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Artificial neural networks have emerged as powerful tools for hologram synthesis and reconstruction, 
offering improvements in both image quality and computational efficiency. In this work, we present 
ShuffleResnet, a neural phase encoding approach designed to address the limitations of the 
conventional double phase encoding method (DPM) used for phase-only spatial light modulators 
(SLMs). The proposed model, ShuffleResnet, significantly enhances light efficiency, achieving a 59% 
increase compared to the conventional DPM. Numerical simulation results further demonstrate 
that the proposed model improves reconstruction quality and effectively suppresses artifacts in the 
complex field. Additionally, the model encodes complex field holograms at 1920 × 1080 resolution with 
an average inference speed of 4.74 milliseconds per hologram. The enhanced reconstruction fidelity 
increased light efficiency and fast inference, suggesting strong potential for real-time holographic 
applications.

Holography is an optical technique that reconstructs the three-dimensional wavefront of an object by 
recording both amplitude and phase components of light waves1,2. At the time of Gabor’s invention, the 
practical implementation of holography was limited due to the absence of coherent light sources. The evolution 
of holography began with the invention of lasers, leading to advanced imaging and display applications3. 
Alternatively, computer-generated holography (CGH)4,5 synthesizes holograms using computational methods, 
enabling the creation of both real and virtual objects for dynamic holographic 3D displays6–8. Due to this 
computational flexibility, CGH is a promising technology for applications in education, entertainment, and 
medical treatment, where interactive and high-resolution visualization is essential9,10.

Spatial light modulators (SLMs) are key optical display devices used in holography for wavefront modulation. 
However, commercially available SLMs cannot perform complex field modulation, as they can only modulate 
amplitude or phase individually11. Therefore, a complex hologram needs to be converted into an amplitude-
only or phase-only hologram using encoding techniques12. Compared to amplitude-only holograms, phase-only 
holograms offer higher diffraction efficiency and effectively suppress the conjugate image during reconstruction. 
However, amplitude control of the reconstructed image is challenging in phase-only holograms13.

Over the years, a variety of encoding methods have been proposed for phase-only holograms. Iterative 
methods, including the Gerchberg-Saxton (GS) algorithm14,15 and stochastic gradient descent (SGD)16–18 
have demonstrated the capability to achieve high-quality reconstructed images. On the other hand, non-
iterative methods, such as error diffusion and down-sampling techniques, were developed but often result in 
reduced image quality19–21. Moreover, a hybrid technique22 based on the optimized random phase method was 
introduced, enabling rapid synthesis of phase-only holograms. Shi et al.23,24 introduced a deep learning approach 
that enables real-time phase-only hologram generation, significantly reducing computational complexity while 
improving reconstruction quality for holographic display applications.

The double phase encoding method (DPM) is an efficient and computationally fast technique for phase-only 
holograms. In DPM, both amplitude and phase are encoded into two-phase components25 often arranged in a 
checkerboard pattern26. Despite its advantages, the encoded holograms are affected by spatial artifacts due to 
the conversion of complex amplitude into a phase-only representation. To address these issues, the band-limited 
double phase method was developed, incorporating optical filtering27 in the frequency domain to suppress high-
frequency artifacts. Kim et al.28 proposed a weight factor method to improve diffraction efficiency and suppress 
noise. In 2020, Sui et al.29 introduced a spatiotemporal double phase hologram approach that reduces speckle 
noise. In 2023, Zhong et al.30 proposed a real-time 4 K CGH generation based on encoding conventional neural 
network with learned layers, demonstrating effective 3D hologram generation at a single wavelength. In 2024, 
Yan et al.31 demonstrated a deep learning approach using full convolution neural networks for recoding double 
phase holograms, effectively suppressing fringe artifacts at the edges of the diffraction field.

However, due to the spatial artifacts and the filtering structure that blocks part of the light, the reconstruction 
image quality and optical efficiency of the conventional DPM remain limited. In this work, we enhance the light 
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efficiency of phase-only holograms by using a neural network-based encoding method. The proposed model, 
ShuffleResnet, achieves a 59% improvement in light efficiency, maintains high reconstruction quality, and 
significantly reduces artifacts compared to the conventional DPM. To achieve this, we employ a combination 
of supervised and unsupervised loss functions, along with an efficiency term. Moreover, the proposed model 
encodes RGB 2  K CGHs within 4.74 milliseconds, offering both speed and efficiency suitable for real-time 
applications.

