cycle, supervised OPLS-DA models were constructed 
for each reproductive phase. When all 11,106 features were included, the OPLS-DA model of the LAL phase 
showed excellent Q2 (0.831), R2(Y) (0.987), permutation testing, and a CV-ANOVA p-value < 0.001. After 
filtering out all features with a high variance in their feature abundance across QC samples (CV > 30%) or a low 

Fig. 1.  Targeted polar metabolic feature abundances in pregnant and pseudopregnant giant pandas across the 
reproductive phases. Feature abundances are based on peak areas of the different samples per reproductive 
phase in pregnant (P, orange, n = 15 per phase) and pseudopregnant (PP, blue, n = 21 per phase) cycles. An 
anestrus, CLD corpus luteum dormancy phase, EAL early active luteal phase, LAL late active luteal phase.
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VIP score (< 1), new OPLS-DA models were built with more than 2,000 features remaining in all reproductive 
phases. All newly built models showed excellent Q2R2(Y), permutation testing, and CV-ANOVA p-values 
(Supplementary Table S5). Based on the VIP scores, Jack-knifed confidence interval, and S-plot correlation, 40, 
41, 68, 15, and 310 features were retained from the OPLS-DA models constructed with all features for the CLD1, 
CLD2, CLD3, EAL, and LAL phase, respectively (Supplementary Table S6). After employing univariate statistics, 
389 discriminative features were retained across all phases (CLD1: 30, CLD2: 28, CLD3: 40, EAL: 13, LAL: 
278) (Supplementary Table S7). Three features could be identified by spectral matching of the fragmentation 
data with authentic analytical standards (Tier 1)30. Kynurenic acid (KYNA) and indole-3-lactic acid (ILA) were 
both significantly higher in pseudopregnant samples during the CLD2 and CLD3 phase (Fig. 2). In contrast, in 
the LAL phase these metabolites were significantly higher in the pregnant samples. Tiglylcarnitine decreased 
in both groups during the early CLD phase compared to anestrus, but returned to higher levels during the 
late CLD phase (CLD3) in pseudopregnant samples (Fig. 2). The matched spectral data of putatively annotated 
urinary metabolomics features (UMF) such as UMF1752 and UMF7328 (o-methoxyhippuric acid and an 
n-aminodecanoic acid, respectively), could not be fully confirmed with analytical standards since they were not 
commercially available. Preliminary identification was therefore only based on m/z ratio, expected retention 
time based on known similar compounds, and C12/C13 ratio of the results provided by the fragmentation 
pattern analysis and spectral library searching (Tier 3)30. UMF1752 and UMF7328 were significantly higher in 
pregnant samples during CLD1 and EAL, respectively (Fig. 2).

Steroidomics analysis
Using steroidomics analysis, 12 out of 56 targeted compounds could be detected in the panda urine (Supplementary 
Table S8). Seven compounds showed matching fragmentation patterns with the authentic analytical standards, 
i.e., cortisol, cortisone, tetrahydrocortisone, 1,4-androstadienedione, 11-oxoetiocholanolone, androstenedione, 
and allopregnanolone sulfate (Tier 1)30. The compound putatively identified as 11β-hydroxyetiocholanolone, 
showed a highly similar fragmentation pattern to the analytical standard of 11β-hydroxyetiocholanolone, but the 
primary and some minor fragments differed with 2 Da each (Supplementary Fig. S4). This steroid is likely closely 
related to 11β-hydroxyetiocholanolone with the double bound shifted to another position. It is further referred 
to as urinary androgen 1 (UA1). UA1 and 11-oxoetiocholanolone were both significantly higher in pregnant 
urines during the CLD3 and EAL phase (Fig. 3). During the LAL phase, cortisol, 1,4-androstadienedione, and 
allopregnanolone sulfate were significantly higher in pregnant samples (Fig. 3).

