
AgriFact framework for modelling 
the impact of farmers’ information 
demand on nationwide wheat 
productivity in India
Samarth Godara1, Kamal Batra1, Ram Swaroop Bana2, Sudeep Marwaha1 & Jatin Bedi3

Understanding the link between farmers’ information needs and crop yield is vital for crafting effective, 
sustainable agricultural policies. However, existing research has yet to comprehensively investigate 
the impact of farmers’ information demand on crop yield using advanced analytical tools. In this 
direction, the presented study introduces the AgriFact framework to explore the relationship between 
Indian farmers’ information inquiries and crop yield using Deep Learning (DL)-based modelling and 
numerical methods-based variables’ relationship analysis. The study examines 1.8 million farmer query 
calls collected over a decade from Kisan Call Centers, alongside district-wise wheat yield data across 
India. In the first phase, six DL models are developed and compared to estimate crop productivity 
based on topic-wise query calls per hectare. From the experiments, it is noted that the 1-D CNN model 
delivered the highest predictive accuracy, achieving the lowest RMSE (0.759 t/ha) and MAE (0.585 t/ha) 
among all evaluated models. Later, the study integrates ceteris paribus analysis and factor-wise partial 
derivatives, demonstrated through a nationwide wheat yield case study. The presented research 
offers deeper insights into the association between farmers’ information demand and wheat crop 
productivity, potentially informing the formulation of evidence-based agricultural interventions.
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Agriculture faces growing challenges from rising food demand, climate change, and resource constraints, making 
it essential to adopt innovative strategies like ICTs to improve farmers’ access to vital information1. A growing 
body of research highlights the transformative role of ICTs in enhancing agricultural productivity in India. 
Studies such as2  show that mobile-based information services significantly improve decision-making among 
smallholder farmers3. demonstrated that providing timely price and agronomic information via mobile phones 
led to better market engagement and farm management4. emphasized the positive impact of call center-based 
advisory services on yield outcomes. More recently5, analyzed large-scale ICT deployments and confirmed their 
role in bridging information gaps and improving yield, especially in marginalized regions. While past studies 
have explored the impact of agricultural extension programs, key gaps remain–including limited focus on long-
term effects, inadequate representation of marginalized groups, and insufficient analysis of how information 
access influences productivity6. Notably, no existing research has examined the role of farmers’ information 
demand in predicting crop yield or the relationship between different types of agricultural information and 
productivity7.

While several existing studies have explored Deep Learning (DL) techniques for crop yield estimation 
modeling8, there remains limited investigation into how DL models can be used to analyze the relationship 
between independent variables, such as farmers’ information demand, and the dependent variable, crop yield9. 
Methodologically, the use of Ceteris Paribus (CP) and Partial Derivative (PD) analyses in conjunction with 
DL models has not yet been widely adopted, likely due to the inherent challenges involved in integrating these 
interpretability techniques with complex DL architectures.

Deep Learning (DL) models are inherently complex and high-dimensional, which poses challenges in 
interpreting the influence of individual input variables. These models often achieve high predictive performance, 
but this comes at the cost of reduced interpretability compared to traditional, more transparent models. In 
this scenario, Ceteris Paribus (CP) analysis–an interpretability technique that examines the effect of changing 
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one variable while holding others constant–becomes computationally demanding in such settings. Similarly, 
calculating Partial Derivatives (PD), which measure the sensitivity of the model’s output with respect to small 
changes in input features, is complicated by non-linear activations and deep architectures. The proposed AgriFact 
framework overcomes these limitations by introducing customized algorithms for CP and PD analysis, enabling 
a more transparent understanding of how various types of agricultural information affect crop yield.

The presented study addresses the gaps in the current literature on using DL-based models for estimating 
crop yields based on farmers’ information demand. Moreover, the demonstrated case study is conducted in the 
context of the wheat crop, which is a critical staple crop and a major source of nutrition for billions of people 
worldwide. Besides, the target region of the presented case study includes the wheat-growing territories of India, 
which is one of the leading producers of the Wheat crop, contributing to ≈ 12.5% of global wheat production10.

The proposed AgriFact framework analyzes ≈1.8 million farmer query calls (2011–2021) alongside district-
wise wheat yield data, focusing on 14 key wheat-related topics. Data preprocessing involved merging district 
names using a Levenshtein-distance approach and transforming query logs into seasonal topic-wise call counts, 
normalized as query calls per hectare (q/ha). Big Data tools handled the large dataset efficiently, and Box-Cox 
transformation addressed skewed variable distributions. Six DL models were evaluated for yield prediction, 
with 1-D CNN performing best and used for further CP and PD analysis. The framework also explored variable 
effects and topic interactions using polynomial modeling. Based on the provided text, following are the research 
questions that this study addresses: 

	1.	 How does farmers’ information demand influence crop yield, particularly in the context of wheat production 
in India?

	2.	 Can DL models effectively predict crop yield based on topic-wise farmer information queries collected via 
ICT platforms?

	3.	 What is the relative predictive performance of different DL models (e.g., CNN, RNN, LSTM, GRU, Trans-
former and MLP) in estimating wheat yield from large-scale ICT-based datasets?

	4.	 How can interpretability techniques like CP and PD be integrated into DL models to understand the impact 
of individual information topics on crop yield?

