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Atrial fibrillation (AF), the most prevalent critical care arrhythmia, demonstrates substantial mortality 
associations where renal dysfunction management plays a pivotal therapeutic role. We examined 
the prognostic capacity of admission blood urea nitrogen-to-creatinine ratio (BUN/Cr) - a low-cost 
renal biomarker - for 28-/365-day mortality prediction in AF through multidimensional survival 
analyses leveraging the MIMIC-IV 3.1 database. Data relevant to AF patients were extracted from the 
publicly available MIMIC-IV 3.1 database based on predefined inclusion and exclusion criteria. Cox 
proportional hazards regression, Kaplan-Meier survival analysis, and Restricted Cubic Spline (RCS) 
models were used to assess the association between the BUN/Cr and the risk of 28-day and 365-day 
mortality. Subsequently, a short-term and long-term mortality risk prediction model for AF patients 
was developed using interpretable machine learning algorithms, incorporating the BUN/Cr and other 
clinical features. The MIMIC-IV analysis included 14,725 AF patients (72.9 ± 11.7 years, 60.3% male). 
Cox regression identified BUN/Cr as an independent predictor of 28-day and 365-day mortality, with 
risk quintiles showing a non-linear pattern: Q5 (> 27.8), Q4 (22.0–27.8), Q1 (≤ 15.0), Q3 (18.5–22.0), and 
Q2 (15.0–18.5). Kaplan-Meier curves confirmed decreasing survival with elevated BUN/Cr. Restricted 
cubic splines revealed U-shaped mortality relationships (P < 0.001), with inflection points at BUN/
Cr = 16.49 (28-day) and 16.67 (365-day). Among machine learning models, XGBoost outperformed 
others in predicting mortality (28-day: AUC = 0.793 [0.776–0.810], Accuracy = 73.1%; 365-day: 
AUC = 0.778 [0.764–0.793], Accuracy = 69.8%). SHAP analysis ranked BUN/Cr fourth among predictors 
for both endpoints. The BUN/Cr emerged as a robust independent predictor of short- and long-term 
mortality in AF. The interpretable XGBoost model, integrating BUN/Cr with clinical variables, achieved 
superior predictive accuracy for 28-/365-day outcomes while maintaining generalizability. BUN/Cr 
constituted a fourth-ranked feature across mortality timelines. These findings underscore its clinical 
utility for AF risk stratification and treatment optimization, supporting biomarker-guided therapeutic 
interventions.
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The occurrence and frequency of atrial fibrillation (AF), a widespread arrhythmia in clinical practice, have been 
on the rise globally, posing a substantial public health concern1,2. Projections indicate that by 2050, the number 
of AF patients in the United States could reach between 6 and 12 million, while in Europe, it may climb to 
approximately 17.9 million1,3. In China, epidemiological studies have also shown a comparable trend, with the 
prevalence of AF steadily increasing and the patient population approaching 20 million, which is likely attributable 
to the accelerated aging of the population in recent years4,5. AF diminishes the quality of life for patients and 
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substantially raises the risk of stroke, serving as a primary cause of ischemic stroke6,7. Additionally, AF is linked 
to high rates of heart failure (HF) incidence and mortality, significantly impacting patient prognosis8. Blood 
urea nitrogen (BUN) and creatinine (Cr) are commonly used indicators for evaluating renal function, with their 
ratio reflecting kidney filtration and excretion efficiency. Research has demonstrated that the BUN/Cr is closely 
associated with adverse outcomes in heart failure patients. Both acute heart failure (AHF) and chronic heart 
failure (CHF) patients with a higher BUN/Cr face an increased risk of all-cause mortality and readmission9,10. 
For instance, the Matsue study found that in AHF patients, a higher BUN/Cr ratio was significantly linked 
to increased mortality and readmission rates during hospitalization11. Similar findings suggest that in CHF 
patients, an elevated BUN/Cr serves as a crucial biomarker for predicting long-term prognosis12. However, the 
role of BUN/Cr in predicting the prognosis of AF patients is largely unexplored. Considering the significant link 
between AF and heart failure, along with the impact of the BUN/Cr ratio on heart failure outcomes, examining 
its effect on AF patients is crucial. Studies conducted recently have pointed out that compromised renal function 
might significantly contribute to the emergence and progression of atrial fibrillation13–15. Thus, the BUN/Cr 
ratio serves as an affordable and straightforward biomarker, offering fresh perspectives on risk evaluation and 
prognosis forecasting for AF patients in clinical environments. Examining Studying how the BUN/Cr affects AF 
prognosis can give important guidance for treating and managing patients with AF. The main goal of this study 
is to evaluate the link between the blood urea nitrogen to serum creatinine ratio in AF patients and the mortality 
rate of ICU inpatients. Simultaneously, a machine learning model was created to predict mortality risk in atrial 
fibrillation patients, utilizing BUN/Cr along with additional clinical indicators.

Materials and methods
Data source
This retrospective cohort study utilized version 3.1 of the MIMIC-IV database. Dr. Yang Shu (Credential 
ID:62274870) curated AF patient data through privileged access. The investigation strictly complied with 
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines, maintaining 
methodological rigor and transparency throughout all analytical processes.

Participants
AF patients were identified using ICD-9 (42731) and ICD-10 (I48) codes. Inclusion criteria included: (i) initial 
ICU admission, (ii) age ≥ 18 years, and (iii) ICU stay ≥ 24 h. Patients with missing BUN/Cr data were excluded. 
From 14,725 eligible AF cases meeting these criteria, all clinical parameters were systematically extracted for 
analysis.

Data extraction
Clinical data extraction employed Navicat Premium with SQL-structured querying, systematically retrieving 
demographic profiles, vital parameters, laboratory markers, comorbidity burdens, and therapeutic regimens. 
Primary outcome measures focused on 28-day/365-day mortality post-ICU admission, capturing post-
admission survivorship trajectories.

Statistical analysis
Patient groups: AF patients were stratified by BUN/Cr quintiles: Q1 (≤ 15.0), Q2 (15.1–18.5), Q3 (18.6–22.0), Q4 
(22.1–27.8), and Q5 (> 27.8). This quintile-based categorization facilitated granular renal functional analysis: Q1 
(very low), Q2 (low), Q3 (moderate), Q4 (high), Q5 (very high).

Baseline data analysis: Baseline characteristics of AF patients across BUN/Cr quintiles were analyzed. 
Demographic data, vital signs, laboratory parameters, comorbidities, severity scores and treatment modalities 
were stratified by group. Categorical variables were expressed as frequencies (percentages) with Chi-square/
Fisher’s exact tests for intergroup comparisons. Continuous variables followed normal distributions (mean ± SD, 
independent t-test) or non-normal distributions [median (IQR), Mann-Whitney U test]. All statistical 
assessments maintained a two-tailed α = 0.05 significance threshold.

Association analysis between BUN/Cr and prognosis: (i) Cox multivariate regression analysis was conducted 
to explore the relationship between different BUN/Cr levels (Q1 ~ Q5) and mortality risks. (ii) Kaplan-Meier 
survival curves were used to visualize the survival outcomes of patients with different BUN/Cr levels during 
the 28-day and 365-day periods after ICU admission. (iii) RCS analysis were employed to visualize potential 
nonlinear relationships between BUN/Cr and 28-day and 365-day mortality rates. Following the identification 
of a nonlinear relationship, two-segment Cox regression models were used to assess the threshold effects of 
BUN/Cr on short-term and long-term patient prognosis.

