Table 2 Average of the absolute values of side slip angle estimation error under the influence of parameter variations between 80% and 120% of the nominal values of sprung mass m, yaw inertia \(J_{zz}\), and vehicle speed v.

From: T-S fuzzy approach for real-time vehicle state estimation and road safety enhancement

Variation

T-S Observer

FO

PMIO

FUOI

80% m

\(8.572755 \times 10^{-3}\)

\(8.572927 \times 10^{-3}\)

\(8.573402 \times 10^{-3}\)

\(1.439805 \times 10^{-2}\)

80% v

\(1.550698 \times 10^{-2}\)

\(1.550715 \times 10^{-2}\)

\(1.550762 \times 10^{-2}\)

\(1.511658 \times 10^{-2}\)

80% \(J_{zz}\)

\(1.093888 \times 10^{-3}\)

\(1.093919 \times 10^{-3}\)

\(1.094219 \times 10^{-3}\)

\(7.693039 \times 10^{-3}\)

90% m

\(4.511087 \times 10^{-3}\)

\(4.511258 \times 10^{-3}\)

\(4.511733 \times 10^{-3}\)

\(1.068700 \times 10^{-2}\)

90% v

\(8.155572 \times 10^{-3}\)

\(8.155742 \times 10^{-3}\)

\(8.156217 \times 10^{-3}\)

\(1.100316 \times 10^{-2}\)

90% \(J_{zz}\)

\(8.681782 \times 10^{-4}\)

\(8.682074 \times 10^{-4}\)

\(8.685089 \times 10^{-4}\)

\(7.746213 \times 10^{-3}\)

110% m

\(4.331730 \times 10^{-3}\)

\(4.331617 \times 10^{-3}\)

\(4.331142 \times 10^{-3}\)

\(8.235821 \times 10^{-3}\)

110% v

\(8.197796 \times 10^{-3}\)

\(8.197682 \times 10^{-3}\)

\(8.197209 \times 10^{-3}\)

\(8.874272 \times 10^{-3}\)

110% \(J_{zz}\)

\(8.676059 \times 10^{-4}\)

\(8.676404 \times 10^{-4}\)

\(8.679451 \times 10^{-4}\)

\(7.874509 \times 10^{-3}\)

120% m

\(7.853189 \times 10^{-3}\)

\(7.853076 \times 10^{-3}\)

\(7.852602 \times 10^{-3}\)

\(1.145030 \times 10^{-2}\)

120% v

\(1.569571 \times 10^{-2}\)

\(1.569560 \times 10^{-2}\)

\(1.569512 \times 10^{-2}\)

\(1.255470 \times 10^{-2}\)

120% \(J_{zz}\)

\(1.091731 \times 10^{-3}\)

\(1.091767 \times 10^{-3}\)

\(1.092059 \times 10^{-3}\)

\(7.951806 \times 10^{-3}\)