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The Central Himalayas, characterized by one of the most pronounced elevation gradients globally, 
harbor forest stands of high carbon density. With estimated forest aboveground biomass (AGB) 
densities of up to 1000 t ha−1, these forests are among the most carbon-rich ecosystems within 
the Himalayas and high mountain ranges globally. However, existing global and regional models 
of forest carbon distribution fail to accurately capture the remarkable carbon density observed in 
these Himalayan forest stands. Our objective was to quantify how fine-scale topoclimatic conditions 
influence the spatial variability of AGB, with the aim of identifying the environmental factors that 
contribute to the high carbon density observed in high mountain forests of Nepal. Our analysis focused 
on quantifying the contribution of terrain-driven variation in climatic energy and water availability 
in creating favourable site conditions for carbon-dense forests. We found that extreme forest carbon 
density is associated with distinct topographic settings related to slope, aspect and curvature that 
provide a combination of adequate levels of both climatic energy and water availability, while forest 
carbon was reduced in topographic positions associated with high likelihood of disturbance such 
as avalanches and mass movements. Our findings shed light on the intricate relationship between 
topoclimatic factors and conditions for carbon storage in high-elevation forests, providing valuable 
insights for conservation and management strategies in mountainous regions.
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Models of global or continental-scale forest biomass distributions often misrepresent small-scale variations in 
forest structure, particularly in environmentally heterogeneous regions of the world’s major mountain ranges1,2. 
In this study we focus on the Central Himalayas, which extend from subtropical to alpine ecoregions and 
harbour forest stands exceeding 1000 t ha−1 aboveground biomass (AGB), ranking among the most carbon-
dense forest globally3,4. However, the factors sustaining this high carbon density in high-elevation forests remain 
poorly understood. Previous studies on Himalayan forest structure and composition have been predominantly 
local5, while dendrochronological approaches have investigated climate-growth relationships in small areas only 
(e.g.,6–8). The pronounced relief and associated heterogeneity of topoclimatic heterogeneity in mountainous 
regions9 make it challenging to generalize these findings.

Forest biomass is constrained by resource availability, including a stable substrate, climatic energy, and 
moisture10. In the mountainous regions, broad-scale variation in forest carbon density is therefore expected to 
be a function of long-term climate patterns, relief features, and lithology. However, at smaller scales, topography 
modulates the availability of water and light within specific elevation zones11, shaping forest habitat conditions. 
Topographic position influences local climatic factors like snow deposition12, wind exposure13, rainfall14, solar 
radiation and air temperature15, impacting the length of the growing season16, composition, structure, and 
productivity of forests17,18.

The forest AGB is primarily determined by long-term net primary productivity (NPP), representing the 
energy produced after accounting for respiration, maintenance, and mortality19. Numerous studies have shown 
strong NPP-AGB relationships across diverse environments (e.g.,20–24), including high elevation mountainous 
regions25–27. Here, we posit that by modelling the spatial variability of climatic factors influencing plant growth, 
such as the availability of climatic energy and water, broad-scale NPP variation can be approximated. Higher 
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NPP is expected where climatic energy and water are abundant, while lower NPP is expected where either 
climatic energy or water is limiting28–30.

Topographic position and terrain characteristics also impose constraints on forest biomass by influencing 
the disturbance regimes31. Elevation, relief, and terrain features introduce variations in the nature and intensity 
of human-induced disturbances, such as land use activities (e.g., grazing and forest product collection) and 
infrastructure development (e.g., roads). Additionally, natural disturbances like avalanches, mudflows, landslides, 
and gully erosion are associated with specific topographic positions as well32,33, often leading to locally reduced 
forest productivity compared to the climatic potential for the broader landscape or region34.

The extremely heterogeneous relief and relatively sparse coverage by meteorological station in the Central 
Himalayas lead to uncertainties in gridded climatic datasets, constraining their ability to capture the heterogeneity 
in precipitation35, radiation36, and air temperature37 induced by topographic diversity. Terrain attributes such as 
slope gradient/aspect, profile/plan curvature and specific drainage area have been shown to capture landscape-
scale variation in air temperature, radiation budgets38, moisture conditions39, and soil properties such as depth, 
texture, rock fragments, drainage, and soil moisture regimes40 related to topographic position.