Interpretability of clinical prediction model analysis: Clinical prediction models are employed to predict both 
short-term and long-term mortality risks in AF patients. (i) Feature Selection: Initially, the LASSO regression 
algorithm is utilized to select key predictive features. Redundant features are subsequently removed through 
multicollinearity analysis. (ii) Model Construction and Evaluation: The models are built using five algorithms 
(XGBoost, Logistic Regression, LightGBM, Random Forest, and AdaBoost). The models are evaluated via a 
five-fold, five-times cross-validation approach, with performance assessed using metrics such as ROCAUC, 
Accuracy, and F1 score to select the optimal algorithm. The dataset is split into a 7:3 ratio for the training and 
testing sets. Within the training set, model performance is optimized via “five-fold cross-validation combined 
with hyperparameter grid search.” Finally, the best-performing model is evaluated on the test set to assess its 
predictive performance and generalizability in predicting mortality risks. (iii) SHAP Interpretability Analysis: 
Feature importance and summary plots are generated to illustrate the impact of key features on adverse outcomes. 
Scatter plots are utilized to explore and confirm the non-linear relationship between the key feature BUN/Cr 
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and the outcome variable. Additionally, SHAP force plots are used to visually demonstrate the contribution of 
features in predicting mortality risks, offering an intuitive understanding of individualized predictions.

This study used a two-tailed test, with P < 0.05 considered statistically significant. All analyses were conducted 
using R 4.1.2 and Free Statistics software version 1.5.

Results
Population
The MIMIC-IV analysis initially identified 83,468 AF patients. After excluding 65,809 non-ICU admissions, 
17,659 first-time ICU admissions were retained. Subsequent exclusions applied: age < 18 (n = 0), ICU stays < 24 h 
(n = 2528) and those whose time of death was recorded before the time of admission (the survival time was 
negative, n = 1). Missing variables were addressed via median imputation. These criteria yielded a final cohort of 
14,725 AF patients (Fig. 1).

Baseline characteristics
The study cohort included 14,725 atrial fibrillation (AF) patients with a median age of 74.0 years (IQR: 65.0–82.0; 
60.3% male). A dose-response relationship was observed across increasing BUN/Cr quintiles, with progressively 
higher heart rates (P < 0.001), elevated blood glucose levels (P < 0.001), and increased severity scores (APS III, 
SAPS II, OASIS; all P < 0.001). Mortality analysis revealed a significant U-shaped association: the Q2 group 
demonstrated the most favorable outcomes, with the lowest 28-day mortality (11.4% vs. Q1:15.0%, Q3:14.5%, 
Q4:18.3%, Q5:27.3%; P < 0.001) and 365-day mortality rates (23.4% vs. Q1:28.8%, Q3:27.1%, Q4:34.9%, 
Q5:47.9%; P < 0.001), highlighting the non-linear mortality risk associated with BUN/Cr ratios (Table 1).

Cox multivariate regression analysis
For 28-day mortality, unadjusted analysis (Model 1) revealed elevated risks in Q1 (≤ 15.0, P < 0.001), Q3 
(HR = 1.28, P = 0.001), Q4 (HR = 1.66, P < 0.001), and Q5 (HR = 2.60, P < 0.001) versus Q2. Similarly, 365-day 
mortality analyses showed increased risks for Q1 (P < 0.001), Q3 (HR = 1.19, P = 0.001), Q4 (HR = 1.61, P < 0.001), 
and Q5 (HR = 2.46, P < 0.001). Consistent trends persisted in adjusted models: Model 2 (sex, SpO2, WBC, 
glucose, potassium) and Model 3 (Model 2 + statins + hyperlipidemia) yielded concordant results (Table 2.).

BUN/Cr ratios demonstrated graded associations with mortality, showing: Short-term risk hierarchy: 
Q5 > Q4 > Q1 > Q3 > Q2; (ii) Long-term pattern: Identical to short-term stratification.

K-M survival curve analysis
Kaplan-Meier curves assessed associations between BUN/Cr quintiles and 28-day/365-day mortality in AF 
patients, using ICU survival duration as the timeline (Fig. 2). The results indicated that, on day 28 after ICU 
admission, the mortality risk for AF patients ranged from highest to lowest as follows: high BUN/Cr levels 
(Q5, BUN/Cr > 27.8), relatively high BUN/Cr levels (Q4, 22.0 < BUN/Cr ≤ 27.8), low BUN/Cr levels (Q1, 
BUN/Cr ≤ 15.0), moderate BUN/Cr levels (Q3, 18.5 < BUN/Cr ≤ 22.0), and relatively low BUN/Cr levels (Q2, 
15.0 < BUN/Cr ≤ 18.5).

Similarly, on day 365 after ICU admission, the mortality risk for AF patients was ranked from highest to 
lowest as: high BUN/Cr levels (Q5, BUN/Cr > 27.8), relatively high BUN/Cr levels (Q4, 22.0 < BUN/Cr ≤ 27.8), 

Fig. 1.  Participant screening process of the atrial fibrillation cohort study.
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Total Q1 Q2 Q3 Q4 Q5

P-value(n = 14727)

<15.0 15.0-18.5 18.5-22.0 22.0-27.8 >27.8

(n = 2821) (n = 3058) (n = 2877) (n = 3001) (n = 2970)

Demographic

Age (year) 74.0 (65.0, 82.0) 69.0 (60.0, 77.0) 72.0 (64.0, 80.0) 74.0 (66.0, 82.0) 76.0 (68.0, 84.0) 78.0 (69.0, 85.0) < 0.001

Gender (n,%) < 0.001

Female 5842 (39.7) 896 (31.8) 1017 (33.3) 1027 (35.7) 1378 (45.9) 1524 (51.3)

Male 8885 (60.3) 1925 (68.2) 2041 (66.7) 1850 (64.3) 1623 (54.1) 1446 (48.7)

Vital signs

Heart rate (beats/minute) 101.0 (88.0, 120.0) 102.0 (89.0, 121.0) 98.0 (88.0, 116.0) 98.0 (87.0, 117.0) 100.0 (88.0, 119.0) 107.0 (91.0, 127.0) < 0.001

Systolic blood pressure (mmHg) 144.0 (131.0, 159.0) 144.0 (131.0, 160.0) 144.0 (132.0, 159.0) 144.0 (132.0, 160.0) 144.0 (131.0, 159.0) 143.0 (129.0, 157.0) < 0.001

Diastolic blood pressure (mmHg) 84.0 (72.5, 98.0) 85.0 (73.0, 99.0) 82.0 (72.0, 97.0) 83.0 (72.0, 98.0) 85.0 (73.0, 99.0) 85.7 (74.0, 99.0) < 0.001

Average blood pressure (mmHg) 100.0 (90.0, 114.0) 101.0 (91.0, 115.0) 100.0 (91.0, 114.0) 101.0 (91.0, 114.0) 100.0 (90.0, 114.0) 100.0 (90.0, 113.0) 0.017