A total of 14,081 features were detected following untargeted steroidomics data processing, 12,474 in the 
positive and 1,607 in the negative ionization mode. PCA models built per reproductive phase comparing 
pregnant and pseudopregnant samples revealed no separation between the two groups for any of the reproductive 
phases (Supplementary Fig. S5). However, some degree of individual sample clustering was observed in the PCA 
plots potentially reflecting site-specific variation unrelated to reproductive status. Identical to the metabolomics 
analysis, supervised OPLS-DA models were built per reproductive phase to better investigate the differences 
between pregnancy and pseudopregnancy. When including all 14,081 features, the OPLS-DA model of the LAL 
phase again showed excellent Q2 (0.736), R2(Y) (0.981), permutation testing, and a CV-ANOVA p-value < 0.001. 
OPLS-DA models of the other reproductive phases could not be validated. However, when excluding all features 
with a CV > 30% in their abundance across QC samples and all features with a VIP score < 1, the OPLS-DA 
model of the CLD3 phase, built with 3,457 features remaining, showed an improved Q2 (0.562), R2(Y) (0.995), 
permutation testing, and a CV-ANOVA p-value of 0.01. Potentially discriminating features were again selected 
from the OPLS-DA models including all features for CLD1 (n = 77), CLD2 (n = 26), CLD3 (n = 30), EAL 
(n = 82), and LAL (n = 198) based on the VIP scores, Jack-knifed confidence interval, and S-plot correlation 
(Supplementary Table S9). Following univariate statistical tests, the final number of features remaining for 
CLD1, CLD2, CLD3, EAL, and LAL counted 42, 15, 19, 60, and 171, respectively (Supplementary Table S10). 
After processing with fragmentation software tools, spectral libraries and CD, the identities of arachidonic 
acid (AA) and indole could be confirmed based on fragmentation patterns of the corresponding authentic 
analytical standards (Tier 1)30. Both compounds showed significantly higher levels in pregnant compared to 
pseudopregnant pandas in the LAL phase (Fig.  4). Similarly to the untargeted metabolomics approach, the 
identity of two other urinary steroidomics features (USF) could not fully be confirmed but they could putatively 
be annotated as 21-dehydrocortisol (USF2198) and 6,15-diketo-13,14-dihydro-PGF1α (USF5681) based on m/z 
ratio, expected retention time based on known similar compounds, and C12/C13 ratio of the results provided 
by the fragmentation pattern analysis and spectral library searching (Tier 3)30. Both USF2198 and USF5681 
were significantly higher in pregnant samples in the LAL phase (Fig. 4). Moreover, USF5681 already showed 
significantly higher levels in pregnant samples in both the CLD3 and EAL phase.

Predictive modelling
After QC filtering and removal of the features deemed significantly different in the anestrus phase, 7,486 and 
7,397 features remained from the polar metabolomics and steroidomics data, respectively. When combining 
the metabolomics and steroidomics data, 14,406 features remained for model building. Because all significantly 
different features were removed, no reliable predictive models could be built with data from the anestrus phase. 
As expected, the most predictive models were built with data from the LAL phase showing accuracies of 0.972, 
1.000, and 1.000 with metabolomics, steroidomics, and the combined data, respectively (Fig.  5). Identical 
to the PCA plots built with the metabolomics data in this phase, only one sample was wrongly classified as 
pseudopregnant. All other models, excluding the anestrus phase, however, also showed accuracies higher 
than 0.760. Furthermore, the models built with only metabolomics data, and with the combination of the 
metabolomics and steroidomics data for the CLD3 phase offered accuracies higher than 0.940. The number of 
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retained features to build the final models ranged from 64 to 342 (excluding models from the anestrus phase) 
(Table 2).

Discussion
In this study, we demonstrate distinct urinary molecular profiles between pregnant and pseudopregnant giant 
pandas by employing an MS-based discovery approach including two different molecular omics methods, i.e., 
polar metabolomics and steroidomics. Although our findings must be considered within the context of the 