The proposed framework offers valuable insights for shaping targeted agricultural policies and interventions, 
with potential applications across crops and regions. By emphasizing the role of ICTs in enhancing productivity 
and sustainability, it supports better decision-making and resource optimization. The study also benefits various 
stakeholders-such as agro-input firms, market intermediaries, and financial institutions-by identifying key 
productivity factors, ultimately contributing to more sustainable and productive agriculture.

The remainder of the article is arranged as follows: Section 2 explains the internal parts and methods 
employed within the AgriFact framework. In Section 3, we delve into the case study, providing insights into the 
basic statistics of the input data and the outcomes achieved at each phase of the framework. Section 4 explores 
the potential explanations behind the results obtained from the case study, citing studies that share similar 
observations. This section also discusses the study’s limitations and outlines future avenues for research. Finally, 
Section 5 summarises the study with an overview of the research findings.

Methodology
The AgriFact framework’s methodology consists of four key modules: Data Collection and Preparation, DL-
based Modelling, Variables’ Relationship Analysis, and Results Interpretation (Fig. 1). Initially, farmer query call 
data from Kisan Call Centres was merged with district-wise crop yield data and normalized using the Box-Cox 
transformation. Six DL models were trained and the best-performing one was selected for further analysis. 
The third module employed CP and PD analyses to examine the impact of the top 14 query topics–measured 
as calls per hectare–on crop yield, including interaction effects, especially with weather-related queries. 
Finally, polynomial equations were fitted using the least squares method to interpret variable effects, offering 
a comprehensive understanding of yield-influencing factors. The remainder of this section gives a detailed 
explanation of each step of the methodology.

Data preparation
The first module of the methodology focuses on data collection and preprocessing. Farmer query call data was 
sourced from the Kisan Knowledge Management System (KKMS)11, and district-wise crop yield and cultivation 
area data from the Ministry of Agriculture and Farmers Welfare portal12. Kisan Call Centers (KCC), accessible 
via the toll-free number 1800-180-1551, provide agricultural advice to farmers, with call-log data publicly 
available at https://kcc-chakshu.icar.gov.in/13.. A customized web crawler was developed to collect ≈10 years 
(2011–21) of district-wise monthly call-log files, which were merged into a unified dataset and combined with 
yield and cultivation area data. The number of query calls per hectare was then computed for the top 14 wheat-
related topics. To accurately merge records from both datasets, district names were matched using a modified 
Levenshtein Distance Index (LDI)14.
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ldi(n1, n2) =
(

1 − ld(n1, n2)
max(|n1|, |n2|)

)
× 100

where, ld(x, y) =




|x| if |x| = 0,
|y| if |y| = 0,
ld(tail(x), tail(y)) if if |x| = |y|,

1 + min

{
ld(tail(x), y)
ld(x, tail(y))
ld(tail(x), tail(y))

otherwise

� (1)

Here, n1, n2 are the input character strings between whom the LDI is to be calculated, |n1| represents the 
length of string n1, and tail(x) is the string x without the first character. The next step included transforming 
the data into a normal distribution using the Box-Cox transformation15. This transformation helps stabilize the 
variance of the data and makes it more symmetrical. Besides, the Box-Cox transformation method is utilized 
to normalize skewed data distributions by raising each observation to a power, lambda, calculated based on the 
data. The formula for Box-Cox transformation is represented as Eq. 2.

	
y(λ) =

{
(yλ−1)

λ
if λ ̸= 0

log(y) if λ = 0
� (2)

Deep learning-based modeling
DL-based modeling is a powerful tool for analyzing complex datasets with multiple variables. The use of DL-
based models in this study allows for a more comprehensive data analysis, considering multiple variables and 
their interactions. In this module, the dataset prepared in the previous stage is evaluated using 5-fold cross-
validation to ensure robust and unbiased model performance assessment. The data is partitioned into five equal 
subsets, where in each iteration, four subsets are used for training and one for testing, rotating across all folds. 
This approach mitigates the risk of overfitting and provides a more reliable estimate of model generalization. 
Six different DL-based models–MLP, RNN, LSTM, GRU, 1-D CNN, and Transformer–are trained and validated 
within this framework. This comprehensive evaluation helps identify the most effective architecture for yield 
prediction based on farmers’ information demand.

The models selected for analysis represent a mix of sequential, convolutional, and fully connected 
architectures, allowing for the capture of both spatial and temporal patterns in the input data. The inclusion 
of RNN-based models (RNN, LSTM, GRU) facilitates effective modeling of sequential dependencies within 
seasonal information demand. CNN and Transformer models were chosen for their strength in extracting 
hierarchical features and capturing long-range dependencies, respectively. The MLP model serves as a baseline 
to assess the added value of advanced architectures in handling high-dimensional agricultural data. A brief 
explanation of each of the undertaken models is as follows.

Fig. 1.  Internal modules of the AgriFact framework for exploring the association between nationwide farmers’ 
information demand and crop yield.
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Deep learning models for sequential and structured data
Several deep learning architectures are used to model temporal and structured input data. This section 
summarizes the core principles and mathematical operations of commonly used models in this study. 

