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Bridge collisions, particularly those involving over-height vehicles, pose significant threats to public 
infrastructure, economic stability, and human safety. This study presents an intelligent, vision-based 
Bridge Collision Avoidance System (BCAS) that leverages advanced camera calibration techniques, 
motion detection algorithms, and real-time risk assessment frameworks to proactively detect and 
mitigate potential collisions. The system architecture integrates high-resolution video feeds with 
precise intrinsic and extrinsic camera calibration to accurately transform 2D motion into real-world 
coordinates. Motion detection and object segmentation are performed using a hybrid approach 
combining traditional background subtraction with deep learning-based models such as YOLOv11 and 
Vision Transformers (ViT), ensuring robustness in dynamic lighting and occlusion-prone environments. 
Object trajectory estimation is achieved through frame-wise velocity computation and spatial 
projection, enabling predictive collision path analysis. A risk evaluation model classifies threat levels 
using spatial thresholds, velocity vectors, and entropy-calibrated confidence scores. Real-time alerts 
are dispatched through low-latency edge-cloud frameworks with visual and auditory feedback to 
connected operators. Experimental validation across diverse scenarios—including occlusion, night 
conditions, and dense traffic—demonstrates superior performance in terms of accuracy (95.7%), 
false alarm rate (3.2%), and average system response latency (162 ms), when benchmarked against 
traditional rule-based and motion detection systems. This research contributes a modular, scalable, 
and fault-tolerant solution suitable for real-world deployment to enhance bridge safety in smart urban 
infrastructures.
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Bridges serve as critical components of transportation infrastructure, enabling the smooth flow of vehicles, goods, 
and people across geographic barriers such as rivers, valleys, and urban obstacles1. As traffic volumes continue 
to grow, particularly in urban and industrial areas, the risks associated with bridge collisions have become 
increasingly pronounced2. These collisions, often caused by over-height vehicles or waterborne vessels failing 
to clear the bridge deck, can result in severe structural damage, loss of human life, and prolonged disruption 
of essential transportation routes3. Despite the deployment of conventional preventive measures such as static 
signage, overhead barriers, and manual surveillance, the current methods remain insufficient in addressing the 
dynamic nature of modern traffic environments4. A more intelligent and proactive solution is urgently required 
to detect and prevent potential collisions before they occur5.

The integration of advanced computer vision techniques, particularly camera calibration and motion 
detection, presents a promising opportunity for enhancing bridge safety monitoring systems6. Camera-
based surveillance offers a non-intrusive and cost-effective solution; however, its effectiveness is significantly 
compromised when the captured images lack geometric accuracy due to improper calibration7. Without precise 
calibration, the transformation of pixel-based coordinates to real-world measurements becomes unreliable, 
thereby impeding accurate estimation of an approaching object’s size, speed, and trajectory8. Furthermore, 
motion detection algorithms used in current systems often suffer from high false positive rates, especially under 
complex environmental conditions such as rain, fog, or fluctuating lighting9. These challenges underscore the 
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need for a robust, real-time bridge collision avoidance system that is capable of not only detecting moving 
objects but also accurately interpreting their trajectories in a spatially meaningful context10.

The motivation for this study arises from the recurring incidents of bridge collisions reported across the 
globe11. Many of these incidents could have been avoided through timely intervention based on reliable real-time 
monitoring and predictive analysis12. The increasing complexity of traffic systems, coupled with the limitations 
of traditional monitoring solutions, necessitates the development of an integrated, intelligent system that can 
identify threats early and initiate preventive measures13. Technological advancements in camera calibration 
methods—such as intrinsic and extrinsic parameter estimation—and the growing sophistication of motion 
analysis techniques provide a solid foundation for such innovation14.

However, several unresolved challenges persist. Current systems often lack spatial precision due to 
uncalibrated imaging devices, leading to errors in object localization and size estimation. Additionally, motion 
detection in uncontrolled outdoor environments remains a non-trivial problem due to noise, background 
variations, and occlusions15. Existing frameworks are also typically reactive rather than predictive, issuing alerts 
only when an object is dangerously close to a bridge structure, thus limiting the response time for any corrective 
action16. Moreover, the lack of seamless integration between calibration, motion detection, object tracking, and 
risk assessment modules further compromises the reliability of these systems in real-world deployment17.

To address these gaps, the present research proposes the design and development of an intelligent bridge 
collision avoidance system based on camera calibration technology and motion detection. The primary objective 
is to enhance the accuracy and reliability of bridge safety monitoring by leveraging calibrated camera systems 
that can map visual data into real-world dimensions18. This enables the precise detection and tracking of objects 
in a defined monitoring zone. The system also incorporates advanced motion detection algorithms capable of 
operating under varying environmental conditions, supported by real-time object tracking and collision risk 
assessment components19. The integration of these modules within a cohesive framework allows the system to 
predict potential collisions by analyzing object speed, trajectory, and distance from the bridge structure20. An 
automated alert generation mechanism is included to issue timely warnings to relevant authorities or vehicle 
operators, thereby enabling prompt preventive actions21.

The key objectives of this research are fourfold: first, to implement an accurate camera calibration model to 
enhance spatial understanding of captured scenes; second, to develop a motion detection and object tracking 
algorithm suitable for dynamic environments; third, to integrate a collision risk assessment module that 
forecasts potential impact scenarios; and finally, to deploy a real-time alert system for rapid response. Through 
a combination of theoretical modeling, algorithm design, and system-level integration, this research aims to 
contribute a novel and practical solution to the ongoing challenge of bridge collision prevention. The proposed 
system is expected to outperform existing methods in terms of spatial accuracy, detection reliability, and response 
efficiency, thereby offering a viable approach for modern smart infrastructure applications.

Despite the deployment of conventional surveillance and rule-based monitoring systems, current approaches 
remain limited by high false alarm rates, poor adaptability to changing environmental conditions, and insufficient 
predictive capability. These gaps underscore the necessity of developing an intelligent, vision-based bridge 
collision avoidance system capable of proactive risk prediction and low-latency response. The innovation of this 
study lies in its integration of precise camera calibration with deep learning-based motion detection (YOLOv11, 
ViT), trajectory forecasting through calibrated spatial mapping, and entropy-calibrated risk classification within 
an IoT-enabled alert framework. This holistic design not only reduces false alarms and response delays but also 
provides a scalable and fault-tolerant solution for deployment in modern smart infrastructure. In light of the 
identified challenges and research objectives, the following represent the major contributions of this study:

•	 This study presents a robust framework that accurately Maps 2D image coordinates to real-world spatial 
dimensions using intrinsic and extrinsic camera calibration parameters, thereby enabling precise object lo-
calization and trajectory estimation near bridge structures.

•	 The proposed system incorporates optimized motion detection techniques, including background modeling 
and real-time object tracking, to reliably identify moving threats under diverse environmental conditions 
such as rain, low light, and occlusions.

•	 A novel predictive model is introduced to assess the likelihood of collision by analyzing the motion dynam-
ics—such as speed, direction, and proximity—of approaching vehicles or vessels, thus enabling proactive 
safety measures.

•	 The system includes a real-time alert generation component capable of issuing early warnings to relevant 
authorities or vehicle operators, thereby improving response time and reducing the probability of structural 
damage or human casualties.

•	 The effectiveness and robustness of the proposed collision avoidance system are validated through controlled 
simulations and practical case studies, demonstrating significant improvement over conventional, uncalibrat-
ed surveillance systems in terms of accuracy, reliability, and operational efficiency.

This research article is structured to provide a comprehensive analysis and solution to the problem of bridge 
collisions using camera calibration and motion detection technologies. It begins with an introduction outlining 
the background, motivation, problem statement, objectives, and key contributions. A detailed literature review 
follows, highlighting existing systems and identifying gaps in current methodologies. The subsequent sections 
present the system design, including the camera calibration model, motion detection algorithm, and collision 
risk assessment framework. Experimental validation and performance evaluation are then discussed, followed by 
a presentation of results and in-depth analysis. The article concludes by summarizing the findings and outlining 
directions for future work to enhance system scalability and intelligence.
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Literature review
The increasing interest in bridge safety and collision prevention has led to several advancements in surveillance 
systems, motion detection techniques, and camera-based monitoring in recent years22. Zhang et al. proposed 
a vision-based monitoring system utilizing monocular camera calibration and object tracking to detect over-
height vehicles approaching bridge underpasses23. The system employed geometric transformation to estimate 
object height from image coordinates; however, its performance was Limited by poor Lighting conditions and 
frequent false positives. The dataset used was custom-collected under controlled scenarios, and the system 
achieved an accuracy of 88% in height estimation, but lacked generalization to outdoor real-world scenes.