Fig. 2.  Untargeted polar metabolic feature abundances in pregnant and pseudopregnant giant pandas across 
the reproductive phases. Feature abundances are based on peak areas of the different samples per reproductive 
phase in pregnant (P, orange, n = 15 per phase) and pseudopregnant (PP, blue, n = 21 per phase) cycles. 
O-methoxyhippuric acid and n-aminodecanoic acid are putatively identified (Tier 3). An anestrus, CLD corpus 
luteum dormancy phase, EAL early active luteal phase, LAL late active luteal phase.
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relatively small sample size and exploratory nature of this work, the observed differences in metabolic and 
hormonal features across different reproductive phases provide intriguing insights. These insights can establish 
a valuable basis for future research aiming at improving pregnancy detection and understanding reproductive 
physiology in this endangered species. The observed metabolic and hormonal differences were expressed from 
the early dormancy phase onwards but gained in magnitude towards the late active luteal phase, which is the 
current window for pregnancy diagnosis through ultrasound and endocrine monitoring. Untargeted polar 

Fig. 3.  Targeted steroid feature abundances in pregnant and pseudopregnant giant pandas across the 
reproductive phases. Feature abundances are based on peak areas of the different samples per reproductive 
phase in pregnant (P, orange, n = 18 per phase, except for the CLD1 phase (n = 17)) and pseudopregnant 
(PP, blue, n = 21 per phase, except for the anestrus and LAL phase (n = 20 and 18, respectively)) cycles. 
UA1 = unknown androgen 1, an analogue of 11β-hydroxyetiocholanolone. An anestrus, CLD corpus luteum 
dormancy phase, EAL early active luteal phase, LAL late active luteal phase.
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metabolomics and steroidomics analysis revealed a total of, respectively, 389 and 307 significantly different features 
from which respectively 98 and 76 were retained in the early luteal (CLD) phases. Furthermore, identification of 
these features revealed changes in various metabolic pathways including amino acid metabolism (urocanic acid, 
L-leucine, L-phenylalanine, ILA, and KYNA), energy metabolism (tiglylcarnitine and n-aminodecanoic acid), 
arachidonic acid metabolism (6,15-diketo-13,14-dihydro-PGF1α and AA), and steroid hormone biosynthesis 
(UA1, 11-oxoetiocholanolone, 1,4-androstadienedione, cortisol, and allopregnanolone sulphate).

Although no features from the CLD1 phase could be fully annotated, UMF1752 was putatively identified as 
o-methoxyhippuric acid. O-methoxyhippuric acid is not well described in literature, but it could be formed via 
the conjugation of o-methyl-salicylic acid and glycine34. The former is the methylated form of salicylic acid, a 
compound known for its anti-inflammatory capacities as cyclooxygenase (COX) inhibitor35,36. The implantation 
of an embryo is a pro-inflammatory reaction in which prostaglandins derived via COX play an important role37. 
It is thus probable that a salicylic acid-like compound is increased during the early CLD phase in giant pandas 
as part of a mechanism to halt implantation of the blastocyst37.

In the CLD2 and CLD3 phases, two metabolites from the tryptophan pathway, i.e., ILA and KYNA, were 
identified with levels increased in pseudopregnant urine. In the LAL phase, on the other hand, the levels 
of both metabolites and a third metabolite from the tryptophan pathway, i.e., indole, were increased in the 

Fig. 4.  Untargeted steroid feature abundances in pregnant and pseudopregnant giant pandas across the 
reproductive phases. Feature abundances are based on peak areas of the different samples per reproductive 
phase in pregnant (P, orange, n = 18 per phase, except for the CLD1 phase (n = 17)) and pseudopregnant 
(PP, blue, n = 21 per phase, except for the anestrus and LAL phase (n = 20 and 18, respectively)) cycles. 
21-deoxycortisol and 6,15-diketo-13,14-dihydro-PGF1α are putatively identified (Tier 3). An anestrus, CLD 
corpus luteum dormancy phase, EAL early active luteal phase, LAL late active luteal phase.
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pregnant urine instead (Figs. 2 and 4). KYNA has already been described as a potentially important metabolite 
in giant panda reproduction by Cao et al.38 who found an increased KYNA excretion in the luteal phase of 
pregnant pandas compared to their corresponding anestrus phase. The latter finding is also consistent with 
studies on rats (Rattus spp.) and humans39,40. KYNA has been hypothesized to be present in higher levels during 
pregnancy because of its potential neuroprotective effects on the fetus41. Alternatively, urinary KYNA levels can 
be increased because of a higher availability of KYN in the umbilical cord. Indeed, during pregnancy tryptophan 
is catabolized to protect the fetus against the maternal immune system42. As indole and KYN are intermediate 
products of tryptophan degradation, this process explains the increased indole and KYNA excretion observed 
during pregnancy39. ILA is another metabolite from the tryptophan pathway that has some antioxidant and 
immunosuppressive effects43–45. It can play a role in regulating the microbiome of the newborn cub, which can 