This study addresses a critical knowledge gap in understanding how fine-scale topoclimatic variation 
constrains spatial patterns of forest biomass distribution in mountainous landscapes. While global models often 
overlook the spatial complexity of forest carbon stocks in rugged terrain, we focus on the Central Himalayas to 
assess how terrain-driven variation in moisture availability, energy input, and disturbance exposure shapes the 
distribution of high-biomass forest stands. This study builds on earlier work that utilized plot-level data from 
Nepal’s national forest inventory41 to investigate broad environmental drivers of forest biomass distribution31. 
Previous research confirmed elevational gradients in forest carbon stocks and identified the roles of tree 
species composition, structure, and topography in mediating relationships between forest carbon pools and 
environmental variables4. Extending this foundation, the current study examines more specifically how climatic 
water and energy availability influences the distribution of high biomass forest stands in Nepal’s high-elevation 
forests. This study aims to model the contribution of topoclimatic factors to variation of forest AGB in high 
mountain ecosystems of the Central Himalayas, and thereby improve our understanding of the environmental 
conditions that sustain the remarkable carbon density of high-elevation forests in the region. We hypothesize 
that forest AGB is highest in terrain units where the availability of biologically usable water, defined here as 
the portion of soil moisture accessible to vegetation42, shaped by both topographic water accumulation and 
atmospheric moisture demand is maximised while the likelihood of damaging disturbance events such as 
avalanches is minimised.

The overarching aim of this study is to understand how fine-scale topoclimatic variation influences the 
distribution of forest AGB in high-elevation regions of the Central Himalayas. Our specific objectives were to: (1) 
identify the topographic conditions associated with high AGB forests, (2) evaluate the role of terrain-modulated 
water and energy availability in shaping spatial variation in AGB, and (3) assess the extent to which disturbance-
related terrain factors constrain forest biomass below its potential. These objectives are addressed through three 
interconnected hypotheses that guide our analysis: (1) High forest AGB is associated with specific terrain units, 
defined as areas characterized by distinct combinations of terrain attributes such as elevation, slope, topographic 
position, and exposure, (2) Forest AGB increases with the availability of biologically usable water, which is 
modulated by interactions between climate and topographic position, and (3) Forest AGB is constrained below 
its topoclimatic potential as the likelihood of disturbances, such as avalanches and mass movements, increases, 
with these disturbances being strongly influenced by topography. Our findings contribute to improved forest 
carbon modeling in complex topoclimatic regions and inform strategies for carbon conservation in climate-
sensitive mountain ecosystems.

Materials and methods
Study area
The study area comprises the country of Nepal (147,516 km2) in the Central Himalayas. It has a remarkable 
elevational gradient from less than 100 m a.s.l. in the southern lowlands to over 8,000 m a.s.l. in the High 
Himalayas, encompassing one of the steepest and most ecologically diverse vertical transects globally. This sharp 
relief, combined with complex topoclimatic conditions, gives rise to a wide range of forest types across short 
spatial distances ranging from subtropical broadleaf forests in the southern plains to sub-alpine coniferous 
forests dominated near the treeline43. This ecological diversity provides an ideal setting to examine how fine-
scale topoclimatic variability influences forest structure and biomass distribution in mountainous terrain.

Plot level forest inventory data
We used a comprehensive georeferenced dataset of 2,009 plot-level estimates AGB (tonnes per hectare, t ha−1), 
derived from Nepal’s 2010–2014 national forest inventory. Plot-level AGB was estimated from tree measurements 
using allometric equations. The dataset along with a detailed description, is available in41. In this study, we 
use AGB as a proxy for forest productivity and carbon storage, given its central role in ecosystem functioning 
and responsiveness to environmental gradients. The nationally consistent and spatially extensive dataset 
is particularly valuable for capturing the high variability of biomass across Nepal’s heterogeneous mountain 
forests, where climatic, edaphic, and disturbance factors interact across scales.

Terrain analysis
We conducted a two-step digital terrain analysis to test hypothesis 1, that carbon dense forests occur 
preferentially in specific terrain units. First, image segmentation based on a set of topographic attributes (Table 
1) that was shown to be associated with variation in forest carbon pools31, was used to delineate contiguous, 
homogeneous terrain units. Principal components analysis (PCA) was performed on the terrain attributes 
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and image segmentation applied on outputs to derive terrain units with homogeneous topographic attributes. 
Details on terrain analysis, including segmentation parameters, algorithms, and software tools, are presented in 
supplementary information S.1.1.2. Then, for terrain units that included plot-based forest AGB estimates (N = 
519), we compared topographic attribute distributions of forests with high or low AGB.

Our study focused on high-elevation forests, here defined as forests located above 1516 m a.s.l.; the elevation 
threshold of 1516 m a.s.l. was based on a breakpoint in the distribution of forest AGB by elevation (4 and 
supplementary information Figure S1).