	1.	 Multi-Layer Perceptron (MLP): An MLP is a feedforward neural network with one or more hidden layers, 
where each neuron computes a weighted sum of inputs followed by a nonlinear activation function16. It is 
used here to predict crop yield from transformed inputs. The operation of a perceptron is defined as: 

	
yj = ψ

( u∑
i=1

wjixi

)
� (3)

	2.	 Recurrent Neural Network (RNN): RNNs are designed to process sequences by retaining information from 
past inputs through hidden states17. The hidden state at each time step is updated as: 

	 h(t) = tanh(b + W h(t−1) + Ux(t))� (4)

	3.	 Long Short-Term Memory (LSTM): LSTM is a specialized RNN variant that uses gates to regulate memory 
retention and update over time18. The forget gate, which discards irrelevant information, is defined as: 

	 ft = σ(Wf [ht−1, Xt] + bf )� (5)

	4.	 Gated Recurrent Unit (GRU): GRU simplifies the LSTM by combining the forget and input gates into an 
update gate, and it uses a reset gate to control past information influence19. The update gate is given by: 

	 zt = σ(Wz[ht−1, Xt] + bz)� (6)

	5.	 1-D Convolutional Neural Network (1-D CNN): 1-D CNNs apply convolutional filters over temporal se-
quences to extract local features20. The dilated causal convolution for sequence modeling is: 

	
F (s) =

k−1∑
i=0

f(i) · qs−d·i� (7)

	6.	 Transformer: Transformers use self-attention to capture dependencies across entire sequences without re-
currence, allowing parallel processing21. The attention mechanism is formulated as: 

	
Attention(Q, K, V ) = softmax

(
QKT

√
dk

)
V � (8)

Hyperparameter tuning
Hyperparameters (HP) are important factors that significantly affect the performance of any DL-based model, 
and finding the best set of HP is a challenging task. In the context of DL, HP include the learning rate, batch 
size, number of layers, number of neurons in each layer, activation functions, and regularization techniques. In 
the presented study, the Random search technique is used for HP tuning, it is an efficient and effective method 
as it explores the HP space more efficiently than other HP-tuning techniques, which can be computationally 
expensive and time-consuming22. In this method, the HP are randomly selected from a given range or 
distribution, and the corresponding model is trained and evaluated. The process is repeated multiple times with 
different random combinations of HP to find the best set of HP that optimize the performance of the model. 
Furthermore, each model in the study is trained using the early stopping technique to prevent overfitting and 
enhance generalization performance.

Models’ testing and comparison
After the training of each model, the accuracy of the models is evaluated using two metrics, i.e. Root Mean 
Square Error (RMSE) and Mean Absolute Error (MAE), expressed by Eqs. 9 and 10.

	

RMSE =

√√√√ 1
n

n∑
i=1

(Yi − Ŷi)2� (9)

	
MAE = 1

n

n∑
i=1

|Yi − Ŷi|� (10)
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here, n is the number of output data point, Ŷ  is the output of the DL-based model, and Y is the desired output.

Variables’ relationship analysis
The third section of the methodology involves the CP analysis, the variable-wise PD calculation, and visualizing 
the second-order interaction effect of the selected variables, using the trained model.

The CP analysis is a powerful tool for understanding the relationship between a dependent variable and a set 
of independent variables23. The study uses the best-performing DL model to estimate crop yield based on the 
variables to conduct the CP analysis. Then, the variables are modified one at a time, while the other variables are 
held constant to observe the changes in the predicted crop yield. Algorithm 1 gives the CP algorithm utilised by 
the AgriFact framework.

Algorithm 1.  Ceteris Paribus Analysis with DL Model

Initially, the algorithm requires inputs including the best-performing DL model (M ), a set of independent 
variables (X) likely to impact crop yield, and the dependent variable (y), which represents crop yield itself. 
The desired output consists of non-linear models and plots illustrating how predicted crop yield changes with 
variations in independent variables. The algorithm begins by generating a vector v of length n to hold the values 
of the independent variables. Subsequently, it initializes the vector with the mean values of the variables to 
establish a baseline. Then, for each independent variable xi in X , the algorithm iterates through each level of 
xi to explore different values or categories of the variable. At each level, it modifies the vector v to reflect the 
current level of xi, uses the DL model M  to predict crop yield based on the modified vector v, and stores these 
predicted values. Additionally, it performs non-linear regression to understand the relationship between the 
independent variable xi and the dependent variable y. Finally, it plots the relationship between xi and y using 
the results of the non-linear regression and the stored predicted crop yield values. After completing the analysis 
for each independent variable, the algorithm resets the vector v to its original mean values in preparation for 
the next iteration.

The PD gives the rate of change of the dependent variable (wheat yield) concerning a particular independent 
variable (number of query calls related to a target topic) while keeping all other variables constant. By calculating 
the PD for each variable, we can understand the direction and magnitude of the effect of that variable on crop 
yield. Furthermore, the presented study calculates the PD corresponding to each variable using the Symmetric 
Difference Quotient (SDQ) technique24. In this technique, first, the centroid point corresponding to the dataset 
is calculated using Eq. 11.