Fig. 5.  Accuracy dot plots of the GLM models with elastic net regularization per reproductive phase. (A) 
Models built with the metabolomics data. (B) Models built with the steroidomics data. (C) Models built with 
the combined metabolomics and steroidomics data. Acc = Accuracy, CI = 95% confidence interval. All models 
were built after QC filtering (CV > 30%) and exclusion of features significantly different in the anestrus phase 
(p < 0.05). Remaining features used to build the models encompassed 7486 for the metabolomics data, 7,397 
for the steroidomics data, and 14,406 for the combined data. CLD corpus luteum dormancy phase, EAL early 
active luteal phase, LAL late active luteal phase.
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explain the higher levels in pregnant pandas during the LAL phase43–45. The reasons why KYNA and ILA are 
both higher in pseudopregnant pandas during the CLD2 and CLD3 phases remain unclear.

As a short-chain acylcarnitine46tiglylcarnitine functions as a fatty acid transporter into the mitochondria for 
energy production via fatty acid oxidation47. During specific conditions with increased energy demand (e.g., 
exercise or pregnancy) or lower energy intake (e.g., fasting), fatty acid oxidation will increase and thus also the 
production of acylcarnitines48,49. In pregnant pandas, tiglylcarnitine levels indeed start to increase during the 
EAL phase. This is consistent with results regarding the fecal output of giant pandas published by Wauters et 
al.17where a steep decline was noted midway through the EAL phase, approximately 30 days before parturition 
and thus around the same time window as the EAL samples of this study. However, further investigations are 
warranted to reveal why tiglylcarnitine levels appear to increase earlier (during CLD3) in pseudopregnant 
pandas (Fig.  2). UMF7328 in its turn, was increased in pregnant urine samples from the EAL phase and 
although its identity could not be fully confirmed, it was putatively classified as an n-aminodecanoic acid, which 
is a medium-chain fatty acid (MCFA). MCFAs are not only readily available energy sources, they also play an 
important part in fetal development and specifically reduce the chances on early pregnancy loss by improving 
ovarian steroidogenesis and endometrial receptivity50–52. The EAL phase marks the implantation/attachment 
period of the giant panda embryo and is thus a crucial period that could benefit from these protective effects.

In the final phase of the reproductive cycle, i.e., the LAL phase, several of the observed metabolic and hormonal 
differences were related to AA metabolism and steroid hormone biosynthesis. Both have been extensively 
investigated in giant pandas via the use of enzyme immunoassays (EIA)10,11,16,53,54. Nevertheless, confirmation of 

Phase Anestrus CLD1 CLD2 CLD3 EAL LAL

Analysis Metabolomics (7486 features*)

# of samples 36 36 36 36 36 36

(P, PP) (15, 21) (15, 21) (15, 21) (15, 21) (15, 21) (15, 21)

λ 1.000 0.024 0.398 0.030 0.457 1.000

# Of features 19 342 148 316 128 64

Accuracy 0.611 0.889 0.833 0.944 0.861 0.972

(95% CI) (0.435–0.769) (0.739–0.969) (0.672–0.936) (0.813–0.993) (0.705–0.953) (0.855–0.999)

ROC AUC 0.581 0.933 0.902 0.987 0.914 1.000

(95% CI) (0.383–0.778) (0.848-1.000) (0.806–0.997) (0.960-1.000) (0.815-1.000) (1.000–1.000)

Sensitivity 0.200 0.867 0.800 0.867 0.800 1.000

Specificity 0.905 0.905 0.857 1.000 0.905 0.952

Analysis Steroidomics (7397 features*)

# of samples 38 38 39 39 39 36

(P, PP) (18, 20) (17, 21) (18, 21) (18, 21) (18, 21) (18, 18)