In24, Zaarane et al. (2020) introduced a stereo vision system for real-time vehicle dimension measurement at 
toll gates using dual cameras and disparity Mapping. Their methodology effectively calculated 3D coordinates, 
enabling precise distance estimation. The system, tested on a dataset of 600 annotated vehicle images, reported a 
mean absolute error of less than 5 cm. However, its limitations included sensitivity to camera misalignment and 
calibration drift over time, making it less suitable for long-term unattended deployments.

Hosain et al. (2024)10 developed a deep learning-based detection system using YOLOv3 for identifying 
incoming large vehicles on bridge approaches. Their methodology combined object detection with GPS tagging 
for geofencing near critical zones. They used the KITTI dataset al.ong with additional overhead footage, 
achieving over 92% detection accuracy. Nonetheless, the system showed reduced performance in foggy or rainy 
weather, indicating the need for sensor fusion.

In25, the authors proposed a hybrid LIDAR-camera system for Maritime bridge collision detection, 
integrating sensor data through Kalman filtering. While the multi-modal system achieved robust detection of 
ships approaching bridge piers, the primary Limitation was the high cost and complexity of hardware setup. 
Tests conducted on real-time port surveillance data demonstrated reliable detection within 50 m but suffered 
latency in object classification.

A study by Halfawy et al. (2014)26 utilized optical flow techniques and background subtraction to detect 
motion near bridge structures using CCTV footage. The algorithm was evaluated on publicly available traffic 
monitoring datasets and demonstrated satisfactory tracking of vehicles, but was prone to false positives from 
shadows and environmental noise. The authors acknowledged that background modeling required frequent 
recalibration, limiting deployment in dynamic environments.

In27, Aly et al. (2022) applied the MeanShift tracking algorithm combined with a calibrated monocular 
camera to monitor the movement of over-height vehicles. The camera calibration was conducted using the 
chessboard method, and the test dataset comprised 500 vehicle entries at a controlled highway site. The system 
achieved 85% tracking consistency, but failed to handle occlusion and side-view angle distortions, impacting 
real-world reliability.

Seisa et al. (2024)28 introduced a real-time edge computing solution with embedded cameras and motion 
sensors for bridge collision warning. The system processed motion data locally using Raspberry Pi-based units, 
reducing latency and network dependency. Field deployment on a rural bridge showed promising results with 
94% successful detection of unauthorized entries. The primary limitation was computational constraints in 
handling simultaneous multi-object tracking.

In29, Zhang et al. (2022) utilized a deep convolutional neural network (DCNN) to classify vessel types and 
detect movement patterns for bridge collision prevention in inland waterways. The model was trained on a 
dataset of 2000 labeled vessel images and incorporated AIS data for speed estimation. While the model achieved 
91.3% classification accuracy, it lacked real-time performance due to the need for cloud-based computation, 
posing challenges for latency-critical applications.

An IoT-based monitoring framework was presented in30, combining calibrated surveillance cameras and 
ultrasonic sensors for real-time bridge underpass protection. The system integrated sensor readings and image 
coordinates through a local edge gateway, alerting approaching vehicles through dynamic signage. Although the 
system performed well with an average detection time of 2.3 s, its reliability decreased significantly in high-traffic 
scenarios due to sensor saturation and visual occlusion.

The authors explored the use of Structure from Motion (SfM) and multi-view geometry for generating 
3D maps of bridge surroundings to monitor approaching threats31. The method utilized drone footage and 
OpenMVG for reconstruction. Although it provided accurate 3D models, with an average deviation of 2%, the 
system was computationally intensive and unsuitable for continuous real-time monitoring.

In32, Dong et al. (2024) introduced a transformer-based vision system for large object trajectory prediction 
near bridge structures. Their approach utilized a spatiotemporal attention mechanism over a dataset of 8,000 
time-sequenced images of highway vehicles. The model achieved a prediction accuracy of 94.5% in determining 
collision trajectories within a 4-second future window. However, the model’s inference time was relatively high, 
making it less suitable for low-latency applications without GPU support.

In33, Djenouri et al. (2024) developed a federated learning framework that enabled multiple roadside cameras 
to collaboratively train a vehicle detection model without sharing raw video data, thereby enhancing data privacy. 
The model was built on the MobileNetV2 backbone and trained using local datasets from multiple smart city 
intersections. Results showed that detection accuracy reached 91% while preserving data locality. Limitations 
included synchronization issues and occasional model drift due to non-IID (non-identically distributed) data.

Thombre et al. (2020)34 proposed a multi-sensor fusion framework using radar, depth cameras, and calibrated 
RGB cameras for vessel-bridge collision avoidance. They used Bayesian filtering and Dempster-Shafer theory to 
fuse sensor confidence levels. The dataset consisted of annotated Maritime surveillance videos and radar logs 
from Busan Port. The system achieved 97% precision in threat detection, but required high-bandwidth data 
transmission and consistent sensor calibration.

In35, a deep reinforcement learning (DRL) approach was proposed by Fahimullah et al. (2024) for proactive 
decision-making in bridge traffic control. Using a simulation environment built on SUMO and OpenCV-based 
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video analytics, the system learned to activate warnings or reroute traffic based on estimated collision risk. 
The model achieved a cumulative reward score 38% higher than rule-based baselines but suffered from slow 
convergence and required extensive training episodes.

In36, Yang et al. (2014) introduced a stereo-camera-based 3D bounding box estimation method for vehicle 
collision monitoring, enhanced with a Kalman filter for object trajectory smoothing. Tested on a custom dataset 
of 1,200 annotated stereo pairs near bridge entrances, the system maintained a root-mean-square error (RMSE) 
below 0.3  m in spatial tracking. However, its performance degraded at night without supplemental infrared 
imaging.

In37, Fu et al. (2022) applied a real-time instance segmentation model (Mask R-CNN) integrated with camera 
calibration for object dimension estimation near critical bridge zones. Using the Cityscapes and BDD100K 
datasets fine-tuned for structural environments, the model achieved a mean average precision (mAP) of 89.4%. 
Limitations were noted in segmenting overlapping vehicles during peak traffic conditions.

An innovative edge-AI solution was developed by Azfar et al. (2024) in38, where an NVIDIA Jetson Nano-
powered module performed onboard detection and risk scoring using YOLOv5 and optical flow tracking. The 
system was deployed on a smart highway bridge prototype, detecting vehicle intrusion and speed in real-time 
with 96% accuracy. The main constraint was hardware heat dissipation during prolonged operation in harsh 
outdoor environments.

In39, a vision transformer model (ViT-B/16) was used by Conde et al. (2021) for fine-grained classification 
of abnormal object behaviors around bridge zones. The model was pretrained on ImageNet and fine-tuned on 
a surveillance video dataset with labeled anomalies. It achieved an F1-score of 92.6% and effectively classified 
behaviors such as illegal U-turns, reverse driving, and potential over-height entries. However, the model was 
compute-heavy and required TPU support for optimal inference speed.

In40, Arroyo et al. (2024) developed a real-time collision prevention system using LiDAR point cloud 
alignment with RGB video feeds for validating object presence and height near bridge thresholds. Their system 
achieved a high-resolution 3D Mapping with a point registration error below 1.5  cm. The dataset included 
Velodyne HDL-64E scans and synchronized camera feeds from urban highways. While highly accurate, the 
system’s cost and complexity made it suitable only for high-risk zones.

Lastly, in41, a graph neural network (GNN)-based spatiotemporal reasoning framework was proposed by Li 
et al. (2023) to model interactions between vehicles and static bridge elements. Nodes represented objects and 
their features, while edges modeled spatial and temporal dependencies. The model, trained on the nuScenes 
dataset, achieved superior generalization across weather and traffic conditions, reaching 93% prediction 
accuracy. However, interpretability of the learned graph relations remained a challenge.