Conventional DPM
DPM is a widely used non-iterative method for encoding complex amplitude fields into phase-only holograms, 
using two phase values per pixel, enabling high image quality hologram reconstruction. To represent the complex 
field, U (x, y), using only phase values, DPM decomposes the field into two phase terms26.

	 U (x, y) = eiθ 1 + eiθ 2 � (1)

where the two-phase values of θ 1 and θ 2 are defined as:

	
θ 1 = ϕ + arccos

(
A

Amax

)
,� (2)

	
θ 2 = ϕ − arccos

(
A

Amax

)
.� (3)

To implement the encoding, the two phase values θ 1 and θ 2 are alternately arranged across the pixel array, 
creating a checkerboard pattern of the phase-only values32.

Figure  1 illustrates the conventional DPM of the complex field U (x, y). The original complex field, 
represented in the left block, consists of individual cells, in which each cell of U (x, y) has a complex number 
with both amplitude and phase components. The middle block shows the core of DPM, where the complex field 
is split into two phase components θ 1, θ 2.

Training of neural network
Figure 2 presents the detailed training process of the neural network model. The proposed model consists of pixel 
shuffle and unshuffle operations combined with residual blocks, as explained in detail in the methods section. 
The model takes complex holograms as input, and its output corresponds to the phase encoded value. The 
training process employs a hybrid loss function, which combines both supervised ( LDP M ) and unsupervised 
loss ( Lr) along with an efficiency term, Le. The supervised loss accelerates training, and the unsupervised loss 
is used to minimize the reconstruction error to enhance the reconstruction quality. The scaling ratios α , β , γ  
balance the contribution of each term during training, as further discussed in the hyperparameter tuning result 
section. As a result, the total loss function can be written as:

	 L = rs (n) α LDP M + (1 − rs (n)) (β ( − Le) + γ Lr).� (4)

LDP M ​ is calculated as:

	
LDP M = 1

N

∑
x,y

1
M

∑
M
i=1 [( Re(zi )( x, y) − Re (ti) (x, y))2 + (Im (zi) (x, y) − Im (ti) (x, y))2]� (5)

Fig. 1.  Schematic of the conventional DPM. The first panel shows the original complex field, the middle panel 
illustrates the calculated phase components from the complex field, and the final panel shows the encoded 
complex field.
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LDP M  is the mean squared error loss between the network output zi(x, y) and conventional DPM output 
ti(x, y) ​ as target, calculated for both real and imaginary components. N  is the number of holograms in one 
training batch. M  is the number of pixels in each hologram.

Lr  is computed as:

	
Lr = 1

N

∑
x,y

1
M

∑
M
i=1 [( Re(ci )( x, y) − Re (ri) (x, y))2 + (Im (ci) (x, y) − Im (ri) (x, y))2]� (6)

Lr  computes the mean squared error loss between the original complex field ci(x, y) and reconstructed 
complex field ri (x, y) for both real and imaginary components.

The light efficiency Le is computed as:

	
Le = 1

N

∑
x,y|Urecon (x, y) |2� (7)

where Urecon (x, y) is the reconstructed complex field, and N  is the total number of pixels.
where rs (n) is the supervised ratio at epoch n, which determines the relative weight between supervised 

and unsupervised loss components. To ensure a smooth transition from supervised encoding to unsupervised 
encoding, we define rs (n) using exponential decay as, rs(n + 1) = drs (n), where d is a decay constant. In 
other words, rs (n) can be expressed as:

	 rs (n) = rs (0) edn� (8)

Fig. 2.  Overview of the training scheme using a neural network for hologram encoding. The model takes 
a complex amplitude on the hologram plane as input and produces an encoded hologram as output. The 
hologram synthesized by the conventional DPM is used as the supervised target. The model output is 
numerically reconstructed and compared with the original input to compute the unsupervised reconstruction 
loss. Additionally, an efficiency term is used to evaluate the reconstruction quality. Finally, the total loss, which 
integrates all three loss terms, is backpropagated to optimize the network.

 

Scientific Reports |        (2025) 15:35720 3| https://doi.org/10.1038/s41598-025-19567-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where rs (0) is the initial supervised ratio set to 1. The exponential decay allows the model to initially learn 
from supervised double phase encoding targets and gradually rely more on unsupervised reconstruction and 
efficiency objectives as training progresses.