λ 0.060 0.032 0.190 0.263 0.182 0.758

# Of features 399 310 219 170 219 121

Accuracy 0.447 0.763 0.795 0.821 0.821 1.000

(95% CI) (0.286–0.617) (0.598–0.886) (0.635–0.907) (0.665–0.925) (0.665–0.925) (0.903-1.000)

ROC AUC 0.333 0.860 0.823 0.849 0.860 1.000

(95% CI) (0.157–0.509) (0.745–0.975) (0.685–0.961) (0.713–0.986) (0.732–0.988) (1.000–1.000)

Sensitivity 0.611 0.706 0.722 0.778 0.778 1.000

Specificity 0.300 0.810 0.857 0.857 0.857 1.000

Analysis Metabolomics and steroidomics (14,406 features*)

# of samples 33 35 36 36 34 33

(P, PP) (13, 20) (14, 21) (15, 21) (15, 21) (15, 19) (15, 18)

λ 1.000 0.302 0.251 0.120 0.079 1.000

# Of features 49 209 235 261 317 102

Accuracy 0.545 0.857 0.861 0.972 0.853 1.000

(95% CI) (0.364–0.719) (0.697–0.952) (0.705–0.953) (0.855–0.999) (0.689–0.950) (0.894-1.000)

ROC AUC 0.331 0.929 0.902 0.952 0.947 1.000

(95% CI) (0.135–0.526) (0.847-1.000) (0.801-1.000) (0.858-1.000) (0.882-1.000) (1.000–1.000)

Sensitivity 0.000 0.714 0.800 0.933 0.800 1.000

Specificity 0.900 0.952 0.905 1.000 0.895 1.000

Table 2.  Predictive performance parameters of the GLM models with elastic net regularization per 
reproductive phase. P = pregnant, PP = pseudopregnant, ROC = receiving operator curve, AUC = area under 
the curve, CI = confidence interval. λ was optimized per reproductive phase via LOOCV. The # of features 
corresponds to the total number of variables retained in the final model. *Number of features remaining after 
QC filtering (CV > 30%) and exclusion of features significantly different in the anestrus phase (p < 0.05).
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the identity of the detected hormones is absent when merely using EIA for non-invasive endocrine monitoring 
as the hormone metabolization process in giant pandas is yet to be unraveled. For example, prostaglandin levels 
diverge between pregnant and pseudopregnant pandas during the final two weeks to prepare the pregnant 
female for parturition and are therefore monitored via an EIA that targets PGFM, a metabolite of PGF2α

10,17,55. 
According to our results, however, giant pandas do not excrete PGFM. Instead, another metabolite is excreted 
during these stages, namely 6,15-diketo-13,14-dihydro-PGF1α, which is probably picked up via EIA cross-
reactivity. Remarkably, 6,15-diketo-13,14-dihydro-PGF1α already shows significant differences in earlier stages 
than can be seen with PGFM EIA monitoring (Fig. 4). More specific EIAs should therefore be developed as 
they could possibly also pick up this trend and thus provide earlier signs for pregnancy in giant pandas than the 
current PGFM EIA. Similar to PGFM, we were not able to detect progesterone in any of the urine samples, despite 
this usually being the main target of the progesterone EIA used for giant panda reproductive monitoring16,17. 
The detection of allopregnanolone sulfate in giant panda urine on the other hand, has not been described 
in literature yet, while our results suggest it is the main urinary progestogen in this species. In contrast, the 
presence of cortisol, which has been targeted with EIA in giant pandas, was confirmed with our analysis. It also 
demonstrated the expected increase during the LAL phase, priming both the fetus and the mother for the nearing 
parturition17,54,56,57. However, a second potential glucocorticoid, putatively identified as 21-dehydrocortisol, 
showed a more distinct increase than cortisol towards the end of the cycle in pregnant females which was absent 
in their pseudopregnant counterparts (Fig. 4). As both steroids show highly similar structures, it is possible that 
21-dehydrocortisol is detected with the same EIA as cortisol. Although glucocorticoids stimulate the synthesis 
of estrogens during these final weeks, resulting in improved myometrial activity, this could not be observed 
with our method as we were unable to identify any estrogens yet. Nevertheless, estrogens are synthetized via 
the conversion of androgens by aromatase enzymes58. As the steroid biosynthesis pathway gradually alters to 
favor estrogen over progestogen production, androgen levels can also increase being an intermediate between 
progestogens and estrogens. This can explain the higher levels of 1,4-androstadienedione observed solely in the 
pregnant giant pandas in the LAL phase in this study. Remarkably, increased levels of two other androgens, UA1 
and 11-oxoetiocholanolone, were also noted in earlier stages of pregnant pandas in this study, i.e., the CLD3 and 
EAL phase (Fig. 3). The EAL corresponds with the CL reactivation and the window for embryo implantation. 
Androgens play a role in the normal endometrial physiology for embryo implantation both via the conversion 
to estrogens as via direct binding with androgen receptors59,60. It could be hypothesized that in giant pandas, 
these androgens are involved in preparing the endometrium for implantation of the embryo around reactivation 
of the CL. As the levels are higher in pregnant females, embryonic signals probably assist in their upregulation.