Respiratory rate (breath/minute) 27.0 (24.0, 32.0) 27.0 (24.0, 31.5) 27.0 (24.0, 31.0) 27.0 (24.0, 31.0) 27.0 (24.0, 31.0) 28.0 (25.0, 33.0) < 0.001

Temperature (℃) 37.2 (36.9, 37.6) 37.3 (36.9, 37.7) 37.2 (36.9, 37.6) 37.2 (36.9, 37.6) 37.2 (36.9, 37.6) 37.1 (36.9, 37.5) < 0.001

SpO2 (%) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (99.0, 100.0) 100.0 (99.0, 100.0) < 0.001

Laboratory parameters

Hematocrit (%) 29.7 (25.4, 34.7) 29.9 (25.4, 34.6) 29.9 (25.8, 35.0) 30.0 (25.7, 35.0) 29.8 (25.5, 34.5) 29.0 (24.5, 34.2) < 0.001

Hemoglobin (g/dL) 9.8 (8.3, 11.4) 9.9 (8.3, 11.4) 9.9 (8.5, 11.6) 10.0 (8.5, 11.5) 9.8 (8.3, 11.4) 9.4 (8.0, 11.1) < 0.001

Platelet (109/L) 158.0 (115.0, 216.0) 155.0 (112.0, 213.0) 154.0 (114.0, 205.0) 155.0 (115.0, 209.0) 161.0 (116.0, 220.0) 170.0 (120.0, 237.0) < 0.001

WBC (109/L) 13.2 (9.6, 17.8) 13.4 (9.5, 18.2) 13.5 (9.9, 18.1) 13.1 (9.6, 17.5) 13.0 (9.5, 17.4) 12.8 (9.1, 17.7) < 0.001

Anion gap (mEq/L) 15.0 (13.0, 18.0) 16.0 (13.0, 19.0) 14.0 (12.0, 17.0) 15.0 (12.0, 17.0) 15.0 (13.0, 18.0) 15.0 (13.0, 18.0) < 0.001

Bicarbonate (mEq/L) 24.0 (22.0, 27.0) 24.0 (21.0, 26.0) 24.0 (22.0, 26.0) 24.0 (22.0, 26.0) 24.0 (22.0, 27.0) 25.0 (22.0, 28.0) < 0.001

Calcium (mg/dL) 8.2 (7.8, 8.6) 8.2 (7.7, 8.6) 8.2 (7.9, 8.6) 8.2 (7.9, 8.6) 8.3 (7.9, 8.6) 8.2 (7.8, 8.7) < 0.001

Chloride (mEq/L) 106.0 (102.0, 110.0) 105.0 (101.0, 109.0) 107.0 (103.0, 110.0) 107.0 (103.0, 110.0) 106.0 (102.0, 110.0) 106.0 (101.0, 110.0) < 0.001

Glucose (mg/dL) 140.0 (137.0, 142.0) 139.0 (136.0, 142.0) 139.0 (137.0, 142.0) 140.0 (137.0, 142.0) 140.0 (137.0, 142.0) 140.0 (137.0, 143.0) < 0.001

Sodium (mEq/L) 4.0 (3.6, 4.3) 4.0 (3.6, 4.4) 4.0 (3.6, 4.3) 4.0 (3.7, 4.3) 4.0 (3.6, 4.3) 3.9 (3.6, 4.4) 0.282

Potassium (mEq/L) 1.5 (1.2, 1.8) 1.5 (1.2, 1.8) 1.4 (1.2, 1.7) 1.4 (1.3, 1.8) 1.5 (1.2, 1.8) 1.5 (1.2, 2.0) < 0.001

INR 16.0 (13.8, 19.4) 16.0 (13.7, 19.3) 15.8 (13.7, 18.9) 15.9 (13.8, 19.2) 15.9 (13.8, 19.6) 16.4 (13.7, 21.6) < 0.001

PT (seconds) 46.0 (46.0, 46.0) 46.0 (46.0, 46.0) 46.0 (46.0, 46.0) 46.0 (46.0, 46.0) 46.0 (46.0, 46.0) 46.0 (46.0, 46.0) 0.106

HDL-C (mg/dL) 74.0 (74.0, 74.0) 74.0 (74.0, 74.0) 74.0 (74.0, 74.0) 74.0 (74.0, 74.0) 74.0 (74.0, 74.0) 74.0 (74.0, 74.0) 0.310

LDL-C (mg/dL) 146.0 (146.0, 146.0) 146.0 (146.0, 146.0) 146.0 (146.0, 146.0) 146.0 (146.0, 146.0) 146.0 (146.0, 146.0) 146.0 (146.0, 146.0) 0.518

TC (mg/dL) 96.0 (96.0, 96.0) 96.0 (96.0, 96.0) 96.0 (96.0, 96.0) 96.0 (96.0, 96.0) 96.0 (96.0, 96.0) 96.0 (96.0, 96.0) 0.010

TG (mg/dL) 29.7 (25.4, 34.7) 29.9 (25.4, 34.6) 29.9 (25.8, 35.0) 30.0 (25.7, 35.0) 29.8 (25.5, 34.5) 29.0 (24.5, 34.2) < 0.001

Comorbidities

Hypertension (n,%) 5223 (35.5) 771 (27.3) 1117 (36.5) 1150 (40) 1134 (37.8) 1051 (35.4) < 0.001

Hyperlipidemia (n,%) 5304 (36.0) 922 (32.7) 1126 (36.8) 1184 (41.2) 1104 (36.8) 968 (32.6) < 0.001

Myocardial infarct (n,%) 3379 (22.9) 677 (24) 684 (22.4) 704 (24.5) 691 (23) 623 (21) 0.013

Congestive heart failure (n,%) 6663 (45.2) 1157 (41) 1202 (39.3) 1213 (42.2) 1449 (48.3) 1642 (55.3) < 0.001

Peripheral vascular disease (n,%) 2281 (15.5) 484 (17.2) 490 (16) 451 (15.7) 451 (15) 405 (13.6) 0.005

Dementia (n,%) 745 (5.1) 96 (3.4) 115 (3.8) 137 (4.8) 172 (5.7) 225 (7.6) < 0.001

Cerebrovascular disease (n,%) 2762 (18.8) 559 (19.8) 601 (19.7) 584 (20.3) 543 (18.1) 475 (16) < 0.001

Chronic pulmonary disease (n,%) 4105 (27.9) 696 (24.7) 758 (24.8) 765 (26.6) 891 (29.7) 995 (33.5) < 0.001

Rheumatic disease (n,%) 569 (3.9) 81 (2.9) 126 (4.1) 100 (3.5) 123 (4.1) 139 (4.7) 0.005

Peptic ulcer disease (n,%) 388 (2.6) 60 (2.1) 43 (1.4) 47 (1.6) 69 (2.3) 169 (5.7) < 0.001

Mild liver disease (n,%) 1129 (7.7) 281 (10) 209 (6.8) 194 (6.7) 186 (6.2) 259 (8.7) < 0.001

Diabetes (n,%) 1652 (11.2) 449 (15.9) 286 (9.4) 282 (9.8) 325 (10.8) 310 (10.4) < 0.001