Figure 3 illustrates the training performance of ShuffleResnet and U-Net in terms of peak-signal-to-noise 
ratio (PSNR) and light efficiency across training epochs. In Fig. 3a, the reconstruction PSNR of ShuffleResnet 
increases steadily and reaches a peak value of approximately 32 dB. The stable PSNR indicates that the network 
learns a consistent and effective encoding strategy to improve reconstruction quality. In Fig. 3b, the reconstruction 
efficiency of ShuffleResnet shows a gradual increase after 10 epochs, eventually reaching a maximum value of 
approximately 0.42. The improved efficiency after ten epochs is due to the exponential decay of rs (n), which 
shifts the training focus from supervised encoding to optimizing reconstruction and efficiency. The enhanced 
efficiency reflects how effectively the input light is utilized in the reconstruction process.

For comparison, a U-Net model was trained under the same conditions, and its performance was evaluated 
along with ShuffleResnet in Fig. 3. Compared to ShuffleResnet, the U-Net model exhibits significantly lower 
PSNR and reduced light efficiency. During initial epochs, U-Net’s light efficiency increases rapidly because the 
model initially learns the conventional DPM patterns using the supervised target. However, after epoch 10 when 
the supervised weight begins exponential decay, the model gradually shifts its focus toward the more challenging 
unsupervised reconstruction objective. After the transition, the model is no longer trained by DPM, but by a 
complex objective that optimizes both reconstruction quality and light efficiency. As a result, the measured light 
efficiency gradually declines to approximately 0.25 by the end of training, as shown in Fig. 3b. The comparison 
results confirm that ShuffleResnet performs better than U-Net.

Evaluation results
To evaluate the reconstruction performance of the proposed model, we compared the complex field reconstruction 
results of ShuffleResnet and conventional DPM. We used conventional DPM as our baseline because its output 
was used to generate the targets for our initial supervised training phase. The CGHs used in the validation 
assumed that the 2D floating hologram is 10 mm away from the SLM, where the 2D floating images are the 
DIV2K validation dataset. To synthesize the CGHs, the images were numerically propagated using the angular 
spectrum method (ASM). During the complex field reconstruction using the encoded output, a band-limiting 
optical filter was applied to suppress high-frequency diffraction noise. Although random propagation depths 
were used during training to improve generalization, a fixed depth was adopted to ensure consistent metric 
calculation.

Figure 4 presents the numerical complex field reconstruction results obtained using ShuffleResnet and the 
conventional DPM, compared against the target complex holograms. The figure displays the magnitude of the 
reconstructed complex fields for visual comparison, while the quantitative evaluation (PSNR and efficiency) 
is performed on the complete complex data including both real and imaginary components. In the numerical 
reconstructions, the ringing patterns and diffractions are visible, serving as indicators of depth. While the 
reconstructed output from ShuffleResnet is nearly identical to the target, the conventional method presents 
noticeable spatial artifacts. For instance, in Fig.  4j, there are speckles in the eye of the animal, whereas the 
corresponding output in Fig. 4f shows a clear view of the eye that closely matches the target. As a result, the 
reconstructed complex field outputs from ShuffleResnet achieve higher PSNR and improved light efficiency 
values compared to the conventional method.

Encoding results comparison
Figure 5 provides a visual and quantitative comparison of the encoded holograms and corresponding intensity 
reconstruction results from the proposed ShuffleResnet and conventional DPM. In Fig. 5a, the encoded output 

Fig. 3.  Comparison of training performance between ShuffleResnet and U-Net. (a) Reconstruction PSNR. (b) 
Reconstruction efficiency as a function of training epochs.
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produced by ShuffleResnet achieves a well-structured checkerboard pattern, clearly preserved in the magnified 
region in the yellow box. This consistent pattern indicates stable and accurate encoding of phase information. 
The corresponding reconstruction in Fig. 5b achieves a high PSNR of 32.1dB and SSIM of 0.948. In contrast, 
Fig.  5c shows the encoded output generated by the conventional DPM, where the checkerboard structure 
appears irregular and disrupted in the zoomed region of the red box, is present, it appears disrupted in the 
zoomed region of the red box, especially near textured or low-contrast regions of the image. As a result, the 
reconstruction in Fig.  5d exhibits high frequency artifacts, particularly in the background and low-contrast 
areas. These limitations are quantitatively reflected in the significantly lower PSNR of 9.01 dB and SSIM of 0.561.