Despite the successful annotation of multiple features in this study, identification of biomarkers remains 
a bottleneck in untargeted metabolomics analyses. Therefore, it was explored whether panels of metabolic 
(including steroids) features could be used to classify samples using binomial logistic regression. Given the 
small set of samples (n = 33–39 per phase), the high number of variables (n = 7,397 − 14,406), and the absence 
of a set of independent samples for model validation, a regularization penalty was applied to prevent overfitting 
of the models on the training data. Elastic net regularization was selected because it allows feature selection 
by removing unimportant variables from the model, while taking into account potential correlations between 
variables31,32. The latter is expected to be present as most features will be part of biological systems, which often 
show complex interactions. The excellent parameters of the logistic regression models, particularly those built 
from data of the early stages, i.e., CLD (Table 2), suggest that panels of biomarkers measured with UHPLC-
HRMS could provide an alternative strategy to the use of EIA for early pregnancy diagnosis. Nevertheless, it 
must be noted that these models were only validated on the training data. They will need to be validated on 
newly collected data to fully confirm their potential as diagnostic tools.

Conclusions
To the best of our knowledge, this is the first study to employ a non-invasive metabolomics approach to investigate 
metabolic and hormonal differences between pregnant and non-pregnant (e.g., proven pseudopregnancies) 
giant pandas across different phases of their reproductive cycles. Remarkably, our results demonstrate that 
discriminative changes can be observed as early as the start of the embryonic diapause, i.e., CLD1, long before 
the current window of pregnancy diagnosis. Our findings did not only confirm differences between pregnant 
and pseudopregnant pandas in prostaglandin and steroid hormone biosynthesis, but also provided new insights 
in potential alterations of amino acid and energy metabolism during the reproductive cycle. After further 
elucidation and validation of the underlying mechanisms of these changes in an independent sample set, 
these discriminating metabolites could be explored as possible biomarkers for pregnancy monitoring in giant 
pandas. Alternatively, the potential of biomarker panels, without the need for individual feature annotation, was 
also demonstrated. Similar to the individually identified metabolites, these classification models will require 
additional validation in independent sample sets before implementation can be considered. Furthermore, 
for the first time to our knowledge, we were able to fully annotate discriminatory urinary steroids, some of 
which are already included in non-invasive pregnancy monitoring in giant pandas using EIA. Although our 
findings revealed that the excreted steroid metabolites are not necessarily the intended target compounds of 
those commonly intended with EIAs, they are probably still detected via cross-reactivity of the antibodies. These 
results are important for future optimization of employed EIAs and will as such contribute to improving the 
routine reproductive monitoring of giant pandas as part of their conservation efforts.

Data availability
All statistical data are available in the manuscript and supplementary information. The datasets generated and/or 
analyzed during the current study are available in the Metabolomics Workbench Repository, Study ID: ST003782 
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and ST003783. Available at http://dx.doi.org/10.21228/M8KG1C and http://dx.doi.org/10.21228/M8KG1C. For 
additional data requests, please contact Lynn Vanhaecke at lynn.vanhaecke@ugent.be.
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