Paraplegia (n,%) 986 (6.7) 188 (6.7) 222 (7.3) 199 (6.9) 198 (6.6) 179 (6) 0.412

Renal disease (n,%) 3978 (27.0) 1047 (37.1) 716 (23.4) 700 (24.3) 767 (25.6) 748 (25.2) < 0.001

Malignant cancer (n,%) 1780 (12.1) 324 (11.5) 307 (10) 296 (10.3) 383 (12.8) 470 (15.8) < 0.001

Severe liver disease (n,%) 394 (2.7) 100 (3.5) 69 (2.3) 56 (1.9) 62 (2.1) 107 (3.6) < 0.001

Metastatic solid tumor (n,%) 734 (5.0) 130 (4.6) 115 (3.8) 112 (3.9) 160 (5.3) 217 (7.3) < 0.001

Severity scores

Charlson comorbidity index 6.0 (5.0, 8.0) 6.0 (5.0, 8.0) 6.0 (4.0, 8.0) 6.0 (5.0, 8.0) 6.0 (5.0, 8.0) 7.0 (5.0, 9.0) < 0.001

APSIII 46.0 (34.0, 64.0) 46.0 (31.0, 67.0) 40.0 (30.0, 58.0) 43.0 (32.0, 59.0) 46.0 (35.0, 62.0) 53.0 (41.0, 71.0) < 0.001

SAPSII 39.0 (32.0, 48.0) 38.0 (31.0, 48.0) 36.0 (30.0, 45.0) 37.0 (31.0, 46.0) 39.0 (32.0, 48.0) 42.0 (36.0, 51.0) < 0.001

OASIS 33.0 (28.0, 40.0) 34.0 (27.0, 40.0) 32.0 (27.0, 39.0) 33.0 (28.0, 39.0) 33.0 (27.0, 40.0) 35.0 (29.0, 42.0) < 0.001

Continued
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low BUN/Cr levels (Q1, BUN/Cr ≤ 15.0), moderate BUN/Cr levels (Q3, 18.5 < BUN/Cr ≤ 22.0), and relatively low 
BUN/Cr levels (Q2, 15.0 < BUN/Cr ≤ 18.5).

The results indicated that both high and low levels of BUN/Cr were associated with increased short- and 
long-term mortality risks in atrial fibrillation patients. The mortality risk was ranked from highest to lowest as 
follows: Q5, Q4, Q1, Q3, and Q2.

Restricted cubic spline analysis
RCS analysis demonstrated a U-shaped association between BUN/Cr and 28-/365-day all-cause mortality in AF 
patients (P < 0.01). Mortality risks initially decreased then increased with rising BUN/Cr levels (Fig. 3).

Segmented Cox regression analysis identified threshold BUN/Cr values at 16.49 (28-day) and 16.67 (365-
day) in AF patients (Table 3). Below these thresholds, each 1 unit BUN/Cr increase corresponded to reduced 

Categories Model 1 Model 2 Model 3

HR(95% CI) P-value HR(95% CI) P-value HR(95% CI) P-value

28-day mortality

BUN/Cr (Quintiles)

Q1 (≤15.0) 1.34 (1.17-1.55) <0.001 1.34 (1.17-1.55) <0.001 1.31 (1.14-1.51) <0.001

Q2 (15.0~18.5) 1 (Reference) 1 (Reference) 1 (Reference)

Q3 (18.5~22.0) 1.28 (1.11-1.48) 0.001 1.28 (1.11-1.48) 0.001 1.3 (1.13-1.5) <0.001

Q4 (22.0~27.8) 1.66 (1.45-1.9) <0.001 1.62 (1.41-1.85) <0.001 1.62 (1.41-1.85) <0.001

Q5 (>27.8) 2.6 (2.29-2.95) <0.001 2.43 (2.15-2.76) <0.001 2.4 (2.12-2.73) <0.001

P for trend <0.001 <0.001 <0.001

365-day mortality

BUN/Cr (Quintiles)

Q1 (≤15.0) 1.28 (1.15-1.41) <0.001 1.28 (1.16-1.41) <0.001 1.25 (1.13-1.38) <0.001

Q2 (15.0~18.5) 1 (Reference) 1 (Reference) 1 (Reference)

Q3 (18.5~22.0) 1.19 (1.08-1.32) 0.001 1.19 (1.08-1.32) 0.001 1.21 (1.1-1.34) <0.001

Q4 (22.0~27.8) 1.61 (1.46-1.77) <0.001 1.57 (1.43-1.73) <0.001 1.57 (1.43-1.73) <0.001

Q5 (>27.8) 2.46 (2.25-2.69) <0.001 2.32 (2.12-2.54) <0.001 2.29 (2.09-2.51) <0.001

P for trend <0.001 <0.001 <0.001

Table 2..  Cox multivariate analysis. Model 1: No adjusted. Model 2: Adjusted for Sex, SpO2, White Blood Cell, 
Blood Glucose and Potassium.Model 3: Adjusted for Model 2 Plus Statins and Hyperlipidemia

 

Total Q1 Q2 Q3 Q4 Q5

P-value(n = 14727)

<15.0 15.0-18.5 18.5-22.0 22.0-27.8 >27.8

(n = 2821) (n = 3058) (n = 2877) (n = 3001) (n = 2970)

Treatment

Clopidogrel (n,%) 777 (5.3) 143 (5.1) 156 (5.1) 166 (5.8) 174 (5.8) 138 (4.6) 0.213

Aspirin (n,%) 5378 (36.5) 1067 (37.8) 1294 (42.3) 1174 (40.8) 1033 (34.4) 810 (27.3) < 0.001

Ticagrelor (n,%) 100 (0.7) 23 (0.8) 28 (0.9) 21 (0.7) 17 (0.6) 11 (0.4) 0.085

Heparin (n,%) 6364 (43.2) 1307 (46.3) 1193 (39) 1101 (38.3) 1293 (43.1) 1470 (49.5) < 0.001

Warfarin (n,%) 980 (6.7) 166 (5.9) 209 (6.8) 218 (7.6) 208 (6.9) 179 (6) 0.06

Rivaroxaban (n,%) 109 (0.7) 22 (0.8) 21 (0.7) 27 (0.9) 20 (0.7) 19 (0.6) 0.672

Statins (n,%) 4172 (28.3) 712 (25.2) 913 (29.9) 933 (32.4) 867 (28.9) 747 (25.2) < 0.001

Mechanical ventilation (n,%) 1411 (9.6) 281 (10) 267 (8.7) 261 (9.1) 293 (9.8) 309 (10.4) 0.177

Length of stay (LOS)

LOS in hospital 8.6 (5.6, 14.1) 9.2 (5.9, 15.7) 8.2 (5.6, 13.0) 8.0 (5.5, 12.8) 8.3 (5.5, 13.8) 9.3 (5.7, 16.0) < 0.001

LOS in ICU 2.8 (1.6, 5.1) 2.9 (1.7, 5.7) 2.5 (1.5, 4.8) 2.5 (1.4, 4.7) 2.8 (1.6, 5.0) 2.9 (1.8, 5.6) < 0.001