The reviewed literature highlights the rapid advancements in bridge collision avoidance systems, particularly 
through the integration of computer vision, sensor fusion, and intelligent monitoring techniques. Traditional 
systems relying solely on uncalibrated camera setups or single-modality sensors have demonstrated limited 
reliability in real-world deployments due to spatial inaccuracies, high false positive rates, and sensitivity to 
environmental conditions. Recent research has explored the incorporation of calibrated camera models, stereo 
vision, motion detection algorithms, and deep learning architectures such as YOLO, Mask R-CNN, and Vision 
Transformers to improve object detection and trajectory prediction. Notably, several studies have embraced edge 
computing, federated learning, and graph-based reasoning to enhance system efficiency, privacy, and contextual 
understanding. Despite these advances, limitations persist in terms of real-time processing capabilities, 
scalability, hardware constraints, and adaptability to diverse environmental settings. The existing body of work 
thus underscores the need for an integrated, robust, and real-time bridge collision avoidance system that leverages 
camera calibration and motion detection while addressing the challenges of dynamic traffic environments and 
structural diversity. This study aims to build upon these foundations and contribute a unified framework capable 
of accurate threat detection, risk assessment, and proactive alert generation.

Methodology
To address the challenges associated with accurate and timely bridge collision avoidance, this study proposes 
a comprehensive, multi-stage methodology that integrates precise camera calibration, intelligent motion 
detection, object trajectory estimation, and real-time alert generation within a unified system architecture. The 
methodology is designed to operate in complex, dynamic environments, ensuring robustness against varying 
lighting conditions, object speeds, and structural layouts. Each component of the system is methodically 
developed and validated to enhance spatial accuracy, detection reliability, and response efficiency. The following 
subsections detail the individual modules of the proposed framework, including system design, calibration 
processes, motion tracking algorithms, risk assessment strategies, and implementation specifics. Together, these 
components contribute to a reliable, real-time collision avoidance solution suitable for deployment in intelligent 
transportation and smart infrastructure environments.

System overview and operational workflow
The proposed bridge collision avoidance system is designed as a modular, real-time framework that integrates 
calibrated camera feeds, intelligent motion analysis, and collision prediction models to proactively identify and 
mitigate potential collision threats. The architecture of the system is structured into three primary stages: input 
acquisition, processing pipeline, and alert generation. Each stage contains dedicated modules that ensure data 
integrity, analytical robustness, and real-time responsiveness suitable for deployment in intelligent transportation 
and smart infrastructure environments. The input stage is responsible for acquiring video data from strategically 
mounted surveillance cameras positioned near or on bridge structures. These cameras are subjected to an initial 
calibration phase to correct lens distortion and establish a reliable mapping between image space and physical 
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world coordinates. Additional input sources may include metadata from embedded sensors (e.g., motion sensors 
or GPS modules) to augment visual information, especially under low-visibility conditions.

The processing stage comprises multiple sequential modules: (i) real-time motion detection to isolate moving 
objects, (ii) object segmentation and tracking to identify persistent collision candidates, and (iii) trajectory 
estimation to compute direction, speed, and predicted impact zones. This phase relies heavily on calibrated 
geometry to infer real-world positions and motion vectors. In the output stage, a risk assessment module evaluates 
the likelihood of collision based on the object’s estimated trajectory and proximity to the bridge structure. If the 
calculated risk exceeds a predefined threshold, the system activates a multi-modal alert mechanism which may 
include visual indicators (e.g., warning LEDs or signage), auditory alarms, or notifications transmitted via IoT 
communication protocols to nearby operators or connected vehicles.

The overall operational flow of the system is depicted in Fig. 1, and a summarized view of each core system 
component is presented in Table 1.

Camera calibration process
Precise camera calibration is a critical prerequisite for translating pixel-based image data into spatially accurate 
real-world measurements. This process involves estimating both intrinsic and extrinsic parameters of the 
camera to eliminate geometric distortions and ensure reliable object localization in three-dimensional space. 
The intrinsic parameters define the internal geometry and optical characteristics of the camera, including focal 
length, optical center, and lens distortion coefficients. In contrast, extrinsic parameters describe the spatial 
relationship between the camera and the observed scene, characterized by rotation and translation matrices.

The calibration procedure employed in this study utilizes a pattern-based approach, specifically a checkerboard 
grid, to establish a reference frame between the camera’s image plane and the real-world coordinate system. 
Multiple images of the checkerboard are captured from various orientations and distances. Feature points 
(typically corners) on the grid are then detected using OpenCV’s cornerSubPix Function, and corresponding 
2D-3D point correspondences are computed. The Zhang’s method is employed to solve for both intrinsic and 
extrinsic parameters via non-linear optimization, minimizing the reprojection error across all views.

Once the camera parameters are computed, the system applies a transformation matrix to map each image 
pixel coordinate to its corresponding position in the real world. This transformation is essential for downstream 

System Stage Module Functionality Tools/Technologies

Input
Camera Acquisition Captures live video feed from fixed surveillance positions HD/IR cameras, stereo vision, IoT modules

Camera Calibration Transforms pixel coordinates into real-world space Zhang’s method, Intrinsic/Extrinsic matrix

Processing

Motion Detection Identifies moving entities in the video stream Background Subtraction, Optical Flow, YOLO

Object Tracking Maintains identity and position of detected objects over time Kalman Filter, DeepSORT

Trajectory Estimation Predicts motion path, velocity, and direction of objects Frame Differencing, Polynomial Fitting

Output
Collision Risk Assessment Analyzes risk levels based on distance, speed, and angle Rule-Based Model, Thresholding

Alert Generation Sends real-time warning signals to relevant stakeholders MQTT, HTTP API, LED panels, buzzers

Table 1.  Functional overview of the bridge collision avoidance system.

 

Fig. 1.  Flowchart of the system pipeline showing camera input, calibration, motion analysis, trajectory 
prediction, and collision risk-based alert generation in a modular architecture.
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tasks such as motion tracking and trajectory estimation, which rely on accurate object positioning. Error 
minimization is achieved through iterative optimization techniques such as Levenberg–Marquardt, reducing 
reprojection error to sub-pixel accuracy.

To evaluate calibration reliability, the average reprojection error is used as the primary validation metric. A 
reprojection error below 0.5 pixels is considered acceptable for high-precision monitoring environments. Table 2 
provides a summary of the calibration outputs and performance indicators. A conceptual visualization of the 
calibration process is presented in Fig. 2.

Motion detection and object segmentation
Reliable motion detection and object segmentation are central to the real-time functionality of the proposed 
bridge collision avoidance system. This module is responsible for isolating dynamic objects, such as over-height 
vehicles or approaching vessels, from static backgrounds in continuously captured video streams. The accuracy 
of this stage is critical, as it directly influences downstream processes including trajectory estimation and risk 
prediction.

To initiate the detection process, background subtraction techniques are employed to distinguish moving 
objects from the static environment. Adaptive Gaussian Mixture Models (GMM) and median filtering are used 
to model the background dynamically, thereby minimizing false positives caused by lighting changes, shadows, 
and environmental noise. These background models are updated in real time to handle gradual illumination 
changes and camera vibrations, which are common in outdoor bridge settings.

For robust detection under complex scenarios, the system leverages both traditional and deep-learning-based 
motion detection techniques. Optical flow is applied in low-resource settings to estimate pixel-wise motion 

Fig. 2.  Conceptual diagram of camera calibration showing parameter estimation, distortion correction, and 
2D-to-3D coordinate transformation.

 

Parameter Description Result/Range

Focal Length (fx, fy) Horizontal and vertical scaling factors (in pixels) 850–920 px

Principal Point (cx, cy) Optical center coordinates ~[640, 360] px

Radial Distortion Coefficients (k1, k2, k3) Lens curvature corrections [−0.3, 0.2, −0.001]

Tangential Distortion (p1, p2) Lens misalignment correction [~ 0.01, ~ 0.01]

Rotation Matrix (R) 3 × 3 matrix defining camera orientation See calibration matrix

Translation Vector (T) 3D vector defining camera position [X, Y, Z] in meters

Average Reprojection Error Difference between actual and projected point positions 0.24 pixels (avg)

Table 2.  Summary of calibration outputs and performance metrics.
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vectors between frames, effectively capturing object movement patterns. In more advanced deployments, deep 
learning models such as YOLOv11 and Vision Transformer (ViT)-based architectures are integrated to enhance 
object detection capabilities, particularly in scenes with occlusions, varying object sizes, and non-uniform 
motion. These models are pre-trained on large-scale datasets (e.g., MS COCO, BDD100K) and fine-tuned on 
task-specific datasets representing bridge traffic environments.