	

C = ⟨c1, c2, ..., ck⟩

where, cj = 1
n

n∑
m=1

xjm
� (11)

Here, C represents the centroid vector, n represents the total number of rows in the dataset, and xjm represents 
the mth row element (data point) of the jth column (variable). In the second step, the PD is calculated using 
Eq. 12:
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∂f(C)
∂vj

= f(Cj+) − f(Cj−)
2 × hj

where, Cj+ = ⟨c1, c2, ..., (cj + hj), ..., ck⟩,
Cj− = ⟨c1, c2, ..., (cj − hj), ..., ck⟩

and, hj = cj × 0.001

� (12)

Here, vj  is the variable corresponding to which the PD is to be calculated. In the study, PDs corresponding to 
each variable are calculated by varying the cj  in the range of the target variable.

The study also captured the interaction effects between weather-related query calls and the four most-
inquired topics (plant protection, varieties, fertilizer usage, and weed management) by performing a second-
order interaction analysis. This was done by simultaneously varying two variables while keeping all other 
variables constant at their mean values. The obtained results were then visualized using a heatmap, where the 
color gradient indicated the yield values at different levels of the two interacting variables.

Results interpretations
In the fourth section of the methodology, the output corresponding to the CP and PD analysis is expressed 
into first, third and fifth-order polynomial equations for easy interpretation. A polynomial equation helps in 
visualizing the relationship between the variables and yield. This study uses the least squares method to fit the 
equations to the data, minimizing the sum of the squared differences between the predicted and actual values25. 
Mathematically, it can be represented as given in Eq. 13.

	
minimize

n∑
i=1

(yi − (mxi + b))2� (13)

where (xi, yi) are the data points, m is the slope, and b is the intercept of the line or curve. After fitting the 
polynomial equations, the coefficients of the equations are analyzed to determine the significance of each variable 
on yield. The coefficients indicate the strength and direction of the relationship between the variables and yield.

Experiments and results
This section presents the outcomes of the applied methodology in analyzing a decade (2011-21) of query call 
and yield data. The analysis was executed using a Python 3.0 script on the Google Colab platform, which was 
equipped with a dual Intel(R) Xeon(R) CPU @ 2.20GHz microprocessor, 13GB RAM, and 108GB disk space. 
The analysis utilizes libraries including NumPy, Pandas, Matplotlib, Scikit-learn, Keras, and SciPy for data 
preprocessing, modeling, evaluation, and visualization. The following sub-sections present the results obtained 
from each module of the proposed methodology.

Data preparation
Table 1 gives the undertaken query types in the study along with their corresponding count and percentage in the 
preprocessed dataset. The preprocessed dataset comprises the query call logs related to wheat cultivation during 

S.No. Query Type Count Percentage Lambda Mean Std. Dev.

1. Weather 6,73,399 29.54% −0.21 −20.30 9.92

2. Plant Protection 3,12,363 13.7% −0.01 −7.61 1.56

3. Varieties 1,68,515 7.39% −0.26 −26.78 10.76

4. Fertilizer Use
and Availability 1,56,565 6.87% −0.11 −12.89 2.83

5. Weed Management 1,44,645 6.34% −0.25 −25.26 8.33

6. Nutrient Management 1,29,279 5.67% −0.41 −90.64 50.46

7. Cultural Practices 72,554 3.18% −0.24 −30.26 10.69

8. Government Schemes 48,013 2.11% −0.73 −1451.85 1235.16

9. Seeds 47,534 2.09% −0.47 −168.99 95.62

10. Water Management 40,337 1.77% −0.47 −192.71 95.94

11. Field Preparation 38,198 1.68% −0.53 −275.84 188.33

12. Bio-Pesticides
and Bio-Fertilizers 26,349 1.16% −1.01 −36375.40 32979.99

13. Market Information 21,722 0.95% −0.78 −3051.20 2255.15

14. Sowing Time
and Weather 19,091 0.84% −1.02 −34262.97 30776.20

Total 18,98,564 83.28%

Table 1.  Number and percentage of query calls in the dataset corresponding to each topic along with the 
lambda values, mean and standard deviation of the distribution obtained after the Box-Cox transformation.
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the specified timeframe. The most frequent query type in the dataset is “Weather” with a count of 6,73,399, 
which accounts for 29.54% of the total dataset. This query type corresponds to the “weather”-related questions 
asked by the Indian farmers to the KCC helpline. The second most frequent query type is “Plant Protection” with 
a count of 3,12,363, accounting for 13.70% of the dataset. Moreover, the least frequent query type considered 
in the study is “Sowing Time and Weather” with a count of 19,091, which accounts for only 0.84% of the total 
dataset.

Overall, the analyzed dataset contained information from 18,98,564 queries, which is 83.28% of the complete 
KCC dataset (total of 22,79,709 call-log records). Here, the discarded call logs belong to either an unknown 
query type, or the count is too low (<0.5%) to extract any insights from them. Besides, the top five query types 
are “Weather,"“Plant Protection,"“Varieties,"“Fertilizer Use and Availability,"and “Weed Management,"which 
together accounted for more than 60% of the total queries. To understand the wheat yield distribution across 
India, the district-wise yield (log-scaled) was plotted on the country’s physical map (Fig.  2 (a)). The figure 
revealed that the highest wheat yield is concentrated in the Indo-Gangetic region, while the yield is lower in the 
regions that are farther away from central India.