Hyper-parameter tuning results
Light efficiency plays a crucial role in hologram reconstruction. By analyzing different efficiency ratios 
β , we observed a trade-off between light efficiency and reconstruction quality. Although a higher efficiency 
ratio increases light efficiency up to 0.9994, it also leads to a reduction in PSNR, which negatively impacts 
reconstruction quality.

Figure 6 illustrates the variation of light efficiency and PSNR as a function of efficiency ratios β . At lower 
efficiency ratios, the model achieves optimal reconstruction performance, with maximum PSNR and high light 

Fig. 4.  Numerical reconstruction results of the complex field, compared with the original CGH as the 
target. Target CGHs (a–d), numerically reconstructed holograms from ShuffleResnet (e–h), and numerically 
reconstructed holograms from conventional DPM (i–l) are presented with their PSNR and optical efficiency 
values.
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efficiency. As the efficiency ratio increases, light efficiency improves, but reconstruction quality decreases. For 
instance, at the highest ratio, efficiency reaches 0.9994, but the PSNR drops significantly to 12.66 dB. These 
results highlight a clear inverse relationship between PSNR and light efficiency.

Intensity-field comparison results
While Fig. 4 evaluated the complex field reconstruction quality at the SLM plane, Fig. 7 presents the simulated 
optical reconstruction results after propagation to a fixed observation plane for intensity-field comparison. 
The encoded holograms were numerically propagated using the ASM at a distance of 5  mm. Each image is 
annotated with its corresponding image quality metrics, such as PSNR and SSIM values. Compared to the 

Fig. 6.  Trade-off analysis between reconstruction quality (PSNR) and light efficiency at varying efficiency 
ratios β . Increasing β  enhances the light efficiency but reduces reconstruction quality.

 

Fig. 5.  Comparison of encoded output and reconstructed intensity between ShuffleResnet and conventional 
DPM. (a) Phase of ShuffleResnet output with yellow box indicating region of interest and corresponding 
zoomed-in view. (b) Corresponding reconstructed intensity with PSNR and SSIM metrics. (c) Phase of 
conventional DPM output with red box indicating region of interest and corresponding zoomed-in view. (d) 
Corresponding reconstructed intensity demonstrating the high frequency noise.
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conventional DPM, the ShuffleResnet reconstructions appear closer to the targets, with high PSNR and SSIM. 
The reconstructed output from ShuffleResnet demonstrates enhanced light efficiency and reconstruction quality.

Table  1 summarizes the average PSNR, SSIM, and light efficiency values for both ShuffleResnet and the 
conventional DPM using 100 images from the DIV2K validation dataset. Overall, the proposed model 
ShuffleResnet yields a 0.75 dB increase in PSNR, indicating improved reconstruction fidelity. The SSIM improves 
by 4.2% reflecting better structural similarity to the target intensity field. Most notably, light efficiency increases 
by 59%, showing that a significantly larger portion of light contributes to the final image. These improvements 
collectively demonstrate the enhanced reconstruction quality and improved light efficiency, making it more 
suitable for real-world holographic display applications.

Experiment results
To validate the simulation results, we conducted experimental reconstructions. In our experiment, we first 
generated a 2D floating hologram, as in the simulation. Then we performed encoding using both the conventional 
DPM and our ShuffleResNet model, and experimentally reconstructed the hologram. We reconstructed the 
hologram using only the red channel and a red laser to simplify the experiment. To evaluate the light efficiency 
of the methods, we defined the relative efficiency as the ratio of the total intensity, defined as the sum of all 

Fig. 7.  Numerical reconstruction results after propagation for intensity-field representation. (a–d) Target 
ground-truth images from DIV2K validation dataset. (e–h) Numerically reconstructed holograms from 
ShuffleResnet. (i–l) corresponding reconstructions from the conventional DPM. Each output is annotated with 
PSNR and SSIM.
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pixel values of the reconstructed image produced by ShuffleResnet, to that of the DPM output under identical 
conditions. This metric quantifies how much brighter the reconstruction is when using our encoding approach.

As shown in Fig.  8, although the image quality remains visually similar between both methods, the 
ShuffleResnet significantly improves light throughput efficieny. In Fig.  8a, ShuffleResnet achieves a relative 
efficiency of 1.608, while in Fig. 8c, the ShuffleResnet achieves 2.909 compared to conventional DPM. These 
results clearly confirm that the ShuffleResnet model achieves a substantial increase in light efficiency over the 
conventional approach.