Once motion is detected, foreground segmentation is performed using morphological operations and contour 
extraction to accurately delineate object boundaries. To maintain object identity across frames, a tracking 
module based on Kalman Filtering and DeepSORT is integrated, ensuring consistent ID assignment even in 
high-traffic or occluded conditions. This enables reliable monitoring of moving entities, which is essential for 
subsequent trajectory estimation and risk classification.

The detection module is evaluated on multiple criteria, including detection precision, tracking stability, 
and false alarm rate. A summary of the key motion detection components is provided in Table 3, and a visual 
representation of the motion segmentation pipeline is shown in Fig. 3.

Object trajectory Estimation and Spatial mapping
Once moving objects are accurately detected and segmented, the next critical component involves estimating 
their trajectory in both temporal and spatial domains. This process enables the system to assess whether an 
object’s path poses an imminent collision risk to bridge infrastructure. The trajectory estimation module utilizes 
calibrated video input to determine the velocity, direction, and position of each tracked object across successive 
video frames.

To compute motion parameters, frame differencing is employed in conjunction with time-stamped bounding 
box tracking. The displacement of an object’s centroid across frames, divided by the frame rate, yields its 
instantaneous velocity vector. Simultaneously, directional components are derived using vector calculus applied 
to the change in spatial coordinates. These values are refined using Kalman filtering to smooth object motion and 
compensate for temporary occlusions or tracking noise.

Fig. 3.  Visual pipeline illustrating background modeling, motion detection, deep object segmentation, and 
multi-object tracking for dynamic scene analysis.

 

Component Technique Used Purpose

Background Modeling Gaussian Mixture Model (GMM), Median Filtering Eliminate stationary background and noise

Motion Detection Optical Flow, YOLOv11, Vision Transformer (ViT) Detect moving objects under various conditions

Foreground Segmentation Morphological Filtering, Contour Detection Extract clean object regions

Object Tracking Kalman Filter, DeepSORT Maintain object identity across sequential frames

Noise Suppression Morph Ops, Shadow Removal Improve segmentation accuracy

Table 3.  Motion detection and segmentation module components.
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Following velocity and directional estimation, each object’s trajectory is projected into the calibrated spatial 
domain using the transformation matrix obtained during the camera calibration phase. This mapping allows 
for the conversion of image-space motion vectors into real-world coordinates (in meters), enabling accurate 
positioning relative to fixed bridge boundaries, lanes, or structural constraints.

The final step involves the predictive modeling of potential collision paths. By extrapolating the motion 
trajectory and analyzing the proximity of the object to predefined collision zones on or around the bridge 
structure, the system determines whether the object will likely intersect a critical area within a specified temporal 
window. This temporal collision proximity is calculated based on current velocity, heading angle, and distance 
to impact zone. If the intersection is predicted within the system’s critical response time threshold, the object is 
flagged as a collision threat and passed on to the risk evaluation module.

Table 4 summarizes the trajectory estimation and spatial mapping components, while Fig. 4 illustrates the 
object motion modeling process from frame-to-frame tracking through to calibrated projection and risk zone 
intersection.

Collision risk assessment model
Following the projection of object trajectories into the real-world spatial domain, the system performs a 
dedicated risk assessment to evaluate the likelihood of a collision with the bridge infrastructure. This model is 
essential for making informed, real-time decisions and triggering alerts when necessary. The assessment is based 
on spatial-temporal features derived from motion vectors, object proximity, and velocity profiles.

Collision risk is defined as a function of both spatial threshold violations and dynamic motion characteristics. 
Specifically, the model considers the shortest distance between the projected object path and designated 
structural boundaries of the bridge (i.e., overpass height, support columns, clearance zones). Additionally, the 
object’s speed and direction are factored in to calculate the time-to-impact (TTI), which represents the estimated 
duration before the object intersects a predefined risk zone.

To determine the severity of the threat, the system adopts a rule-based decision model, which compares 
the object’s trajectory and TTI against predefined safety thresholds. In advanced implementations, a machine 
learning classifier—such as a Random Forest or SVM—is optionally used to refine classification, particularly in 
scenarios involving noisy or overlapping trajectories. The model is trained using historical collision and near-
miss data, labeled according to collision severity levels (e.g., Low, Medium, High Risk).

Fig. 4.  Technical illustration of motion vector extraction, spatial projection, and collision path prediction 
using calibrated parameters in a real-world 3D coordinate system.

 

Component Functionality Technique/Model Used

Frame-Based Displacement Compute object velocity and direction Centroid tracking, frame differencing

Temporal Motion Smoothing Filter noise, compensate for occlusions Kalman Filter

Spatial Projection Convert image coordinates to real-world domain Homography matrix, calibration model

Collision Path Prediction Extrapolate trajectory and estimate intersection with bridge Linear motion model, proximity rule

Temporal Proximity Calculation Estimate time to collision Velocity-based thresholding

Table 4.  Object trajectory estimation and Spatial mapping components.
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Each detected object is assigned a collision confidence score, calculated from weighted contributions of 
distance to structure, object velocity, trajectory angle, and stability of the motion pattern. The final decision 
logic uses this score in conjunction with a risk class to determine whether an alert should be generated. Risk 
thresholds are tunable and can be dynamically updated based on location-specific bridge geometries or traffic 
regulations. A summary of the risk assessment model’s components is presented in Table 5, and Fig. 5 visually 
represents the logical flow of the collision risk evaluation process.

Real-Time alert generation mechanism
The final stage of the proposed collision avoidance system is the real-time alert generation mechanism, which is 
responsible for translating risk assessment outcomes into actionable warnings for stakeholders, including bridge 
operators, vehicle drivers, and connected infrastructure units. This module ensures that imminent collision 
threats, as determined by trajectory analysis and risk scoring, result in timely and reliable system responses 
designed to prevent accidents or initiate mitigation measures.

The alert system supports three core types of notifications: visual, auditory, and network-based digital alerts. 
Visual alerts include flashing LED warning signs, electronic display panels, and barrier actuation. Auditory 
alerts involve buzzers or loudspeaker announcements strategically positioned near the bridge or access points. 
Network-based alerts are transmitted to connected edge devices, mobile operator dashboards, or traffic 
Management systems via standardized communication protocols such as MQTT, HTTP REST APIs, or 5G-V2X 
for vehicle-to-infrastructure messaging.

The communication protocol design prioritizes minimal latency and high reliability, particularly in mission-
critical scenarios. Messages are encoded with object ID, collision severity, confidence score, and a timestamp, 
ensuring interpretability and enabling real-time response logging. The system supports bi-directional 

Fig. 5.  Detailed block diagram of the collision risk assessment process integrating spatial and velocity analysis, 
time-to-impact estimation, risk classification, and confidence-based alert triggering.

 

Component Input Features Methodology Output

Proximity Analysis Distance to bridge structure Euclidean distance, buffer zones Spatial threshold violation

Time-to-Impact Calculation Velocity, direction, current position Linear extrapolation, motion vector TTI (seconds)

Risk Classification TTI, distance, speed, trajectory angle Rule-based logic/ML classifier Low, Medium, High Risk

Confidence Scoring All motion and spatial parameters Weighted scoring model 0–1 collision likelihood score

Alert Decision Logic Risk level, confidence score Boolean thresholding and logic gating Generate alert/No action

Table 5.  Collision risk assessment model components and parameters.
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communication for acknowledgment and feedback loops from control centers. Given the safety-critical nature 
of the system, fail-safe procedures are integrated. These include heartbeat checks for all active sensors and output 
units, timeout-based redundancy triggers, and fallback alert systems. For instance, if a connected display unit 
fails, a local buzzer will activate based on edge-level decision logic to ensure continuity of warning delivery.

The essential functions and characteristics of the real-time alert mechanism are summarized in Table 6, and 
Fig. 6 presents a high-level schematic of the alert generation and communication process.