To further investigate the patterns between wheat yield and the types of questions asked by farmers, the 
geo-coordinates of district-wise “weather"and “plant protection"-related queries were plotted (in log scale, Fig. 2 

Fig. 2.  District-wise (a) Wheat yield, (b) Wheather-related number of query calls/ha, and (c) Plant protection-
related number of query calls/ha (variables in log scale). The figure was created using Python 3.10 with the 
matplotlib (v3.8.0) and geopandas (v0.14.1) libraries.
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(b), (c)). The plots revealed an interesting trend, i.e., it seems that the areas with higher wheat yield had more 
“weather"and “plant protection"queries per hectare of cultivated land. The final dataset obtained after merging 
the two datasets (KCC and wheat yield) consisted of 4,465 rows (≈450 districts × 10 seasons).

The variable-wise distribution plots (Fig. 3) show the spread of the “weather"and “plant protection"variables’ 
data points in the dataset. From the plots, it is observed that most of the raw data points for both variables are 
concentrated within the range of 0.0 and 0.1. This suggests that the original data may have been skewed towards 
lower values. To address this, the Box-Cox transformation was applied to each variable separately. After applying 
the transformation, the distribution of the data changed, and the scale of the data points increased, i.e., the 
range of the dataset expanded. Table 1 contains the lambda values corresponding to each transformed variable 
along with their mean and standard deviation values. Moreover, the before-and-after distribution plots for each 
variable are given in the supplementary sheet, Figs. 1,2,3,4,5.

DL-based modeling
In the presented study, six DL-based models (MLP, RNN, LSTM, GRU, CNN, and Transformer) were trained and 
tested on the dataset to predict wheat yield based on input variables. Each developed model is designed to take 
14 values (number of query calls per hectare, corresponding to each considered topic, Box-Cox transformed) 
and estimate wheat yield (scaled from 0.0 to 1.0). The architectural details (including the number of layers, type 
of layers, number of nodes, and other relevant information) of the DL-based models developed in the study are 
given in the supplementary sheet (Section 1).

Figure 4 shows the actual and their corresponding predicted yield values obtained from the best four models 
(1-D CNN, RNN, Transformers, and GRU) on the sample of unseen/testing dataset. From the figure, it is 
observed that the trained models are able to capture the variation in the data points, as the predicted values 
closely follow the actual values. This indicates that the DL-based models have learned the underlying patterns in 
the data and are able to make accurate predictions for wheat yield based on the given input features.

In this study, the R2 values of the trained models were also computed (on the testing dataset) to evaluate 
their performance in predicting wheat yield (Fig. 5). The highest R2 value was achieved by the 1-D CNN-based 
model, with a value of 0.615, followed by the RNN-based model with a value of 0.602. The Transformer-based 

Fig. 3.  (a) Raw data distribution of the weather-related calls variable, (b) Box-Cox transformed data 
distribution of the weather-related calls variable, (c) Raw data distribution of the Plant protection-related calls 
variable, and (d) Box-Cox transformed data distribution of the Plant protection-related calls variable.
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model had a value of 0.556, while the GRU and LSTM-based models had lower values of 0.496 and 0.367, 
respectively. The MLP model had the lowest R2 value of 0.265.

These results suggest that the 1-D CNN and RNN-based models are better suited for predicting wheat yield 
than the other models. The higher R2 values for these models indicate that they are able to capture more of 
the variation in the dataset and provide more accurate predictions. However, it is important to note that the 
performance of these models can vary depending on the specific dataset and the HP used in their training.

The acceptability of an R2 value in a research work depends on several factors such as the nature of the data, 
the complexity of the model, and the research question being addressed26. The range of R2 values for models 
predicting crop yield can vary widely depending on factors such as the crop type, the model’s complexity, and 
the quality and quantity of data used to train the model. Generally, an R2 value between 0.5 to 0.9 is considered 
suitable for predictive models in social science and agriculture research26. In the case of our research work on the 
correlation between farmers’ information demand and crop yield in India, an R2 value of 0.6 can be considered 
acceptable due to the nationwide extensive study region, which has a diverse range of geographic and climatic 
conditions affecting crop yield. Moreover, the relationship between farmers’ information demand and crop yield 
is influenced by several complex factors, including weather conditions, soil quality, availability of resources, and 
access to technology. Therefore, a 0.6 R2 value indicates a moderately strong relationship between the variables 
and can provide valuable insights for policymakers and stakeholders in the agriculture sector. However, it 
is important to note that R2 should not be used as the sole metric for evaluating model performance. Other 
metrics, such as RMSE and MAE, should also be considered to provide a more comprehensive assessment of the 
model’s performance.

Figure 6 presents a comparative analysis of the models based on their RMSE and MAE values obtained 
through 5-fold cross-validation on the dataset. Among the models, the 1-D CNN model achieved the best 
performance with the lowest RMSE value of 0.759 t/ha, indicating the highest accuracy in wheat yield prediction. 
It is closely followed by the RNN model, which recorded an RMSE of 0.788 t/ha. The Transformer-based model 
also demonstrated competitive performance with an RMSE of 0.815 t/ha. On the other hand, the LSTM and 
GRU models exhibited moderately higher RMSE values of 0.876 t/ha and 0.905 t/ha, respectively, reflecting 

Fig. 4.  Actual and Predicted sample data points from the (a) CNN-based model, (b) RNN-based model, (c) 
transformer-based model, and (d) GRU-based model.
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relatively lower predictive accuracy. The MLP-based model showed the poorest performance with the highest 
RMSE of 1.025 t/ha.