High AGB forest plots were defined as those within the top 10% of all plot observations41 from the high 
elevation zone (>1516 m a.s.l.); corresponding to 90th percentile cut-off value (>531 t ha−1). Using this AGB 
threshold, all forest inventory plots>1516 m a.s.l. (N = 835) were categorized as either ‘high AGB density’ (>531 
t ha−1) or ‘low AGB density’ (≤531 t ha−1). To address within-segment variations, terrain units with at least 
one inventory plot exceeding the AGB threshold were assigned to the high AGB forest class. Terrain units 
derived from multivariate topographic clustering were assumed to exhibit internal biophysical homogeneity; 
therefore, the occurrence of a high AGB plot within a unit was taken as indicative of conditions favourable to 
elevated biomass. The reclassified subset comprised 835 plots distributed across 519 terrain units, with 65 and 
454 classified as high and low AGB forest, respectively. Subsequently, a Mann-Whitney U Test with effect size 
measures was employed to assess significant differences in topographic attributes between terrain units of high 
and low forest AGB. Due to the unequal distribution of sample sizes across forest biomass classes, the non-
parametric nature of the Mann-Whitney U Test made it suitable for comparing terrain and climatic variables 
between these groups. Further methodological details, including preprocessing workflows, variable preparation, 
model fitting procedures, and diagnostics, are provided in Supplementary Information S1.1.

Topoclimatic gradient analysis
To test hypothesis 2, we characterized fine-scale variations in water and energy availability, and then analysed 
the relationship with forest AGB. A modified topographic wetness index, computed from a digital elevation 
model and gridded mean monthly precipitation data, was used as an indicator of water availability, while mean 
monthly potential evapotranspiration was modelled with the modified Hargreaves-Samani equation and used as 
an indicator of energy availability.

a) Modified topographic wetness index In mountainous landscapes, water from precipitation is potentially 
redistributed along slopes and within catchments as a function of topographic relief and the hydrological 
properties of the (sub)surface. Terrain units that are excessively drained, such as steep upperslopes with thin 
soils, typically lose water and sediment through runoff and erosion, while footslopes and valleys with deeper 
soils may receive lateral water inputs from the upslope areas. These redistribution processes may produce 
pronounced spatial variation in soil water availability and vegetation cover, especially in semiarid landscapes 
where ridges and upperslopes are typically sparsely vegetated while footslopes and gullies support more dense 
vegetation cover52.

The Topographic Wetness Index (TWI)53 is commonly used to capture topography-driven variation in 
potential water availability54. The TWI was developed to model the likelihood of saturation-excess overland f﻿low 
across the landscape as a function of local slope gradient and upslope drainage area (Eq. (1)):

Attributes Description Unit

Elevation Digital Elevation Model (DEM) from ASTER44. It influences forest carbon storage, primarily by affecting temperature, precipitation, soil depth and 
human disturbance31

m 
a.s.l.

Slope The slope gradient of terrain derived from the DEM. Slope, in conjunction with elevation, modulates forest carbon through its effects on 
temperature, precipitation, and soil properties degree

Plan Curvature The curvature in the horizontal plane of the contour line45. Flows concentrate on concave surfaces and disperse on convex ones, affecting erosion 
patterns46 m−1

Profile Curvature The curvature in the vertical plane of a flow line45. Affect soil moisture by increasing water flow speed on convex surfaces and decreasing on concave 
ones which tend to be depositional environments46 m−1

Topographic 
Wetness Index 
(TWI)

A high TWI indicates higher water accumulation potential, through a combination of relatively low slope gradient and large contributing drainage 
area. Steep, well-drained, slopes are relatively dry and have low TWI values47 –

Potential insolation 
(PISR)

DEM derived potential incoming solar radiation using a lumped Atmospheric Transmittance model of monthly insolation at 5-days and 0.5-hour 
steps for a year48. Solar radiation contributes to spatial variation in forest carbon by modulating microclimatic conditions and driving differences in 
forest productivity

kWh 
m-2

Vertical distance to 
channel network

The vertical height above the interpolated channel network. Indicates the distance of a grid cell from the groundwater49. It serves as a proxy for a 
proximity to groundwater and drainage dynamics m

Slope Length and 
Steepness factor 
(LSF)

Combines S-factor (steepness) and the L-factor (length). Also referred to as the sediment transport capacity index47 and used as an input in the 
Revised Universal Soil Loss Equation (RUSLE)50 –

Topographic 
position index (TPI)

The TPI compares the elevation of each grid cell to the mean elevation of a specified neighbourhood around that cell. Here, a 100 m diameter 
circular neighbourhood was used. Positive values are typical of ridges, negative values in valleys and near-zero values in flat areas51 –

Wind exposure
The average ‘Wind Effect Index’ for all directions using an angular step. A dimensionless index. Values<1 signify leeward areas, while values>1 
indicate windward areas48. It influence mechanical stress, evapotranspiration rates, and disturbance intensity—factors that shape biomass 
accumulation and retention

–

Table 1.  Topographic attributes with a spatial resolution of 30 m, derived from a digital elevation model using 
SAGA-GIS49.
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	 T W I = ln(α/tanβ)� (1)

where, α = Specific upslope drainage area with dimension m2 m−1 of contour line and β = Topographic slope 
gradient in radians.