Outcome

28-day mortality (n,%) 2550 (17.3) 424 (15) 349 (11.4) 416 (14.5) 550 (18.3) 811 (27.3) < 0.001

365-day mortality (n,%) 4779 (32.5) 812 (28.8) 716 (23.4) 781 (27.1) 1046 (34.9) 1424 (47.9) < 0.001

Table 1.  Baseline characteristics of patients grouped according to BUN/Cr quintiles. SpO2 Saturation of 
peripheral oxygen, WBC White blood cell, INR International normalized ratio, PT Prothrombin time, HDL-C 
High-density lipoprotein cholesterol, LDL-C Low-density lipoprotein cholesterol, TC, Total cholesterol, 
TG Triglyceride, APSIII Acute physiology score III, SAPSII Simplified acute physiology score II, OASIS Oxford 
acute severity of illness score

 

Scientific Reports |        (2025) 15:35157 5| https://doi.org/10.1038/s41598-025-19207-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


BUN/Cr HR(95%CI) P-value

28-day mortality
0.938 (0.914,0.963) < 0.001

＜16.49

≥16.49 1.031 (1.027,1.035) < 0.001

Likelihood ratio test
<0.001

365-day mortality

＜16.67 0.937 (0.92,0.954) < 0.001

≥16.67
1.031 (1.028,1.034)

< 0.001

Likelihood ratio test <0.001

Table 3.  Threshold effect analysis.

 

Fig. 3.  U-shaped relationships between BUNCr and mortality endpoints via RCS modeling: (A) 28-day, (B) 
365-day.

 

Fig. 2.  Kaplan-Meier survival analysis by BUNCr quintiles in AF: (A) 28-day post-ICU mortality; (B) 365-day 
mortality.
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mortality risks (28-day: HR = 0.938; 365-day: HR = 0.937). Conversely, above thresholds, equivalent BUN/Cr 
elevation predicted increased mortality (28-day&365-day: HR = 1.031). This bidirectional pattern demonstrated 
a over 3% mortality risk transition (P < 0.001 for slope comparisons).

Subgroup analysis
Cox proportional hazards models revealed significant interactions between elevated BUN/Cr and two factors: 
pre-existing renal disease (28-day: P = 0.001; 365-day: P < 0.001) and early aspirin therapy (28&365-day: 
P < 0.001) regarding mortality risks in AF patients (Fig. 4).

Renal dysfunction substantially modified BUN/Cr prognostic implications. Each 1-unit BUN/Cr increase 
conferred differential mortality increments: 2.0% in renal patients versus 3.0% in non-renal counterparts. 
Despite lower HR escalations, absolute mortality was higher in renal patients (28-day: 21.8% vs. 15.6%; 365-day: 
43.2% vs. 28.5%). This paradox reflects divergent pathophysiology: impaired kidneys exhibit reduced capacity 
to compensate for uremic toxin accumulation, whereas BUN/Cr fluctuations in preserved renal function may 
represent transient stressors mitigated by intact nephron adaptability.

Aspirin administration within 24 h of ICU admission demonstrated therapeutic modulation. While BUN/
Cr-associated mortality increments remained identical (4.0%/unit) between aspirin-treated and untreated 
groups, absolute mortality diverged markedly (28-day: 11.2% vs. 20.8%; 365-day: 22.4% vs. 38.2%, P < 0.001). 
Mechanistically, aspirin’s dual actions are plausible: (i) platelet inhibition improves renal microcirculation 
by preventing platelet-fibrin thrombosis in peritubular capillaries, attenuating ischemic tubular injury; (ii) 
cyclooxygenase-2 suppression mitigates inflammatory cytokine-mediated glomerular hypofiltration, disrupting 
the BUN/Cr-inflammation multi-organ failure cycle. This protective synergy proves critical in acute critical 
illness where hemodynamic instability amplifies uremic toxicity.

Notably, BUN/Cr interactions with age, chronic pulmonary disease, diabetes, clopidogrel, statins or 
mechanical ventilation showed no statistical significance (P > 0.05). These findings emphasize the specificity of 
renal function and aspirin therapy as key modifiers of BUN/Cr prognostic value.

Feature selection
Feature selection using LASSO regression
Using the LASSO regression algorithm, we selected 16 key features for the 28-day mortality risk prediction 
model, which include: Age, Gender, Heart rate, SpO2, WBC, Glucose, TC, TG, Hypertension, Hyperlipidemia, 

Fig. 4.  Subgroup analysis between BUNCr and risk of death: (A)30-day; (B)365-day.

 

Scientific Reports |        (2025) 15:35157 7| https://doi.org/10.1038/s41598-025-19207-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Renal disease, Severe liver disease, APS III, Aspirin, Statins, and BUN/Cr, as shown in Fig. 5A. Similarly, using the 
LASSO regression algorithm, we selected 17 key features for the 365-day mortality risk prediction model, which 
include: Age, Gender, Heart rate, SpO2, WBC, Glucose, TC, TG, Potassium, Hypertension, Hyperlipidemia, 
Renal disease, Severe liver disease, APS III, Aspirin, Statins, and BUN/Cr, as shown in Fig. 5B.

Diagnosis of collinearity
For the 28-day mortality risk prediction model, the variance inflation factor (VIF) was used to diagnose 
multicollinearity and assess the independence among the 16 factors. The results showed that the maximum 
VIF value was 1.4, which is less than 5 (specific results are shown in Table 4). This indicated that the selected 
key features had high independence, with no significant multicollinearity issues, allowing the analysis results to 
be accurately reflected. For the 365-day mortality risk prediction model, the variance inflation factor was also 
used to assess the independence of the 17 factors. The results showed that the maximum VIF value was 1.402, 
which is less than 5 (specific results are shown in Table 5). This suggested that the selected key features had high 
independence and no significant multicollinearity issues. For the specific input list of the binary classification 
model, please refer to Supplementary TableS1.

Machine learning construction and evaluation
Prediction model for 28-day mortality risk
Selection of optimal algorithm   In this study, we used the 28-day mortality rate as the model output, employing 
key predictive features selected through feature screening as inputs. Five machine learning algorithms–XG-
Boost, Logistic Regression, LightGBM, Random Forest, and AdaBoost–were utilized to construct the models. To 
compare and optimize the algorithms, we employed a five-fold, five-time cross-validation method and evaluated 
model performance using metrics such as ROCAUC, Accuracy, and F1 score. According to the experimental 
results (see Fig. 6; Table 6), the XGBoost algorithm demonstrated the best short-term mortality risk prediction 
performance on the validation set, with an AUC of 0.810, Accuracy of 74.0% (95% CI: 72.2 ~ 75.7%), and an F1 
score of 0.490.

Evaluation of the optimal algorithm   The dataset was partitioned into training (70%) and independent test 
(30%) sets. Through 5-fold cross-validation with grid search optimization (learning_rate = 0.3, max_depth = 4, 

Variable VIF Variable VIF

Hypertension 1.4 Aspirin 1.092

Renal disease 1.375 Glucose 1.079

APS III 1.303 Gender 1.059

Hyperlipidemia 1.2 Severe liver disease 1.058

Statins 1.161 WBC 1.033

Heart rate 1.156 Spo2 1.026

Age 1.143 TC 1.012

BUN/Cr 1.094 TG 1.012

Table 4.  Collinearity diagnostic results of the 28-day mortality risk prediction model.