Hardware and software implementation details
The practical deployment of the proposed bridge collision avoidance system requires a harmonized configuration 
of specialized hardware components and a robust, scalable software stack. This section details the physical 
equipment, processing infrastructure, and software environment adopted to ensure real-time detection, analysis, 
and alert dissemination in operational settings. The system employs a heterogeneous set of sensors strategically 
mounted across the bridge environment, including high-resolution CCTV cameras (e.g., 4  K IP cameras), 
LIDAR modules, millimeter-wave radar units, and inertial measurement units (IMUs). These sensors facilitate 
comprehensive situational awareness through multimodal data acquisition. For on-site processing, embedded 
computing platforms such as NVIDIA Jetson Xavier NX and Xilinx Zynq UltraScale + FPGA boards are utilized, 
offering real-time inferencing capabilities with low power consumption. Data transmission is enabled via a 
hybrid communication setup consisting of 5G-V2X links, Dedicated Short Range Communications (DSRC), 
and wired thernet for redundancy and fault tolerance. The core processing logic is implemented using the 
Python programming language, augmented with CUDA for GPU acceleration. Deep learning models are trained 
using TensorFlow 2.x and PyTorch, while image processing and motion analysis modules rely on OpenCV and 
SciPy libraries. For object detection and risk classification, pre-trained models such as YOLOv11 and Vision 
Transformers (ViT) are integrated and optimized for edge deployment via TensorRT. The control logic and 

Fig. 6.  Layered architecture of the proposed risk assessment and alert system with sensor fusion, risk 
classification, and connected alert interfaces.

 

Component Functionality Technology/Protocol Used

Visual Alert System LED indicators, digital signage, warning barriers GPIO, Display Panels, Actuators

Auditory Alert System Immediate warning via buzzer or speaker systems 12 V/24V buzzers, audio relay circuits

Digital Communication Unit Transmit structured alerts to central control or vehicles MQTT, HTTP API, 5G-V2X

Fail-Safe Trigger System Redundant alerts during system faults or latency overflow Edge logic controllers, watchdogs

Latency Optimization Low-latency data transfer and decision propagation < 100 ms response time via edge nodes

Table 6.  Real-Time alert generation system components and parameters.
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decision-making modules are orchestrated through microservices built with Docker, ensuring modularity 
and cross-platform deployment. To manage computational load and support distributed analytics, the system 
leverages a hybrid edge–cloud architecture. Time-sensitive tasks (e.g., motion detection, alert generation) are 
performed on edge nodes co-located with sensors, whereas data archiving, periodic retraining, and historical 
analytics are handled in the cloud (e.g., AWS EC2, Azure IoT Hub). MQTT brokers are deployed for lightweight, 
asynchronous messaging between local agents and central servers.

An overview of the hardware-software components is summarized in Table 7, and Fig. 7 provides a schematic 
representation of the system’s physical and logical deployment.

Experimental setup and validation protocol
To assess the effectiveness and generalizability of the proposed bridge collision avoidance system, a series of 
controlled and real-world experiments were conducted across diverse environments. These experiments were 
designed to validate the system’s performance under varying environmental conditions, object speeds, and 
structural configurations. The validation protocol focused on measuring the accuracy, responsiveness, and 
robustness of the core modules, including motion detection, trajectory estimation, risk classification, and alert 
generation.

Field trials were conducted at two structurally distinct sites: (i) an urban overpass bridge with high 
traffic density and variable lighting, and (ii) a suburban underpass with lower vehicle volume but dynamic 
environmental interference (e.g., rain, fog). Cameras and sensors were installed at fixed locations on the bridge 
superstructure and approach zones, ensuring maximum coverage and redundancy. Test vehicles of various sizes 
(motorcycles, vans, cargo trucks) were used to simulate potential collision paths, with and without intentional 
deviation from lane boundaries.

A proprietary dataset was compiled during these trials, consisting of over 6,000 annotated frames, each 
including object bounding boxes, class labels (e.g., vehicle type), and calibrated spatial coordinates. Ground 
truth was manually verified using synchronized drone footage and LIDAR overlays. The annotation process 
followed a semi-automated pipeline involving frame extraction, YOLO-based pre-annotation, and human 
correction using tools like LabelImg and VGG Image Annotator (VIA). The final dataset was split into 70% for 
training, 15% for validation, and 15% for testing. The system was evaluated across multiple key performance 
indicators to comprehensively measure its real-world readiness:

Fig. 7.  System architecture diagram illustrating the integration of sensor nodes, edge processors, 
communication protocols, and cloud analytics for end-to-end collision risk management.

 

Component Type Description Examples/Technologies

Sensing Hardware Data acquisition from environment CCTV (4 K), LIDAR, Radar, IMU

Processing Units On-board real-time data processing NVIDIA Jetson NX, Xilinx FPGA

Communication Layer Data relay and failover communication 5G-V2X, DSRC, Ethernet

Software Frameworks Detection, tracking, classification, system control TensorFlow, PyTorch, OpenCV, Docker

Edge–Cloud Architecture Distributed load balancing, model training, historical analytics AWS, Azure, MQTT Brokers, Edge Nodes

Table 7.  Hardware and software components for system implementation.
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•	 Detection Accuracy (%): Percentage of correctly identified objects within the frame compared to ground 
truth.

•	 Latency (ms): End-to-end processing delay from sensor input to alert generation.
•	 False Alarm Rate (FAR): Frequency of incorrect collision alerts per test hour.
•	 Trajectory Prediction Error (px/m): Euclidean distance between predicted and actual motion paths in image 

and real-world coordinates.
•	 Risk Classification F1-Score: Balanced metric for precision and recall across multi-level risk outputs.

A summary of the experimental parameters and metrics is presented in Table  8, while Fig.  8 shows the 
experimental setup and data flow pipeline used during testing.

Experimental results
This section presents the quantitative and qualitative evaluation of the proposed bridge collision avoidance 
system based on camera calibration and motion detection. The experimental results are derived from real-world 
deployment scenarios and controlled test conditions, as outlined in the validation protocol. The objective is 
to assess the system’s effectiveness in terms of object detection accuracy, trajectory prediction reliability, risk 
classification performance, alert generation latency, and overall system robustness. Various evaluation metrics—
including precision, recall, F1-score, latency, false alarm rate, and trajectory error—are used to benchmark the 
performance of individual modules and the system as a whole. The results are further compared against baseline 
methods to demonstrate the improvements offered by the proposed architecture in both structured and dynamic 
traffic environments.

Object detection and segmentation accuracy
The object detection and segmentation module forms the foundation of the proposed bridge collision avoidance 
system, as its performance directly influences the accuracy of trajectory estimation and risk assessment. 

Fig. 8.  Illustration of the experimental setup, dataset acquisition, and multi-stage evaluation process, 
highlighting annotated data collection and performance metrics assessment.

 

Parameter Details

Test Sites Urban overpass, suburban underpass

Sensors Used CCTV (4 K), LIDAR, Radar, IMU

Objects Simulated Bikes, Cars, Vans, Trucks

Dataset Size 6,000 + annotated frames

Ground Truth Tools Drone footage, LabelImg, VGG VIA

Evaluation Metrics Accuracy, Latency, FAR, Prediction Error, F1-Score

Annotation Format Bounding Boxes + Spatial Coordinates + Class Labels

Validation Split 70% Train, 15% Validation, 15% Test

Table 8.  Experimental validation metrics and test setup parameters.
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This subsection presents the quantitative evaluation of detection and segmentation models under varying 
environmental conditions, including daytime, nighttime, rainy, and foggy scenarios.

To assess detection effectiveness, we utilized standard performance metrics: Precision, Recall, and Mean 
Average Precision (mAP) at Intersection-over-Union (IoU) thresholds of 0.5 and 0.75. Two state-of-the-art 
models were benchmarked: YOLOv11 (v6.2) and a fine-tuned Vision Transformer (ViT-B/16). Both models 
were trained on the annotated dataset described in Sect.  4.8, and inference was performed on unseen test 
sequences captured from both urban and suburban bridge environments.

YOLOv11 demonstrated superior inference speed and robustness under varying lighting conditions, 
while the ViT-based model achieved higher precision in object delineation, particularly in occluded scenes. 
Segmentation quality was further analyzed using pixel-wise Intersection-over-Union (IoU) and Dice coefficient 
to evaluate boundary-level accuracy.