The TWI is based on the implicit assumption that precipitation and soil hydrological properties are spatially 
homogeneous, which may apply within a small catchment or landscape but does not hold across large climatically 
diverse territories like the Central Himalayas. Since detailed soil hydrological information is not available for 
Nepal, while gridded mean monthly climate data is available, one option to account for some of the broad-scale 
climate variation in the TWI is to incorporate a term that depends on monthly precipitation.

We assumed that: i) topography-driven redistribution of water is negligible in landscapes of the most arid 
climate zones, ii) maximised in landscapes of the wettest climate zones, and iii) is captured by the TWI within 
a given climate zone. To represent the assumed effect of climate aridity on the potential for water redistribution 
we modified the TWI (termed as scaled TWI) by adding a linear ramp function, such that the potential for water 
redistribution becomes zero for arid landscapes and maximal in the wettest landscapes (Eqs. (2) and 3):

	
ST W I =

12∑
i=1

ln(f · α/tanβ)� (2)

	
f =

{
0, P < Pmin
1, P = Pmax
cP, Pmin ≤ P < Pmax

� (3)

where, α = specific upslope drainage area with dimension m2 m−1 of contour line, β = topographic slope gradient 
in radians, P is mean monthly precipitation (mm month−1), computed as the sum of mean monthly rainfall 
(MMR)55 and snow water equivalent (SWE)56, Pmin is the minimum mean monthly precipitation for topography-
driven water redistribution to occur, Pmax is the mean monthly precipitation at which topography-driven water 
redistribution is assumed to be maximal, and c is the slope of the ramp function f. The parameters Pmin, Pmax and 
c were arbitrarily set at 100 mm month−1, 500 mm month−1 and 0.002, respectively. The Pmax value of 500 mm 
month−1 corresponds to the 95th percentile P value of the national forest inventory plots. Upslope drainage area 
and slope gradient rasters were derived from the DEM using SAGA-GIS49.

b) Potential Evapotranspiration (PET) The modified Hargreaves and Samani equation57 was used to predict 
mean monthly PET (Eq. 4). This model is recommended for areas of limited data availability58, as it predicts PET 
from just two commonly available variables, extraterrestrial radiation and monthly air temperature.

	 P ET = 0.0135(K)(Ra)(Tmax − Tmin)0.5(T + 17.8)� (4)

where, Tmax = maximum monthly air temperature (◦C), Tmin = minimum monthly air temperature (◦C), T 
= mean monthly air temperature (◦C), Ra = extraterrestrial radiation (mm day−1), K = empirical coefficient. K 
relates global solar radiation to differences in the range of daily temperature. Calculation details for Tmax, Tmin, 
T, Ra are provided in the supplementary information S1.1.

Exploratory data analysis revealed parabolic relationships between forest AGB and STWI and PET (Fig. 
2), rendering linear models unsuitable. Consequently, Generalised Additive Models (GAMs) were deemed 
appropriate to capture these complex relationships by fitting nonlinear smooth functions59. Quantile regression 
using the ‘qgam’ package60 was implemented to model maximum forest AGB for a given combination of STWI 
and PET, with quantiles estimated at τ  = 0.99, assuming joint constraints of energy and water availability on 
forest AGB in a nonlinear way (Eqs. 5 and 6). Tensor product smooths (te) were used to model the interaction 
between covariates, measured in different units59. We employed the ‘check.qgam’ function from the ‘qgam’ 
package to inspect the fitted model and validated it using binning and a leave-one-out approach.

	 AGB ∼ s(ST W I) + s(P ET ) + ti(ST W I, P ET ) � (5)

	 AGB ∼ te(ST W I, P ET ) � (6)

where STWI is the Scaled Topographic Wetness Index, PET is potential evapotranspiration (mm day−1) and s, te 
and ti are tensor product smooth functions.

To test hypothesis 3, we compared the statistical distributions of topographic attributes that are indicative 
of the likelihood of erosion, avalanches and mass movements, for terrain units having high or low AGB forest.