In terms of MAE, the CNN-based model again outperformed others with the lowest MAE of 0.585 t/ha, 
followed by the RNN model with 0.607 t/ha. The Transformer-based model recorded a MAE of 0.636 t/ha, 
whereas the LSTM and GRU models had MAE values of 0.681 t/ha and 0.711 t/ha, respectively. The MLP-based 
model showed the highest MAE of 0.829 t/ha, indicating the least reliable predictions. Overall, Fig. 6 clearly 
suggests that the 1-D CNN and RNN-based models provide superior performance in predicting wheat yield 
compared to the other deep learning models evaluated.

Variables’ importance analysis
To assess the contribution of various input features towards wheat yield prediction, a feature importance analysis 
was conducted using a Random Forest Regressor model. The model was trained on the complete dataset, and 
permutation importance was applied to evaluate the impact of each feature on prediction accuracy. The analysis 
revealed that Nutrient Management had the highest importance score (0.3285), making it the most influential 

Fig. 5.  Actual and Predicted trendline comparison for (a) CNN-based model, (b) RNN-based model, (c) 
transformer-based model, (d) GRU-based model, (e) LSTM-based model, and (f) MLP-based model.
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factor (Fig. 7). It was followed by Water Management (0.2768) and Fertilizer Use and Availability (0.2604), 
highlighting the critical role of resource management in crop yield. Other significant contributors included 
Weather, Plant Protection, and Cultural Practices. Features like Seeds, Varieties, and Government Schemes 
showed lower importance scores, indicating a comparatively lesser direct impact on yield in the current dataset.

Variables’ relationship analysis
Figure 8 illustrates the fitted polynomial equations on the output of the CP analysis. The first-order equation 
corresponding to the “weather"variable suggests that the linear relationship between weather and wheat yield 
is positive (Fig. 8 (a)). It implies that with an increase in the weather variable by 1 unit (Box-Cox transformed), 
the wheat yield increases by 0.0152 units (scaled in range 0.0 to 1.0), keeping all other variables constant. The 
coefficients of the equation indicate that the cubic term has the highest impact on the wheat yield, followed by the 
quadratic term and the linear term. The fifth-order polynomial equation suggests a more complex relationship 
between weather and wheat yield than the previous equations. The coefficients of the equation show that the 
quintic term has the highest impact on the wheat yield, followed by the quartic term. In addition to this analysis, 
we transformed the variable’s values back to their original scale using the inverse Box-Cox transformation with 
the corresponding lambda value27. This allowed us to determine that the highest crop yield is observed when the 
farmers make 0.40 calls related to weather-topic per hectare (per season) of wheat-cultivated land.

From the first-order polynomial equation corresponding to the “plant protection"variable, it is noted that 
the coefficient of the variable is 0.0675, which indicates that a unit increase in the “plant protection"-related 
queries corresponds to an increase in yield by 0.0675 units (Fig. 8 (b)). The third and fifth-order polynomial 

Fig. 7.  Variables’ Importance Graph.

 

Fig. 6.  Models’ comparison based on RMSE and MAE values.
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equations indicate that the relationship between “plant protection"-related queries and yield is complex and 
can be modeled as a higher degree polynomial function with a coefficient of 0.195 and 0.1147, respectively. The 
negative coefficients of the higher-order terms indicate that the effect of plant protection on yield diminishes as 
the level of “plant protection"-related queries increases beyond a certain threshold. The inversely transformed 
values of the variable indicate that the best yield value for crop production was observed at a rate of 0.37 calls per 
hectare (per season) related to the “plant protection"topic.

Similarly, Fig. 8 (c) and (d) illustrates the fitted polynomial equations corresponding to the “varieties"and 
“fertilizer use"related variables, respectively. Overall, the relationship between the “varieties"variable and wheat 
yield seems to be non-linear, with the variable having a positive impact until the peak is achieved, after which it 
seems to negatively correlate with the wheat yield. Based on the further analysis, the optimal amount of farmers’ 
query calls related to “varieties"topic seems to be 0.00023 calls per hectare. Additionally, if the number of calls 
made by farmers exceeds this threshold, it is anticipated that the wheat yield would decline.

The first-order polynomial representing the “fertilizer use"variable shows a linear equation with a positive 
slope. This means that as the query calls related to “fertilizer use"increase, so does the yield. However, 
the relationship is relatively weak with a low coefficient value of 0.0006. Whereas, the third and fifth-order 
polynomial indicates that the relationship between “fertilizer use"and yield is non-linear, with a decreasing 
trend as the level of “fertilizer use"increases beyond a certain point. The optimal number of calls farmers made 
regarding “fertilizer use"was calculated to be 0.026 calls per hectare, corresponding to the highest yield value.

The fitted equations (Figures and tables) depicting the relationship between all other considered variables 
and wheat yield are given in the supplementary material (Tables 1,2, Figs. 6,7,8,9,10,11). These plots can offer 
a more detailed understanding of the relationships between the variables and their impact on crop yield. The 
supplementary sheet can serve as a valuable resource for further analysis and aid in replicating this study.