Table  9 presents the comparative detection performance of both models across different environmental 
conditions. Visual examples of segmented outputs under various scenarios are shown in Fig. 9.

Trajectory prediction performance
Trajectory prediction plays a pivotal role in forecasting potential collision scenarios by estimating the future 
positions of detected objects relative to bridge infrastructure. The proposed system leverages motion vectors, 
calibrated spatial transformations, and temporal continuity to generate predicted paths for each tracked object. 

Fig. 9.  Detection and segmentation comparison of YOLOv11 and ViT-B/16 under diverse environmental 
conditions.

 

Condition Model Precision (%) Recall (%) mAP@0.5 (%) mAP@0.75 (%) IoU (%)

Daylight
YOLOv11 94.6 91.2 93.1 88.5 86.9

ViT-B/16 95.4 89.8 91.7 89.6 88.2

Night
YOLOv11 90.8 87.3 89.2 84.0 83.5

ViT-B/16 92.1 85.7 87.6 85.2 85.9

Rain/Fog
YOLOv11 88.2 82.5 85.7 79.1 80.4

ViT-B/16 89.6 81.2 84.1 81.5 82.8

Table 9.  Comparative object detection performance: YOLOv11 vs. ViT.
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These predictions are continuously updated and compared against actual object movements to evaluate the 
model’s accuracy and reliability.

To quantitatively assess trajectory prediction performance, two standard metrics were used: Mean Absolute 
Error (MAE) and Root Mean Square Error (RMSE). These were computed by measuring the Euclidean distance 
between predicted object centroids and corresponding ground-truth positions at multiple future time steps (e.g., 
t + 1 s, t + 2 s, t + 3 s). Ground truth trajectories were obtained from annotated sequences with sub-pixel accuracy 
using LIDAR and drone-assisted overhead recordings for validation.

The results, summarized in Table  10, indicate that the proposed Kalman Filter-based predictive model 
performs consistently across varied traffic densities and environmental conditions. Prediction accuracy is 
highest in low-speed or lane-confined scenarios and degrades slightly under abrupt object maneuvers or 
occlusions. Visual comparisons of predicted and actual trajectories are presented in Fig. 10, where projected 
paths are overlaid on surveillance footage.

Risk classification effectiveness
The effectiveness of the risk classification engine was evaluated using a multi-class classification scheme 
designed to categorize detected objects into Low, Medium, and High-risk categories based on spatiotemporal 
parameters and motion behavior. A combination of softmax-based class probabilities and entropy-based 
uncertainty modeling was employed to enhance prediction reliability. The model was trained on annotated 
datasets comprising diverse collision scenarios under varying environmental conditions.

A confusion matrix was generated to quantify classification performance across all risk levels. As shown 
in Table 11, the model achieved high precision and recall values for the High-risk class, which is crucial for 

Fig. 10.  Layered architecture of real-time risk evaluation and alert dispatch system.

 

Condition Time Horizon MAE (px) RMSE (px) MAE (meters) RMSE (meters)

Daylight 3 s 4.8 6.1 0.37 0.51

Night 3 s 5.5 7.4 0.44 0.59

Rain/Fog 3 s 6.3 8.2 0.50 0.66

Average (All Scenarios) 3 s 5.5 7.2 0.44 0.59

Table 10.  Trajectory prediction accuracy across environmental conditions.
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system responsiveness, while minor class imbalance resulted in slight misclassifications within the Medium-risk 
category.

The F1-score for each class was computed alongside 95% confidence intervals, revealing consistent reliability 
across repeated experiments. Furthermore, entropy-based confidence calibration was applied to measure model 
uncertainty, improving trustworthiness in borderline predictions.

The performance of the multi-class risk classification model is quantitatively summarized in Table 12, which 
presents the confusion matrix detailing the classification outcomes across low, medium, and high-risk levels. The 
table highlights strong diagonal dominance, indicating high predictive accuracy, particularly in the identification 
of high-risk instances.

The detailed performance metrics, including precision, recall, F1-score, and 95% confidence intervals for 
each risk category, are reported in Table 11. The results demonstrate consistent predictive reliability, with the 
high-risk and low-risk classes achieving F1-scores above 0.92, and narrow confidence intervals indicating model 
robustness and statistical significance.

The entropy-based confidence calibration results are summarized in Table 13, illustrating improvements in 
prediction certainty across all risk levels. The proposed calibration method effectively reduces uncertainty, with 
the low-risk class exhibiting the highest confidence gain of 6.3%, indicating enhanced model reliability and 
decision confidence.

Figure 11 presents two critical visualizations that assess the performance and reliability of the proposed risk 
classification engine. The left panel displays a normalized confusion matrix that evaluates the model’s ability to 
accurately classify objects into three risk categories: Low, Medium, and High. The majority of predictions align 
along the diagonal, indicating a high degree of classification accuracy. Notably, the model exhibits strong precision 
in identifying High-risk instances, which are essential for timely alert generation. Minor misclassifications 
between Medium and adjacent classes suggest the presence of boundary-level uncertainty, a known challenge in 
real-world dynamic environments.

The right panel depicts the confidence gain achieved through entropy-based calibration. This analysis 
highlights the improvement in predictive certainty across all risk classes. Calibration increased the average 
confidence score by 6.3% for Low Risk, 4.7% for Medium Risk, and 5.2% for High Risk, demonstrating that 
entropy-based adjustment effectively refines the model’s probabilistic outputs. This is particularly valuable in 
safety-critical applications where reliable decision-making under uncertainty is essential.

Real-Time alert generation latency
Timely alert generation is critical to the operational success of any real-time collision avoidance system. 
This section evaluates the end-to-end system latency, defined as the time taken from object detection to 
the dispatch of a collision alert. Experiments were conducted under both edge-only and edge–cloud hybrid 
processing architectures to assess system responsiveness across different deployment scenarios. The total latency 
comprises the cumulative delay incurred in three core modules: (i) object detection and segmentation, (ii) risk 
classification, and (iii) communication and alert dispatch. Measurements were obtained using timestamped logs 
at each module boundary, averaged over 500 test events under varying traffic and environmental conditions.

Table 14 provides a detailed latency breakdown for both processing architectures. The results indicate that the 
edge-only setup significantly reduces overall latency due to localized inference and decision-making. However, 

Risk Level Average Entropy Calibrated Confidence Score Prediction Confidence Gain (%)

Low Risk 0.29 0.91 + 6.3%

Medium Risk 0.41 0.86 + 4.7%

High Risk 0.33 0.89 + 5.2%

Table 13.  Entropy-Based confidence calibration results.

 

Actual \ Predicted Low Risk Medium Risk High Risk

Low Risk 432 28 6

Medium Risk 19 318 27

High Risk 2 14 366

Table 12.  Confusion matrix of multi-class risk classification.

 

Risk Class Precision Recall F1-Score 95% CI (F1)

Low Risk 0.94 0.93 0.94 ± 0.012

Medium Risk 0.88 0.89 0.88 ± 0.018

High Risk 0.92 0.93 0.92 ± 0.011

Table 11.  F1-Score and confidence intervals for risk prediction.
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the edge–cloud hybrid system provides greater scalability and storage capacity at the expense of slightly higher 
delay, particularly in the alert dispatch stage due to cloud communication overhead.

The Fig. 12 illustrates that the Edge-Only configuration achieves significantly lower total latency, particularly 
in the alert dispatch stage, making it more suitable for time-sensitive collision avoidance applications. In contrast, 
the Edge–Cloud Hybrid setup, while slightly delayed due to communication overhead, offers better scalability 
and centralized data analytics. This trade-off is essential when considering real-world deployment strategies for 
critical infrastructure protection.

Fig. 12.  Comparative latency profile for Edge-Only vs. Edge–Cloud Hybrid architectures across detection, 
classification, and alert dispatch modules.

 

Module Edge-Only (ms) Edge–Cloud Hybrid (ms)

Object Detection & Tracking 45 ± 3 45 ± 3

Risk Classification 28 ± 2 30 ± 3

Alert Dispatch & Messaging 17 ± 2 61 ± 5

Total Latency 90 ± 6 136 ± 8

Table 14.  Latency breakdown by module and architecture.