 

Fig. 5.  Preliminary screening features using LASSO regression algorithm: (A) 28-day mortality risk; (B) 365-
day mortality risk.
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min_child_weight = 6, reg_lambda = 1), XGBoost demonstrated superior predictive performance, achieving an 
AUC of 0.793 (95% CI: 0.75–0.83), accuracy of 73.1%, and F1-score of 0.479 on the held-out test set. These re-
sults indicate robust discriminative ability for short-term mortality risk prediction while maintaining clinically 
relevant performance metrics.

Prediction model for 365-day mortality risk
Selection of the optimal algorithm   In this study, key predictive features, selected through feature screening, 
were used as inputs for model construction based on five machine learning algorithms: XGBoost, Logistic Re-
gression, LightGBM, Random Forest, and AdaBoost. To compare and optimize the algorithms, we employed a 

Algorithm AUC(95%CI) Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI) F1 score (95%CI) Cutoff (95%CI)

XGBoost 0.810 (0.790-0.830) 0.74(0.722-0.757) 0.719(0.704-0.733) 0.744(0.723-0.766) 0.49(0.473-0.507) 0.192(0.180-0.203)

Logistic 0.806 (0.786-0.826) 0.716(0.705-0.726) 0.743(0.701-0.785) 0.71(0.692-0.728) 0.475(0.460-0.489) 0.159(0.148-0.171)

LightGBM 0.731 (0.709-0.753) 0.748(0.728-0.767) 0.654(0.600-0.707) 0.767(0.734-0.800) 0.473(0.461-0.484) 0.181(0.169-0.194)

RandomForest 0.810 (0.791-0.830) 0.839(0.833-0.844) 0.255(0.229-0.281) 0.961(0.950-0.973) 0.353(0.334-0.371) 0.498(0.477-0.519)

AdaBoost 0.811 (0.792-0.831) 0.73(0.723-0.736) 0.733(0.698-0.768) 0.729(0.715-0.743) 0.484(0.476-0.493) 0.474(0.473-0.475)

Table 6.  Comparison of 28-day mortality risk prediction performance of different algorithms on the validation 
set.

 

Fig. 6.  Comparison of 28-day mortality risk prediction model performance: (A) Comparison of ROC 
curves in training sets of multiple algorithms; (B) Comparison of ROC curves in validation sets of multiple 
algorithms.

 

Variable VIF Variable VIF

Hypertension 1.402 Glucose 1.091

Renal disease 1.388 Gender 1.07

APS III 1.306 Potassium 1.066

Hyperlipidemia 1.2 Severe liver disease 1.059

Statins 1.162 WBC 1.036

Heart rate 1.161 Spo2 1.026

Age 1.144 TG 1.012

Aspirin 1.099
TC 1.012

BUN/Cr 1.095

Table 5.  Collinearity diagnostic results of the 365-day mortality risk prediction model.
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five-fold, five-time cross-validation method and evaluated model performance using metrics such as ROCAUC, 
Accuracy, and F1 score. According to the experimental results (see Fig.  7; Table  7), the XGBoost algorithm 
demonstrated the best performance for long-term mortality risk prediction on the validation set, with an AUC 
of 0.786, Accuracy of 70.8% (95% CI: 72.2 ~ 75.7%), and an F1 score of 0.614.

Evaluation of the optimal algorithm: The dataset was partitioned into training and testing sets (7:3 ratio), 
with model development conducted using five-fold cross-validation on the training set. Through grid search 
optimization, we identified optimal hyperparameters (learning_rate = 0.3, max_depth = 4, min_child_weight = 6, 
reg_lambda = 0.5) for the XGBoost algorithm. When evaluated on the independent test set for 365-day mortality 
prediction, the optimized XGBoost model demonstrated robust performance, achieving an AUC of 0.778 (95% 
CI), with corresponding accuracy of 69.8% and F1-score of 0.613. These results indicate that our carefully tuned 
XGBoost algorithm provides clinically meaningful predictive capability for long-term mortality risk assessment.

Interpretable analysis based on the SHAP method
Prediction model for 28-day mortality risk
This study utilized the SHAP method to conduct a detailed interpretative analysis of the XGBoost-based short-
term mortality risk prediction model for AF patients. We sequentially generated the importance ranking 
plot, summary plot, scatter plot, individual force plots of the survivor and non-survivor (as shown in Fig. 8). 
Compared to other key predictive features, BUN/Cr made a considerable contribution to mortality risk 
prediction, ranking fourth in importance (as shown in Fig. 8(A ~ B)). For AF patients in the test set, a non-linear 
relationship between BUN/Cr and mortality risk was observed, with both lower and higher levels of BUN/Cr 
potentially increasing the short-term mortality risk. This finding was consistent with the results from the RCS 
analysis in Sect. 3.5, which examined the association between BUN/Cr and short-term prognosis in all patients, 
and revealed a potential “U”-shaped curve relationship (as shown in Fig. 8 C).

According to the force plot for a surviving AF patient (as shown in Fig. 8D), the XGBoost-based 28-day 
mortality risk prediction model for AF patients demonstrated good accuracy, with a predicted mortality 
probability of 13%, consistent with the patient’s survival outcome after ICU admission. Heart rate within the 

Algorithm AUC(95%CI) Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI) F1 score (95%CI) Cutoff (95%CI)

XGBoost 0.786 (0.769-0.803) 0.708(0.701-0.714) 0.716(0.692-0.740) 0.704(0.690-0.717) 0.614(0.603-0.624) 0.336(0.318-0.355)

Logistic 0.778 (0.761-0.795) 0.68(0.677-0.683) 0.778(0.756-0.799) 0.633(0.623-0.643) 0.612(0.604-0.620) 0.276(0.269-0.282)

LightGBM 0.678 (0.659-0.696) 0.685(0.680-0.691) 0.626(0.589-0.662) 0.714(0.696-0.733) 0.563(0.547-0.579) 0.883(0.653-1.112)

RandomForest 0.786 (0.769-0.803) 0.738(0.735-0.741) 0.395(0.361-0.430) 0.902(0.889-0.916) 0.494(0.469-0.518) 0.54(0.526-0.554)

AdaBoost 0.785 (0.768-0.802) 0.704(0.695-0.714) 0.724(0.700-0.749) 0.695(0.671-0.719) 0.614(0.608-0.620) 0.489(0.485-0.493)

Table 7.  Comparison of 365-day mortality risk prediction performance of different algorithms on the 
validation set.

 

Fig. 7.  Comparison of 365-day mortality risk prediction model performance: (A) Comparison of ROC 
curves in training sets of multiple algorithms; (B) Comparison of ROC curves in validation sets of multiple 
algorithms.
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normal range and a lower APS III score contributed to a reduced short-term mortality risk for AF patients, while 
higher age was associated with an increased mortality risk. Similarly, based on the force plot for a deceased AF 
patient (as shown in Fig. 8E), the XGBoost-based 28-day mortality risk prediction model for AF patients was 
also accurate, with a predicted mortality probability of 58.0%, aligning with the patient’s survival outcome within 
28 days of ICU admission. Higher disease severity scores (APS III), elevated heart rate, higher blood glucose 
levels, and increased BUN/Cr all contributed to an increased short-term mortality risk for AF patients.