Fig. 8.  Effect on Wheat yield of the (a) weather-related queries variable, (b) Plant protection-related queries 
variable, (c) Fertilizer usage-related queries variable, and (d) Weed management-related queries variable.
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Partial derivative analysis
PDs are used to analyse how the change in the target variable affects the rate of change in response variable when 
all the other variables are held constant. Observing the coefficients of the “weather"variable, we noted that as 
the order of polynomials increases, the effect of weather on the response variable becomes more pronounced 
(Fig. 9). In the case of a first-order polynomial equation, the coefficient of the linear term is negative but small 
(−0.0077), indicating that although the direct relationship between the two variables is positive (PD > 0) the 
rate of change in yield decreases as we move to a higher range of the variable. On the other hand, the fifth-order 
term’s coefficient is substantially negative (−0.1059), which implies a much more pronounced negative PD of the 
“weather"variable concerning the response variable when it is in the upper range.

The PD equations representing the relationship between “Plant Protection"variable and the crop yield shows 
a negative non-linear relationship that varies across the different polynomial orders (Fig. 9 (b)). However, in the 
range that we have considered, the relationship between the PD seems to be positive with all three equations.

Figure 9 (c) and (d) plots the fitted polynomial equations on the PDs corresponding to the “varieties"and 
“fertilizer use"related variables, respectively. The first-order polynomial shows that PDs, if expressed in a linear 
equation, follow a negative trend for both variables. The higher-order equations show that the PDs are non-
linear and show positive and negative trends depending on the variables’ values.

Second-order Interaction effect visualisation
To gain further insights, we conducted an analysis that involved varying two variables simultaneously to observe 
the impact of their interaction on wheat yield. This approach allowed us to capture the second-order interaction 
effect of the variables on the response variable. However, to ensure a fair comparison, we kept all other variables 
constant at their average values, which provided us with a baseline or “normal"situation. The presented research 
focuses on the interplay between “weather"-related query calls and four other frequently asked topics, i.e., 

Fig. 9.  Partial derivatives plots of the (a) weather-related queries variable, (b) Plant protection-related queries 
variable, (c) Fertilizer usage-related queries variable, and (d) Weed management-related queries variable.
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“plant protection", “varieties", “fertilizer usage", and “weed management"(Fig. 10). The analysis revealed that the 
interaction between “weather"and “plant protection"-related variables positively affect crop yield. This indicates 
that the cases when farmers ask more questions on both topics seem to achieve the highest yield.

The heatmap from Fig.  10 (b) illustrates the interaction effect between “weather"-related query calls and 
“varieties". The findings suggest that the relationship between these two variables is not linear, and the highest 
yield is achieved only at certain levels of “varieties"-variable in combination with the “weather"variable. The 
yellow region in the heatmap represents the optimal combination of these variables to achieve the highest yield. 
Interestingly, it was observed that the yield tends to be low when farmers ask no questions regarding varieties, 
even if they ask a high number of questions about “weather". This indicates the importance of considering 
multiple factors in agricultural decision-making rather than focusing on a single variable.

Figure 10 (c) shows that the interaction of “weather"-related queries are positive when observed with the 
“fertilizer use"variable. In other words, the wheat yield is observed to be at the peak in cases when “fertilizer 
use"and “weather"-related queries are both low or high. Conversely, the yield decreases when the value 
corresponding to one variable is high, and the other is low.

The heatmap from Fig. 9 (d) shows the interaction effect between “weather"and “weed management"-related 
queries. Interestingly, the figure indicates that there is no significant interaction between the two variables. It is 
observed that variations in the wheat yield are only due to the changes in the “weed management"-related queries, 
which seems to have a negative impact on the yield. This suggests that, unlike other variables, “weather"-related 
queries do not play a significant role in determining wheat yield in conjunction with “weed management"-

Fig. 10.  Interaction effect of Weather-related query calls variable with (a) plant protection-related queries 
variable, (b) Varieties protection-related queries variable, (c) Fertilizer usage-related queries variable, and (d) 
Weed management-related queries variable.
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related queries. Moreover, the Box-Cox inverse transformation method can be used to determine the values of 
the two variables corresponding to the highest possible yield.

Discussion
The analysis reveals a positive correlation between “weather”-related queries and wheat yield, suggesting that 
increased demand for weather information is associated with higher productivity. This finding is consistent 
with previous studies; for instance28, reported that weather forecast information improved wheat yield in China, 
while29 found that access to timely weather updates enhanced maize yield in India.

Similarly, the positive association between “plant protection”-related information demand and wheat yield 
implies that farmers who actively seek guidance on crop protection are better equipped to manage pests and 
diseases, leading to higher yields. However, the polynomial model indicates diminishing returns beyond an 
optimal level of information usage. Supporting this30, highlighted that plant protection is especially effective 
under high pest pressure, though excessive measures offer limited additional benefits. Likewise31, showed that 
integrated pest management significantly boosts yield but also exhibits an optimal threshold for maximum 
effectiveness.