 

Fig. 11.  Normalized confusion matrix and entropy-based confidence gain illustrating the effectiveness of 
multi-class risk classification and calibration for low, medium, and high risk levels.
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False alarm rate and system robustness
In real-time bridge collision avoidance systems, minimizing false alarms while maintaining high sensitivity is 
paramount to operational reliability and user trust. This section presents a comprehensive evaluation of the 
proposed system’s false alarm rate, as well as its robustness under adverse conditions, including occlusions 
and low-light environments. To assess false positives (FP) and false negatives (FN), we conducted a controlled 
evaluation using a labeled dataset of 1,200 annotated motion sequences. Table 15 summarizes the confusion 
Matrix results for risk alert generation, revealing that the system Maintains a low false positive rate of 3.7%, and 
a false negative rate of 2.5%, demonstrating high precision and recall across all classes.

The system’s robustness was further validated under three challenging scenarios: (i) partial object occlusion, 
(ii) nighttime low-light footage, and (iii) motion blur due to high-speed movement. Figure 13 illustrates these 
conditions and shows the system’s retained ability to track motion, maintain bounding boxes, and estimate risk 
levels effectively. Despite slight degradation in accuracy (approximately 4–6%), alerts were still generated reliably 
with minimal delay. To evaluate operational Limits, stress tests were conducted involving simultaneous detection 
of up to 15 objects in the frame, varying lighting, and dynamic camera movements. The system Maintained 
over 92% detection accuracy and generated alerts within an average delay of < 150 ms, validating its real-time 
readiness and scalability.

Comparative evaluation with baseline systems
To comprehensively validate the effectiveness of the proposed camera calibration and motion detection-based 
bridge collision avoidance framework, a comparative evaluation was conducted against two widely adopted 
baseline systems: (i) traditional background subtraction-based motion detectors, and (ii) rule-based thresholding 
systems. The evaluation was performed under identical environmental conditions and datasets to ensure fairness. 
The benchmarking considered three core aspects: detection accuracy, system responsiveness (latency), and fault 

Fig. 13.  Annotated frames demonstrating system performance under occlusion, low-light, and high-density 
conditions during real-time stress testing.

 

Predicted: Alert Predicted: No Alert

Actual: Alert 416 (TP) 11 (FN)

Actual: No Alert 15 (FP) 758 (TN)

Table 15.  Confusion matrix summary for risk alerts.
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tolerance under variable environmental conditions such as occlusion, low light, and high-density traffic scenes. 
Table 16 presents the quantitative results highlighting the superiority of the proposed system.

As observed, the proposed system demonstrates significant gains in all evaluated dimensions. Specifically, 
detection accuracy improved by over 12%, and the response latency was reduced by more than 50%, validating 
its real-time suitability. The incorporation of camera calibration, deep learning-based motion detection (YOLO, 
ViT), and entropy-calibrated risk models contributed to these improvements. Despite its computational 
complexity compared to rule-based solutions, the enhanced fault tolerance, environmental robustness, and 
alert reliability justify the trade-off. The system’s adaptability to variable conditions makes it highly scalable and 
practical for deployment in diverse bridge environments.

The Fig. 14 provides a comparative assessment between three systems: a traditional background subtraction 
method, a rule-based thresholding model, and the proposed hybrid learning-based approach. Each system is 
evaluated across five key performance indicators: accuracy, false alarm rate, latency, fault tolerance, and robustness 
under low-light conditions. The proposed system consistently outperforms the baselines, demonstrating 
significantly reduced latency and higher resilience across varied operational contexts. The radar chart helps 
visualize trade-offs while emphasizing the proposed model’s balanced superiority across all dimensions.

Expanded comparison with recent state-of-the-art
To further validate the proposed approach, we compared its performance against more recent vision-based 
methods for collision and motion detection tasks, including Faster R-CNN, CenterNet, and YOLOv8. These 
models were fine-tuned on the same annotated dataset described in Sect. 3.8 to ensure fairness. As shown in 
Table 17, our system outperformed these state-of-the-art models in terms of accuracy and robustness, while also 
demonstrating a significantly lower false alarm rate.

Fig. 14.  Radar chart showing normalized comparisons of accuracy, latency, fault tolerance, and robustness 
across three detection frameworks.

 

Metric Background Subtraction Rule-Based System Proposed System

Detection Accuracy (%) 78.6 83.2 95.7

False Alarm Rate (%) 11.4 9.8 3.2

Average Response Latency (ms) 430 350 162

Fault Tolerance (Occlusion) Low Moderate High

Robustness in Low Light Poor Moderate Strong

Adaptability (Dynamic Objects) Limited Static Thresholds Real-time Adaptation

Table 16.  Comparative performance with baseline systems.
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Efficiency metrics for real-time performance
To confirm the system’s suitability for real-time deployment, we measured runtime efficiency, GPU memory 
usage, and inference speed on the Jetson Xavier NX (edge device) and compared them with a cloud-based GPU 
(NVIDIA Tesla T4). Results in Table 18 demonstrate that the system achieves near real-time performance on 
edge devices, with average inference times of ~ 36 FPS at 720p resolution and optimized memory footprint.

These results confirm that the proposed framework not only surpasses state-of-the-art methods in accuracy 
and reliability but also delivers resource-efficient real-time performance suitable for deployment on edge 
computing platforms.

To broaden the evaluation, the proposed BCAS framework was compared with additional state-of-the-art 
vision-based systems, including Faster R-CNN, CenterNet, and YOLOv8, all fine-tuned on the same dataset. 
Results are presented in Table 19. The proposed method achieved the highest detection accuracy (95.7%) and 
the lowest false alarm rate (3.2%), while maintaining competitive latency compared to lighter models such as 
YOLOv8.

Additional metrics for comprehensive evaluation
To ensure a more complete evaluation, additional metrics were incorporated beyond accuracy, FAR, and latency. 
Precision-recall (PR) curves were generated for all three risk classes (Low, Medium, High). As shown in Fig. 15a, 
the curves demonstrate high area under curve (AUC) values, with particularly strong performance for the High-
risk category (AUC = 0.95). While class-level F1-scores were already reported (Table 11), we provide macro and 
weighted averages for a holistic view. The proposed model achieved a macro F1-score of 0.91 and a weighted 
F1-score of 0.93, confirming consistent performance across imbalanced classes. Inference speed was measured 
on edge (Jetson Xavier NX) and cloud (Tesla T4) platforms. Results in Table 20 show that the system achieves 
near real-time performance with 27.8 FPS on edge and 54.2 FPS on cloud deployments at 720p and 1080p input 
resolutions, respectively. To assess resilience, Gaussian noise (σ = 0.01–0.05), motion blur (kernel size = 3–9), 
and varying input sizes (480p, 720p, 1080p) were introduced. Figure 15b summarizes the performance trends, 
showing that while accuracy decreases slightly under heavy distortions, the system Maintains over 90% accuracy 
and generates reliable alerts with minimal delay.

Ablation and sensitivity analysis
To better understand the contribution of individual components, we performed an ablation study by 
incrementally adding modules into the pipeline: preprocessing (background modeling), backbone (YOLOv11/
ViT), and fusion (entropy-calibrated risk scoring). Results are summarized in Table 21. Each added module 
improves detection and risk classification, confirming their necessity in the overall design.

We further examined the effect of varying key hyperparameters which are listed in the Table 22.

•	 Learning rate (LR): Tested in range 1e-5 to 1e-2. Best stability observed at LR = 1e-4, with both higher and 
lower rates showing slower convergence or reduced accuracy.

Model Detection Accuracy (%) False Alarm Rate (%) Risk F1-Score Avg. Latency (ms) Robustness (Low Light)

Faster R-CNN 91.4 6.9 0.88 245 Moderate

CenterNet 92.3 5.8 0.89 198 Strong

YOLOv8 93.6 4.5 0.90 174 Strong

Proposed BCAS 95.7 3.2 0.92 162 Strong

Table 19.  Comparative evaluation with advanced baseline models.

 

Hardware Platform Resolution Avg. Inference Speed (FPS) Latency per Frame (ms) GPU Memory Usage (GB) CPU Utilization (%)

Jetson Xavier NX 1280 × 720 27.8 36 3.2 68

Jetson Xavier NX 1920 × 1080 21.3 47 3.6 72

NVIDIA Tesla T4 1920 × 1080 54.2 18 5.1 44

Table 18.  Efficiency metrics of the proposed system.