Results
Terrain analysis
High AGB forests were found to occur in distinct topographic positions compared to low AGB forests as the 
distributions of several terrain attributes significantly differed between high and low AGB forest (Fig. 1). The 
Mann-Whitney U test indicated significant differences in median values for elevation, topographic position 
index (TPI), and wind exposure between the two groups. While low AGB forests occurred across a wide range 
of habitats, high AGB forests were more restricted, indicating their association with specific topographic 
positions or terrain units. Rank-biserial correlation (r̂), ranging from −1 to +1, indicates the strength and 
direction of the association between the ranked variables61. Positive r̂ were observed for elevation, plan 
curvature, profile curvature, TPI, vertical distance to the channel, slope, and wind exposure, indicating that 
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Figure 1.  Comparison of distributions of terrain attributes for terrain units having high AGB (green) and 
low AGB forest (orange). The subheading of each figure shows the test statistic, p-value and rank-biserial 
correlation for Mann-Whitney U Test.
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terrain units containing high AGB forests tended to have larger values of these terrain attributes compared to 
terrain units without high AGB forests. Conversely, the topographic wetness index (TWI) had a negative r̂, 
being higher in terrain units without high AGB forests. For slope length and steepness factor (LSF) and potential 
incoming solar radiation (PISR), r̂ values were marginal. These findings support hypothesis 1, suggesting that 
high AGB forests are consistently associated with topographic settings that offer both shelter and favourable 
microclimatic conditions. In contrast, low AGB forests occurred across a broader range of habitats, indicating 
weaker environmental filtering.

Topoclimatic gradient analysis.
Forest AGB exhibited a parabolic relationship with topographic indicators of climatic water and energy 
availability, supporting hypothesis 2. Specifically, the highest AGB values were observed in areas characterized 
by a combination of relatively high STWI and PET (Fig. 2, Supplementary information Figure S3). This parabolic 
pattern was confirmed using nonparametric quantile regression with B-splines, which showed peak AGB 
occurring near the 95th and 99th quantiles of STWI and PET. These findings indicate that forest productivity 
is optimized under moderate-to-high topoclimatic moisture and energy conditions, beyond which further 
increases in water or energy availability do not correspond to higher AGB.

To further investigate the relationship between forest AGB and topographic indicators of climatic water and 
energy availability, we conducted a topoclimatic gradient analysis using quantile GAM (QGAM) modelling. 
We focused on the maximum forest AGB (τ  = 0.99) across the range of climatic energy and water availability 
in the data set (supplementary information Figure S4). The response surface depicted the variation in predicted 
maximum forest AGB with STWI and PET (Fig. 3). The result show that the 99th quantile of forest AGB was 
responsive to the interaction between STWI and PET, predominantly concentrated along the anti-diagonal of 
the covariate-space. These findings demonstrate that forest AGB increases with the interaction of STWI and 
PET, which are proxies for biologically usable water availability.

Comparison of the two models, namely the ‘main plus interaction’ and ‘interaction only’ (Eqs. 5 and 6), showed 
that while the ‘main plus interaction’ model improved the fit, it required additional parameters (Supplementary 
information Table S1, S2 and S3). Therefore, the ‘interaction only’ model was considered a more straightforward 
choice for modelling forest AGB, accounting for the expected interaction between STWI and PET.

The ‘interaction only’ model (Eq. 6) demonstrated reasonable accuracy in predicting extreme forest AGB, 
as shown by the strong positive relationship between observed and predicted values (Fig. 4). However, the 

Figure 2.  A nonparametric quantile regression using B-splines to explore the 95th (τ  = 0.95) and 99th (τ  
= 0.99) quantiles of the conditional distribution. Panels (A) and (B) fit forest AGB as a function of scaled 
topographic wetness index (STWI) and mean daily potential evapotranspiration (PET), respectively.
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agreement between observed and predicted AGB varied depending on the data binning approach, with a trade-
off between bin count and the number of forest inventory plots per bin. Validation using nine bins revealed the 
lowest Root Mean Square Error (RMSE) for predicted forest AGB at τ  = 0.99. This RMSE variability among bins 
is attributed to the distribution of inventory plots across climatic space (STWI and PET), with fewer plots at the 
extremes and more toward the center.