Similar trends are observed for “varieties”-related information, where a negative relationship between its 
partial dependence (PD) and yield suggests diminishing yield returns as the dissemination of varietal information 
increases. A direct relationship is also noted between “fertilizer use”-related queries and wheat yield, indicating 
that farmers seeking fertilizer information tend to achieve higher productivity. However, the polynomial model 
shows diminishing returns, and excessive fertilizer information or use may negatively impact soil health, as 
overuse can lead to chemical buildup and reduced fertility32.

Prior research supports these findings33. demonstrated that balanced fertilization significantly boosts wheat 
yield, while34 also confirmed the positive effect of fertilizer application on crop yield. Moreover, the negative 
effects of excessive fertilizer use are well documented in literature35–37.

The experimental results of the presented study indicate that the 1-D CNN model achieved the highest 
predictive accuracy, recording the lowest RMSE of 0.759 t/ha and MAE of 0.585 t/ha among all the models 
evaluated. Moreover, from the existing studies, it is noted that the yield prediction models with RMSE under 1 
t/ha–especially those achieving around 0.6–0.7 t/ha–are generally regarded as acceptable and reliable in wheat 
yield forecasting contexts38–41.

Therefore, the insights presented in this study have practical implications. The positive link between 
“weather”-related queries and yield emphasizes the role of agricultural extension services in providing timely 
weather information via mobile platforms. Similarly, encouraging farmers to adopt integrated pest management 
(IPM) practices, backed by proper training and government incentives, can enhance yield through effective crop 
protection. Furthermore, promoting optimal fertilizer use can maximize crop growth, while caution is needed 
regarding the overuse of crop variety information, as excess may not lead to proportional yield benefits.

The analysis of interaction effects highlights an upward trend between weather"-related queries and plant 
protection"in achieving optimal wheat yield. This may be attributed to the interdependence between weather 
patterns and pest dynamics, where weather awareness enables farmers to anticipate and manage pest outbreaks 
more effectively. Farmers who seek information on both aspects are also likely to adopt integrated and sustainable 
farming practices, contributing to improved yields.

A non-linear interaction is observed between weather"-related and varieties"-related queries. Farmers 
seeking variety-related information might be better informed about crop selection and management practices, 
enhancing yield. Conversely, those lacking such information may not employ optimal techniques. Additionally, 
certain varieties may respond differently to specific weather conditions, and informed farmers can better tailor 
their practices accordingly.

Furthermore, the interaction between weather"-related queries and fertilizer use"shows a positive yield 
correlation. This suggests that knowledge of weather conditions supports more effective nutrient management, 
improving plant resilience to stress. Low engagement in both factors typically leads to reduced yield, while a 
balanced, high-level engagement in both indicates a more holistic and productive approach to crop management. 
These findings underscore the importance of integrating multiple sources of agricultural information to optimize 
wheat yield.

The absence of a significant interaction between weather"- and weed management"-related queries suggests 
that weather information alone may not substantially influence yield outcomes when farmers focus on weed 
management. Additionally, the negative association of weed management queries with yield could stem from 
the intensive labor and resource demands required for effective weed control. Improper or excessive use of 
herbicides may further reduce yield, as supported by42.

The supplementary materials accompanying this study offer detailed insights into the relationship between 
all considered variables and wheat yield. The fitted response curves provide a visual and analytical resource 
for future research replication and agricultural policy design. Future research directions include evaluating the 
influence of additional variables such as credit access, irrigation infrastructure, and the adoption of modern 
agricultural technologies. Potential confounding variables such as farmers’ educational background, and regional 
agro-climatic differences may also influence both information demand and crop yield, potentially biasing model 
interpretations. These factors were not explicitly accounted for in the current analysis and should be integrated 
into future research to enhance the robustness and generalizability of findings. Moreover, expanding the analysis 
to other regions could also enhance the robustness and generalizability of the model. Moreover, these findings 
lay the groundwork for developing a decision support system to guide farmers using personalized data on 
weather, fertilizer, and crop protection.

However, the study has certain limitations. It focuses on a specific crop and geographic area (India), which 
may restrict broader applicability. The reliance on self-reported farmer data introduces potential biases such 
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as recall errors. Additionally, the static nature of the analysis does not fully capture the evolving dynamics of 
farming practices in response to environmental changes.

Conclusion
In conclusion, the AgriFact framework effectively analyzed the link between farmers’ information demand and 
wheat yield using deep learning models. Among six DL models, the 1-D CNN achieved the highest prediction 
accuracy (RMSE 0.76 t/ha, MAE 0.56 t/ha). The CP analysis further revealed topic-wise insights into how 
query variations relate to yield outcomes. The study used the symmetric difference quotient to analyze how 
each variable influences wheat yield, offering detailed insights into their impact. Second-order interactions were 
examined by jointly varying two variables, and polynomial models were fitted using the least squares method. 
Results highlight that weather, plant protection, and fertilizer-related information positively affect wheat yield. 
The study reveals that beyond a certain point, more information does not lead to significant yield improvements. 
This emphasizes the importance of targeted, efficient agricultural information dissemination. Besides, 
integrating the proposed system with existing agricultural extension platforms and mobile apps to enable real-
time, personalized advisory services for farmers is also recommended. In this direction, future research could 
examine how access to technology and financial resources further influence yield outcomes.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available but are available from 
the corresponding author on reasonable request.
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