Prediction model for 365-day mortality risk
This study utilized the SHAP method to conduct a detailed interpretative analysis of the XGBoost-based long-
term mortality risk prediction model for AF patients. We sequentially generated the importance ranking plot, 
summary plot, scatter plot, force plot of the survivor and non-survivor (as shown in Fig.  9). Compared to 
other key predictive features, BUN/Cr made a significant contribution to the 365-day mortality risk prediction, 
ranking fourth in importance (as shown in Fig. 9(A ~ B)). For AF patients in the test set, a non-linear relationship 
between BUN/Cr and mortality risk was observed, with both lower and higher levels of BUN/Cr potentially 
increasing the long-term mortality risk. This result was consistent with the findings from the restricted cubic 
spline analysis in Sect. 3.5, which examined the relationship between BUN/Cr and long-term prognosis in all 
patients, showing similar trends (as shown in Fig. 9C).

According to the force plot for a surviving AF patient (as shown in Fig.  9D), the XGBoost-based 365-
day mortality risk prediction model for AF patients demonstrated good accuracy, with a predicted mortality 
probability of 20.0%, which was consistent with the patient’s survival outcome after ICU admission. Heart rate 
within the normal range and a lower APS III score contributed to reducing the long-term mortality risk for AF 
patients, while higher age increased the patient’s mortality risk. Similarly, based on the force plot for a deceased 
AF patient (as shown in Fig. 9E), the XGBoost-based 365-day mortality risk prediction model for AF patients 
was also accurate, with a predicted mortality probability of 62.0%, aligning with the patient’s survival outcome 
within 365 days of ICU admission. Higher age, higher disease severity scores (APS III), and elevated BUN/Cr all 
contributed to an increased long-term mortality risk for AF patients.

Fig. 8.  Interpretation of 28-day mortality risk prediction model based on SHAP method: (A) feature 
importance map; (B) Summary diagram; (C) Scatter plot between BUN/Cr and SHAP values; (D) The 
individual force plot of an survivor; (E) The individual force plot of an non-survivor.
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Discussion
In this large-scale retrospective cohort study based on the MIMIC-IV database, we investigated the impact of 
the BUN/Cr on the 28-day and 365-day all-cause mortality of critically ill patients with atrial fibrillation and 
established a predictive model to assess the mortality risk of these patients. The main findings are as follows: 
(i) A non-linear, U-shaped relationship exists between BUN/Cr and the mortality risk at 28 and 365 days for 
atrial fibrillation patients, with both low and high BUN/Cr levels increasing the risk; (ii) In our analysis, BUN/
Cr levels of 16.49 and 16.67 mg/dl, respectively, serve as threshold turning points for short-term and long-term 
mortality risk in atrial fibrillation patients, which can assist clinicians in better monitoring patients; (iii) BUN/
Cr significantly influences the XGBoost model, indicating its potential for machine learning applications in 
predicting all-cause mortality among ICU patients with atrial fibrillation. To sum up, BUN/Cr is crucial for 
assessing risk in critically ill patients with atrial fibrillation, and healthcare providers should monitor changes in 
BUN/Cr levels in these patients.

The occurrence and progression of AF were closely associated with adverse prognosis, particularly increased 
mortality. AF increased the likelihood of cardiovascular incidents and is linked to higher death rates. It often 
coexisted with heart failure, with both conditions affecting each other. In individuals with HF, the occurrence 
of AF was associated with increased mortality and poorer clinical outcomes16. This connection was especially 
evident in patients with heart failure with preserved ejection fraction (HFpEF), where atrial fibrillation was 
linked to worse clinical outcomes. Findings from sub-Saharan Africa revealed that AF was connected to an 
increase in mortality among HF patients in this region17. Research showed that the ten-year mortality rate 
for patients with AF was 46.8%, while it was 36.8% for those with a normal sinus rhythm18. A different study 
revealed that AF considerably elevated the risk of death in patients hospitalized with acute decompensated heart 
failure (ADHF)19. The impact of new-onset AF versus existing AF on in-hospital and 90-day mortality remained 
controversial and required further investigation20. Importantly, the prognostic implications of AF extended 
beyond HF patients. ICD therapy is also linked to the prognosis of AF, especially in those with heart failure 
and decreased ejection fraction21. Additionally, AF often coexisted with myocardial infarction (MI), leading to 
higher morbidity and necessitating comprehensive risk management strategies22.

Fig. 9.  Interpretation of the 365-day mortality risk prediction model based on the SHAP method: (A) feature 
importance map; (B) Summary diagram; (C) Scatter plot between BUN/Cr and SHAP values; (D) The 
individual force plot of an survivor; (E) The individual force plot of an non-survivor.
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The BUN/Cr ratio was a common clinical indicator used to evaluate kidney function, and its link to overall 
mortality has been thoroughly studied. Analysis using a multivariate Cox proportional hazards model showed 
that a higher BUN/Cr ratio was significantly linked to a greater risk of death from any cause (HR = 1.52, 95% CI: 
1.21–1.91; P-Value < 0.001)23. In a similar study, a higher BUN/Cr ratio was linked to worse outcomes in AHF 
patients, as shown by higher mortality rates10. In various disease populations, the BUN/Cr has shown prognostic 
significance. For instance, in patients with acute myocardial infarction (AMI), a higher BUN/Cr was linked to 
greater in-hospital mortality24. In those with acute decompensated heart failure (ADHF), an elevated BUN/
Cr was predictive of long-term mortality25. Additionally, in patients with acute ischemic stroke (AIS), a higher 
BUN/Cr was associated with increased in-hospital mortality26. The prognostic value of the BUN/Cr might vary 
across different patient populations.An elevated BUN/Cr ratio in individuals suffering from chronic heart failure 
and renal dysfunction was linked to a higher chance of in-hospital death9. Additionally, for patients experiencing 
acute coronary syndrome (ACS), the BUN/Cr ratio could give significant insights into potential complications 
and mortality risks27.

As a clinical indicator for evaluating renal hemodynamics and metabolic balance, the BUN/Cr might 
influence the pathological progression of atrial fibrillation through multiple mechanisms, thereby affecting 
prognosis. A higher BUN/Cr ratio is closely associated with a reduced glomerular filtration rate (GFR) and 
abnormal intrarenal blood flow distribution. These pathophysiological alterations may indirectly contribute 
to the development of atrial electrical and structural remodeling through mechanisms such as fluid retention, 
electrolyte disturbances (e.g., hypokalemia), and the accumulation of uremic toxins (e.g., indoxyl sulfate)28,29. 
Importantly, renal dysfunction has been shown to exacerbate atrial endothelial cell injury and interstitial 
fibrosis by activating the MAPK/NF-κB inflammatory pathway and mitochondrial oxidative stress response, 
processes that were particularly pronounced in AF patients29,30. Furthermore, an elevated BUN/Cr might 
indicate subclinical dehydration or a hypercatabolic state, which could increase the risk of a prothrombotic state 
through sympathetic nervous system activation and blood concentration effects31,32. Our findings align with 
these mechanisms, showing that higher BUN/Cr quintiles are associated with greater disease severity scores 
and comorbidities, including heart failure and kidney disease. The interaction among multiple organs may 
synergistically amplify the risk of mortality.