Figure 3.  The contour plot (Panel A) of the smoothed function s(x) shows the estimated relationship between 
the response and predictor variables. The colour intensity indicates the magnitude of the predicted response at 
different combinations of predictor variables. The term ‘te’ stands for tensor product smooth function, which 
is used to model the joint effect of the predictors with an effective degrees of freedom of 15.34. The red + 
symbols represent input data points for the model, while grey areas represent no data area. Panel (B) shows the 
predicted 99th quantile AGB with the fitted QGAM. The se contour surface plot (Panel C) shows the estimated 
standard errors of the predicted forest AGB for different combinations of the predictor variables.
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We hypothesised (H3) that forest AGB is constrained below its topoclimatic potential where the likelihood 
of disturbances, such as avalanches and mass movements, is relatively high. To evaluate this hypothesis, we 
compared the statistical distributions of topographic attributes, indicative of disturbance likelihood, before and 
beyond the observed AGB maximum. The analysis revealed that AGB peaks at a PET value of approximately 
2 mm day−1 (Fig. 5) and an STWI value just under 40 (Supplementary information Figure S2). Beyond these 
thresholds, a decline in AGB was observed. However, this decrease is less certain due to the low density of data 
points in regions with higher STWI and PET values, particularly for the STWI. The observed decline in AGB 
at higher STWI (> ~40) and PET (> ~2 mm day−1) values raises questions about underlying mechanisms. We 
hypothesize that this reduction is driven by increased levels of disturbance, such as erosion, avalanches, and 
mass movements, which may become more frequent or severe in areas with these environmental conditions. 
The basis for this conclusion is the significant differences in the basic terrain attributes indicating proxies of 
disturbance likelihood both human induced as well as natural.

Discussion
Building on previous findings that showed the mediating role of terrain on forest carbon stocks through its 
effects on climate and disturbances at a fine scale in the Central Himalayas31, we aimed to explore in greater 
detail how these fine-scale terrain variables influence the availability of climatic water and energy, thereby 
affecting the distribution of forest carbon. We explored relationships between forest biomass patterns and 
topographic positions indicative of potential forest growth conditions4. Specifically, we demonstrated that 
the most carbon-dense forests are associated with distinct topographic settings that likely provide shelter and 
favourable microclimatic conditions, while carbon storage is reduced below the topoclimatically constrained 
potential in areas prone to disturbances such as avalanches and mass movements (Hypothesis 1). Our findings 
confirm the hypothesized role of topoclimatic factors in shaping forest AGB patterns in high mountain forests of 
Nepal (Hypothesis 2). These findings reaffirm the significant influence of fine-scale topographic heterogeneity 
on climatic variability62 and forest structure and carbon density63.

High AGB forests were predominantly found on ridgetops and upper slopes, characterized by relatively high 
Topographic Position Index (TPI) values. Forest inventory plots with high AGB were associated with TPI values 
close to zero, whereas plots of low AGB forests exhibited a broader range of TPI values. This pattern contrasts 
with findings from areas of lesser topographic complexity, where high AGB forests are more commonly found 
on flat terrain64, where the risk of soil erosion and mass movements like avalanches and landslides is minimized. 
Moreover, sites with high wind exposure are generally drier due to enhanced evapotranspiration65. However, 
our study in the Central Himalayas indicates that windward slopes can also be notably wet due to increased 
precipitation from orographic uplift compared to leeward slopes35. This elevation in moisture can counteract 

Figure 4.  The observed and predicted maximum forest AGB using ‘interaction only’ quantile GAM at τ  = 0.99 
for forest inventory plots belonging to different bins of the surface of scaled topographic wetness index (STWI) 
and potential evapotranspiration (PET). The RMSE and Pearson correlation coefficient (r) compare observed 
and predicted values. The dots compare the observed and predicted maximum forest AGB for each bin, with 
RMSE estimated using the leave-one-bin-out method.

 

Scientific Reports |        (2025) 15:35134 8| https://doi.org/10.1038/s41598-025-19127-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the drying effect, supporting the growth of taller, more robust forest stands66. These findings emphasize the 
significant role of topographic variability in determining forest structure and carbon density, underscoring the 
critical influence of fine-scale environmental heterogeneity in shaping forest habitats.

The comparison of plan and profile curvature, quantifying surface convexity or concavity in horizontal and 
vertical planes, respectively47, revealed weak but positive associations with high forest AGB occurrence. Rank-
biserial correlation coefficients for plan and profile curvature were 0.13 and 0.11, respectively, and although 
Mann–Whitney U-tests yielded non-significant p-values, the direction of effect suggests a tendency for high 
AGB forests to occur in terrain units with positive curvature values. Specifically, positive plan curvature indicates 
convex features in the horizontal plane (ridges), while positive profile curvature denotes concave shapes in the 
vertical plane (concave slope forms in depositional environments)47,67. While convex planforms are not typically 
associated with moisture accumulation due to increased runoff and lower sediment retention68,69, they may 
confer reduced exposure to disturbance processes such as avalanches and mass movements, which are more 
frequent in concave hollows or convergent flow paths70. Thus, the association between positive curvature and 
high AGB may reflect the interaction between favourable microsite stability and reduced disturbance exposure, 
rather than water availability alone.