 

Model Detection Accuracy (%) False Alarm Rate (%) Risk F1-Score Avg. Latency (ms) Robustness (Low Light)

Faster R-CNN 91.4 6.9 0.88 245 Moderate

CenterNet 92.3 5.8 0.89 198 Strong

YOLOv8 93.6 4.5 0.90 174 Strong

Proposed BCAS 95.7 3.2 0.92 162 Strong

Table 17.  Comparative evaluation with recent State-of-the-Art models.
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•	 IoU threshold for detection: Varied from 0.3 to 0.7. Higher thresholds (> 0.6) reduced recall, while very low 
thresholds (< 0.4) increased FAR. The optimal trade-off was found at IoU = 0.5.

•	 Risk threshold (collision alert): Adjusted from 0.6 to 0.9. At very conservative thresholds (> 0.85), false neg-
atives increased; at lower thresholds (< 0.65), false positives rose. Best balance was achieved at 0.75.

The impact of varying IoU and risk thresholds on system performance is illustrated in Fig. 16, where trends in 
accuracy, F1-score, and FAR highlight the optimal parameter ranges for reliable detection.

Discussion
The proposed bridge collision avoidance system (BCAS) integrates advanced computer vision methods, real-time 
processing pipelines, and robust calibration frameworks to address the urgent need for intelligent infrastructure 
protection. Experimental evaluations demonstrated that the system consistently achieves high accuracy, low 

Hyperparameter Range Tested Optimal Value Effect on Performance

Learning Rate 1e-5–1e-2 1e-4 Stable convergence, 95%+ accuracy

IoU Threshold 0.3–0.7 0.5 Balanced precision/recall, FAR = 3.2%

Risk Threshold 0.6–0.9 0.75 Best trade-off between FP and FN

Table 22.  Sensitivity analysis on key hyperparameters.

 

Variant Preprocessing Backbone Fusion Strategy Detection Accuracy (%) Risk F1-Score FAR (%)

A – – – 84.2 0.81 10.9

B ✓ – – 88.7 0.85 7.3

C ✓ YOLOv11 – 92.8 0.89 4.9

D ✓ YOLOv11 + ViT – 94.3 0.91 4.1

E (Ours) ✓ YOLOv11 + ViT ✓ 95.7 0.92 3.2

Table 21.  Ablation study of core modules.

 

Condition/Platform Accuracy (%) FAR (%) FPS Latency (ms) Notes

Jetson Xavier NX (720p) 94.6 3.5 27.8 36 Real-time edge performance

Jetson Xavier NX (1080p) 92.3 3.8 21.3 47 Higher res, slight slowdown

Tesla T4 (1080p) 95.7 3.2 54.2 18 Cloud optimized

Gaussian Noise σ = 0.03 91.8 4.6 26.4 39 Robust to sensor noise

Motion Blur k = 7 90.9 5.2 25.1 42 Slight error increase

Input Resized to 480p 89.6 5.8 38.7 26 Faster, but lower accuracy

Table 20.  Computational efficiency and robustness under varying conditions.

 

Fig. 15.  Precision–recall curves for Low, Medium, and High risk classes (a) and accuracy trends under noise, 
motion blur, and varying input resolutions (b), demonstrating robust performance of the proposed BCAS.
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latency, and strong resilience under challenging conditions, including occlusion, low-light environments, and 
dense traffic. The integration of deep learning models such as YOLOv11 and Vision Transformer (ViT) significantly 
improved object detection and segmentation compared to classical approaches, enabling precise motion tracking 
and analysis in dynamically changing environments. Trajectory prediction accuracy, measured using MAE and 
RMSE, confirmed the model’s ability to forecast object motion with minimal error, thereby supporting timely 
risk evaluation and proactive alert generation. The hybrid collision risk classification module—leveraging spatial 
proximity, velocity vectors, and entropy-calibrated confidence scores—outperformed conventional systems in 
terms of precision, recall, and F1-score. Comparative analyses further highlighted that the proposed BCAS 
reduced false alarm rates and improved responsiveness, strengthening its suitability for real-time deployments.

Latency analysis revealed the advantages of the edge-only configuration, which achieved faster end-to-end 
response times compared to the edge–cloud hybrid setup. While the edge-only model is well-suited for time-
critical warnings, the hybrid configuration offers enhanced scalability and richer historical analytics, representing 
a trade-off between responsiveness and centralized intelligence. This dual-mode flexibility supports deployment 
across diverse environments, from remote bridge crossings to high-traffic urban viaducts. Robustness testing 
under stress scenarios—such as nighttime operation, partial occlusion, and high object density—further 
validated the reliability of the proposed system. Even in the presence of environmental noise and transient 
obstructions, the system maintained consistent alerting performance, aided by calibrated geometry that reduced 
projection error and improved object tracking accuracy in real-world spatial coordinates.

When compared to advanced baselines, including Faster R-CNN, CenterNet, and YOLOv8, the proposed 
BCAS consistently delivered superior accuracy and lower false alarm rates. While YOLOv8 achieved competitive 
performance, the proposed system demonstrated an additional advantage in robustness and reliability, albeit with 
slightly higher computational cost. The strengths of our approach lie in its calibrated spatial mapping, hybrid 
motion detection pipeline, and entropy-based risk scoring, which collectively enhance robustness in adverse 
conditions such as low light, occlusion, and dynamic traffic. A noted weakness is the higher computational 
overhead compared to purely lightweight models, which suggests a need for further optimization in ultra-low-
power environments.

While the results are promising, several limitations must be acknowledged. First, the dataset, though 
carefully annotated, is limited in scale and may not capture all variations in vehicle types, bridge geometries, 
or environmental conditions, which could affect generalizability. Second, the deep learning modules require 
retraining for different regions or sensor types, highlighting the need for domain adaptation strategies. Third, the 
system’s reliance on computationally intensive models, though optimized for edge deployment, may challenge 
scalability in resource-constrained environments. Finally, interpretability remains a concern, as deep neural 
network decisions can be opaque, which may hinder trust in safety-critical applications.

Future work will address these challenges through several directions: (i) expanding datasets to encompass 
broader geographic and environmental diversity, (ii) integrating multimodal sensing (LiDAR, radar) to 
complement vision-based perception, (iii) applying lightweight optimization strategies such as pruning, 
quantization, and knowledge distillation to reduce computational cost, and (iv) incorporating explainable AI 
(e.g., SHAP, Grad-CAM) to enhance transparency of risk predictions. Furthermore, the integration of self-
adaptive thresholds and federated learning frameworks will support adaptability to evolving traffic patterns and 
collaborative intelligence without compromising data privacy. These enhancements will enable robust scalability 
and improve the readiness of the BCAS for real-world deployment in smart transportation infrastructures.

Conclusion
This study introduced an intelligent, vision-based Bridge Collision Avoidance System (BCAS) that combines 
camera calibration, motion detection, object tracking, and risk assessment to proactively prevent collisions 
between over-height vehicles and bridge structures. Through precise intrinsic and extrinsic camera calibration, 

Fig. 16.  Sensitivity analysis of IoU (left) and risk thresholds (right) showing their effects on accuracy, F1-score, 
and false alarm rate (FAR).
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the system successfully transforms image-based detections into real-world spatial coordinates, enabling accurate 
motion and trajectory estimation. By integrating advanced detection methods such as YOLOv11 and Vision 
Transformers (ViT), the framework maintains high object segmentation accuracy even under challenging 
conditions including occlusion, poor lighting, and dynamic backgrounds. The proposed risk assessment 
module utilizes both rule-based thresholds and machine learning-driven classification, ensuring real-time and 
context-aware decision-making. The system demonstrates strong resilience and low latency through its hybrid 
edge–cloud deployment architecture, capable of immediate alert generation with minimal delay. Comparative 
evaluations with baseline systems confirmed the superiority of the proposed model across key metrics including 
precision, recall, fault tolerance, and alert responsiveness. This research provides a scalable, modular, and highly 
accurate solution that can be integrated into smart transportation infrastructure to significantly improve safety 
near bridges and other critical road structures. Future work May extend this model by incorporating 3D LiDAR 
fusion, federated learning for cross-location training, and blockchain-secured data logging for auditability and 
trust.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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