Serum creatinine and estimated glomerular filtration rate (eGFR) were traditional biomarkers that have been 
commonly used to assess kidney function. However, the BUN/Cr offered distinct advantages. Compared with 
creatinine alone, BUN/Cr could simultaneously reflect both glomerular and tubular injury as well as metabolic 
stress, which were particularly prevalent in critically ill patients33. Recent cohort studies have demonstrated 
that BUN/Cr has superior predictive ability for mortality in heart failure patients compared to eGFR34. Our 
study further shows that BUN/Cr is superior in predicting mortality in atrial fibrillation patients, likely due 
to its greater sensitivity in capturing early hemodynamic changes and metabolic disturbances. Additionally, 
a retrospective analysis highlighted the prognostic value of BUN/Cr in cardiogenic shock patients, further 
validating its potential for broad application in cardiovascular intensive care35.

The prognostic significance of the BUN/Cr ratio in patients with AF is underpinned by a distinct 
pathophysiological rationale, which is predominantly manifested in the AF - specific mechanisms of cardio 
- renal interaction. Firstly, the loss of effective atrial contraction and the subsequent reduction in cardiac 
output resulting from AF lead to a notable decline in renal blood flow36. Specifically, atrial dysfunction, as 
exemplified by a decreased left atrial ejection fraction, is independently associated with an elevated BUN/Cr 
ratio12. Moreover, Mendelian randomization has established a causal link between urea nitrogen levels and AF 
([OR] = 1.505)37indicating that both conditions share the pathological processes of hemodynamic deterioration 
and prerenal azotemia. Secondly, AF triggers the release of arginine vasopressin (AVP) through the activation 
of the sympathetic nervous system and the renin - angiotensin - aldosterone system (RAAS). This results in 
the BUN/Cr ratio reflecting an increase in AVP - mediated tubular urea reabsorption rather than being solely 
indicative of renal injury. This mechanism is particularly prominent in the AF patient population because 
atrial stretch receptors can further stimulate AVP release12,38. Thirdly, AF - mediated left atrial remodeling, 
encompassing fibrosis and dilation, not only directly impairs atrial mechanical function but also, in conjunction 
with the BUN/Cr ratio, synergistically elevates the risk of mortality36,38. Shared pathological mechanisms such as 
inflammation and oxidative stress, as evidenced by the synergistic effect between the red blood cell distribution 
width - to - albumin ratio and BUN/Cr, exacerbate the vicious cycle of cardio - renal interactive injury39,40. In 
addition, patients with AF require long-term anticoagulation therapy, and renal insufficiency represents a key risk 
factor for both bleeding and thrombotic events. Accumulating evidence indicates that a reduction in estimated 
glomerular filtration rate (eGFR) is significantly correlated with the presence of fine fibrillation waves in AF, 
which serve as markers of atrial fibrosis14,41. This association suggests a pathophysiological interaction between 
the heart and kidneys that contributes to disease progression. In this context, the BUN/Cr ratio demonstrates 
enhanced sensitivity in detecting subclinical renal hypoperfusion among AF patients, thereby offering a valuable 
tool for early warning of anticoagulation-related complications42. In conclusion, the superiority of the BUN/Cr 
ratio in AF patients lies in its ability to comprehensively reflect AF - specific pathologies, thereby establishing it 
as a crucial biomarker for multi - organ damage in clinical settings.

This study achieved an innovative transformation in the risk assessment of atrial fibrillation patients by 
incorporating the serum BUN/Cr into a machine learning model. The experimental results demonstrated that the 
XGBoost-based prediction model exhibited superior performance, with an area under the curve (AUC) of 0.79, 
significantly outperforming traditional univariate analysis methods and existing scoring systems. This finding 
aligns with the current trend of applying machine learning techniques in AF research, particularly in integrating 
biomarkers related to multi-organ dysfunction, which enhances predictive accuracy43. SHAP value analysis 
revealed that the serum BUN/Cr was one of the most influential predictors in the model, further confirming its 
critical role in mortality risk assessment. This model not only enables real-time monitoring but also provides a 
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reference for individualized treatment strategies, such as diuretic dose adjustment or renal replacement therapy, 
thereby advancing clinical translational research.

Limitations and future prospects
The MIMIC-IV database was the source of data for this study. While these databases provide extensive clinical 
information, they may contain data gaps or incomplete records, restricting the generalization of our results to 
settings outside the ICU and geographically diverse populations. This limitation may affect the comprehensive 
evaluation of the correlation between BUN/Cr and mortality. As an inherent characteristic of observational 
studies, this design is susceptible to potential biases, including inadequate control for confounding factors like 
inflammatory markers (for instance, C-reactive protein) and nutritional status. Additionally, the heterogeneity 
in laboratory test data collection can impact the interpretability of the results. BUN/Cr levels are influenced by 
multiple factors, including renal function, liver function, and protein intake, which may not have been measured 
under standardized conditions. Although the machine learning models demonstrated strong performance in 
predicting mortality, their generalization ability may be constrained by the quality and quantity of the training 
data.

Among the clinical indicators for evaluating renal function impairment, cystatin C has garnered significant 
attention due to its unique advantages. As an endogenous metabolite, cystatin C can sensitively reflect early 
changes in glomerular filtration rate (GFR) and offers notable specificity advantages over traditional markers. 
Unlike conventional biomarkers, cystatin C levels are not influenced by inflammatory responses or infectious 
diseases, thereby demonstrating superior diagnostic performance44. In monitoring acute kidney injury (AKI), 
neutrophil gelatinase-associated lipocalin (NGAL) has been clinically validated as a new biomarker. Research 
data indicate that NGAL achieves 81.5% specificity and 38.7% sensitivity in predicting postoperative AKI45. 
Notably, the pathological mechanisms underlying atrial fibrillation are closely intertwined with heart-kidney 
interactions. The vicious cycle formed by heart failure (HF) and chronic kidney disease (CKD) exacerbates 
patient conditions, leading to significantly increased mortality. These comorbidities not only elevate the risk of 
AF but also intensify clinical symptoms and adversely affect prognosis. Based on these insights, future research 
should focus on elucidating the collaborative diagnostic potential of traditional renal function indicators (like 
the BUN/Cr ratio) and novel biomarkers (such as cystatin C and NGAL). Additionally, efforts should be directed 
toward developing a multi-dimensional heart-kidney interaction biomarker assessment system to enhance the 
accuracy of early diagnosis and prognosis prediction for AF patients.

Conclusion
BUN/Cr is an important predictor of short-term and long-term mortality risk in AF patients. The XGBoost 
model combined with BUN/Cr showed high predictive performance and good generalization ability in predicting 
short-term mortality risk, and BUN/Cr ranked higher in the model. These results underscored the usefulness of 
BUN/Cr as an important biomarker for guiding clinical decisions and enhancing outcomes in patients with AF.

Data availability
The data were obtained from the MIMIC-IV database. Access requests can be made through the PhysioNet 
website: https://physionet.org/content/mimiciv/3.1/.
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