High AGB forests were typically found at a greater vertical distance from the nearest stream channels and 
exhibited lower TWI values compared to low AGB forests. This suggests that highly productive forests in 
mountainous terrain are not necessarily found in the wettest or most hydrologically convergent locations. In 
contrast, low AGB forests were more frequently associated with higher TWI values, indicative of their occurrence 
in areas with increased proximity to water bodies or major flow pathways. While TWI is commonly used to 
infer drainage potential and moisture availability53,71, these findings suggest that excess water accumulation 
may not always favour biomass accumulation, possibly due to increased susceptibility to disturbance processes 
such as landslides or saturation-induced root instability in concave or poorly drained areas. This interpretation 
is supported by the observed terrain context of high AGB forests, which tend to occur on positions with lower 
disturbance exposure, such as convex planforms and areas with greater vertical separation from major drainage 
lines. These positions may offer more stable substrates, enabling long-term biomass accumulation despite lower 
apparent water availability. Thus, in our high mountain study area, the association of topographic position with 

Figure 5.  Grouping of forest inventory plots based on the breakpoint detected (1.88) in potential 
evapotranspiration (PET) at the high quantile (τ  = 0.95). The breakpoint is indicated by the dashed red line 
(Panel A). The solid green line represents the fitted quantile gam (τ  = 0.95). Red and blue points represent 
inventory plots categorized as below and above the PET breakpoint, comprising 46% and 54% of the total plots 
above fitted quantile, respectively. Panels (B–F) compare common terrain attributes for inventory plots below 
and above the PET breakpoint. The subheading of each panel shows the test statistic, p-value, and rank-biserial 
correlation coefficient from the Mann–Whitney U test.
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disturbance regimes may be more critical to sustaining high forest carbon density than terrain-driven variation 
in resource availability.

Other terrain attributes, such as the slope length and steepness factor (LSF) and potential incoming solar 
radiation (PISR), did not significantly differ between high and low AGB forest plots. Despite the theoretical 
expectation that low LSF values are associated with reduced erosion and potentially deeper soil development72, 
our results suggest that forest productivity is not strongly constrained by slope length alone in this context. 
Similarly, although PISR influences energy availability and growing season length, the absence of strong 
differences between AGB classes indicates that topographic variation in insolation may be less limiting than soil 
moisture or disturbance-related factors in determining carbon density at the scale examined.

We examined topoclimatic variation in forest site productivity using Scaled Topographic Wetness Index 
(STWI) and potential evapotranspiration (PET) as proxies for climatic water and energy availability. Our analysis 
has shown that the probability of finding high AGB forest increases with the interaction of PET and STWI to a 
maximum at intermediate PET and STWI, consistent with forest productivity being highest where biologically 
usable water and energy are maximized30. Our findings reveal that the upper quantiles of AGB exhibit a humped 
relationship with PET and STWI, with an AGB maximum observed at PET of approximately 2 mm day−1 and 
STWI of approximately 30. These results align with our hypothesized association between AGB and biologically 
usable water. Contour plots (Fig. 3) illustrated the sensitivity of predicted forest AGB and the interaction effect 
size to PET and STWI, highlighting their significant influence on forest AGB. This pattern aligns with established 
knowledge of energy and water constraints in determining productivity patterns at a broad scale42. Nevertheless, 
a weak declining trend in forest biomass for sites with highest STWI and PET contrasts with expected effects but 
could not be confirmed due to limited observations and higher model standard error (Fig. 3C).

Comparing the smooth effect of AGB with STWI, Topographic Wetness Index (TWI), and mean annual 
rainfall (supplementary information Figure S6), STWI exhibited a more stable estimate than rainfall, while TWI 
failed to capture the AGB variability. The stronger relationship between STWI and AGB suggests that STWI 
better represents spatial variation in water availability in mountainous landscapes by integrating topography and 
seasonal rainfall. This is supported by lower AIC values (supplementary information Table S4 and Figure S5), 
and aligns with observations that incorporating topography improves fine-scale soil moisture characterization73. 
However, it is important to note that the linear ramp function used to rescale the wetness index relies on the 
basic assumption of water redistribution, which may not fully capture the complexities present in areas with 
highly heterogeneous topoclimate. To address this limitation, we recommend future research that incorporates 
inputs related to soil attributes, terrain characteristics, precipitation patterns, and vegetation properties.

The AGB response surface showed a humped relationship with PET, used as a proxy for climatic energy 
availability. Consistent with observations in other mountainous regions74 including the reported range of values 
for Nepal Himalayas75,76, the elevational pattern of PET showed declining maximum values at higher elevations, 
which reflects elevational gradients of increasing radiation and wind speeds, and decreasing air temperature and 
humidity. The extreme PET values (>2.5 mm day−1) at higher elevations in the Central Himalayas correspond 
to arid environments77 that can only sustain low-stature vegetation with low AGB (<500 t ha−1). However, high 
AGB forest can persist at moderate PET (1.5-2.5 mm day−1) in these mountain ranges, which is likely related to 
snow cover. Snow cover may affect this finding in two ways. Firstly because our estimates of mean annual PET 
were based on the modified Hargreaves method that primarily captures air temperature and radiation effects, 
and may overestimate PET, especially in arid mountain landscapes with significant snow cover78. Secondly, snow 
cover may add significant amounts of moisture to the soil during snow melt that allows the forest to meet high 
atmospheric moisture demand during periods of low precipitation.

To further investigate the observed patterns and test hypothesis 3, we analysed the statistical distributions of 
topographic attributes indicative of disturbance likelihood across breakpoints in the proxies of climatic water 
availability, comparing areas with high and low AGB classes. Our analysis of terrain attributes revealed contrasting 
relationships between aboveground biomass (AGB) and proxies for biologically usable water availability across 
inventory plots. Plots with lower AGB on higher PET were located at significantly lower elevations with gentler 
slopes and smaller slope length and steepness factor (LSF). However, these same plots had a greater vertical 
distance to the channel network and higher wind exposure. Intuitively, one might expect that sites with greater 
susceptibility to disturbances, such as erosion and mass movements, would align with high PET. For instance, 
steeper slopes in mountainous regions are prone to events like avalanches79 and rockfalls32. These disturbances 
can significantly affect forest structure, including stem density per hectare80. However, our findings do not align 
with this expectation. Two key factors contribute to these contrasting results. Firstly, our inventory plots were 
measured based on physical accessibility. Consequently, steeper forests with low biomass may not have been 
adequately sampled in the high elevation plots originally designed. Secondly, the regions exhibiting relatively 
higher PET but low maximum forest AGB predominantly represent stands occurring above 2500 meters above 
sea level (m a.s.l.). Forest stands at lower elevations have experienced a history of intense human disturbance81, 
contributing to their overall lower AGB compared to both lower sub-tropical regions and higher altitude zones. 
This disparity may, in part, reflect reduced anthropogenic pressure in rugged, high-altitude areas, in contrast 
to the more accessible lowland forests that typically support higher population densities82. Thus, we can expect 
higher disturbance to forest due to the combined effect of higher mean annual precipitation83,84 and human 
induced disturbance such as road construction is the major factor for slope failures85. The maximum forest AGB 
in Nepal around 3000 m a.s.l. has been attributed to the presence of stands characterized by high stand density, 
large-diameter trees, and species with high wood density4.

Moving beyond slope, elevation, and the steepness factor (LSF), we explore the relationship of forest AGB 
with vertical distance to the channel network and wind exposure. Interestingly, for the group of plots showing 
a negative relationship between AGB and PET, the higher vertical distance to the channel network suggests 
potentially decreased access to moisture. This, in turn, enhances soil quality and depth86–88. Additionally, wind 
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exposure plays a role, whether by promoting seedling regeneration or influencing forest structure dynamics by 
influencing regeneration and establishment of seedlings89, physical damage of trees90, or even contributing to 
burn severity. Our findings underscore the complexity of AGB-PET interactions, influenced by terrain attributes, 
elevation, and likelihood of disturbance.

Conclusion
We aimed to identify how fine-scale topoclimatic variation influences environmental conditions that sustain 
high levels of forest AGB across the rugged landscape of the Central Himalayas. Our findings demonstrate 
that high AGB forests are consistently associated with distinct terrain units where both climatic energy and 
biologically usable water are elevated. These topographic settings appear to offer stable environmental conditions 
conducive to long-term forest carbon accumulation. In contrast, areas with higher disturbance potential, despite 
sometimes greater resource availability, tend to support lower forest AGB. Our study highlights the importance 
of landscape heterogeneity in shaping spatial patterns of forest carbon density. These insights contribute to 
improved understanding of carbon storage dynamics in mountainous ecosystems and underscore the need to 
account for fine-scale terrain variation in forest carbon assessments and management planning. We recommend 
that future biomass estimation and conservation efforts in mountain regions incorporate high-resolution 
topoclimatic, vegetation and terrain data to better identify and protect forest areas with high carbon storage 
potential. Additionally, prioritizing topographic positions that are well protected in forest management could 
enhance the long-term stability of forest carbon stocks under changing climate and disturbance regimes.

Data availability
Forest AGB data for each plot is available on Figshare repository (https://doi.org/10.6084/m9.figshare.21959636). 
The topographic attributes in this study were derived from publicly available digital elevation data and software 
tools, as detailed in Table 1.
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