Discussion and conclusion
While an end-to-end model that directly generates a phase-only hologram from a target image offers advantages 
in terms of application simplicity, our approach of decoupling the generation of the complex field from its 
encoding provides significant advantages in flexibility and modularity. Many computational holography 
algorithms first compute a complex field to address specific challenges before encoding it for display. For 
instance, sophisticated methods have been developed to enhance depth representation33 or to expand the 
display eyebox34. By implementing only the encoding stage, our method provides compatibility with such high-
performance algorithms.

In this study, we introduced a model, ShuffleResnet, designed to enhance the reconstruction quality and light 
efficiency of double phase encoded holograms. Numerical simulation results demonstrate that the proposed 
model achieves higher quality of reconstructed holograms compared to conventional methods. The model 
significantly reduces the artifacts and increases the light efficiency of reconstructed holograms. Compared 
to conventional DPM, ShuffleResnet achieves a 59% increase in light efficiency without compromising 
reconstruction quality, making it well-suited for real-time holographic applications.

Methods
Network training and architecture
The overall framework consists of hologram generation, conventional double phase encoding for supervision, 
model training and evaluation. In our training pipeline, the ShuffleResnet model is trained on complex-
valued holograms generated at random propagation depths to promote generalization in learning wavefront 
propagation. The actual propagation depth for each image is randomly selected as:

	
z = zbase × rand(1, N)

N
� (9)

Where zbase is the base propagation depth, rand(1, N) selects a random integer from 1 to N , and N  is number 
of depth levels considered. Once the propagation depth is determined, the complex wavefield is generated using 
the ASM, which simulates wave propagation in free space.

The initial wave field U (x, y) is first transformed into the spatial frequency domain:

Fig. 8.  Comparison of experimental results between ShuffleResnet (a,c) and conventional DPM (b,d). The 
relative optical efficiency of ShuffleResnet result, compared to the conventional DPM result, is indicated in the 
figure.

 

Conventional DPM ShuffleResnet

PSNR 27.36 28.11

SSIM 0.8729 0.9095

Efficiency 0.2764 0.4405

Table 1.  Evaluation metrics of ShuffleResnet and conventional method based on the 100 images in the 
validation dataset for intensity field calculation.

 

Scientific Reports |        (2025) 15:35720 8| https://doi.org/10.1038/s41598-025-19567-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 U (fx, fy) = F {U (x, y)}� (10)

Where F  denotes the Fourier transform, U (x, y) is the input complex field at the initial plane, U (fx, fy)
is the Fourier domain representation, which describes the spatial frequency components of the wavefront. The 
wavefield is propagated at depth Z  by multiplying it with a phase term in the frequency domain as:

	 U (fx, fy, z) = U (fx, fy) .ejkzz � (11)

Where kz  is the propagation term, defined by:

	 kz =
√

k2 − (2π fx)2 − (2π fy)2� (12)

With k = 2π
λ  as the wave number. (fx, fy) denoting the spatial frequency coordinates. The propagated 

wavefield is transformed back into the spatial domain using the inverse Fourier transform given by:

	 U (x, y, z) = F−1 {U (fx, fy, z)}� (13)

Where F−1 is inverse Fourier Transform, U (x, y, z) is the propagated complex field at depth z.
The generated CGH is encoded using conventional DPM which serves as the supervised training target. 

The real and imaginary components of the complex-valued holograms are separated and concatenated as input 
channels for the model. These holograms undergo pixel unshuffling operations as followed by residual blocks35 
and pixel shuffling36 operations as shown in Fig.  9. The double-phase encoding method arranges two phase 
components ( θ 1 and θ 2) in alternating pixels forming a checkerboard pattern. Standard convolutional neural 
networks apply uniform operations across all pixels, which is inefficient for this alternating structure where 
adjacent pixels represent different phase types. Pixel shuffling operations address this limitation by reorganizing 
the checkerboard pattern into separate channels, enabling independent processing of θ 1 and θ 2components 
before reconstructing the spatial arrangement required for SLM display.

The Pixel Unshuffling operation increases the number of channels while reducing the spatial resolution by 
a Pixel shuffle factor (r). This transformation rearranges spatial information into separate feature channels, 
making it easier for convolutional layers to extract meaningful representations.

	
(B, C, H, W ) →

(
B, C × r2,

H

r
,

W

r

)
� (14)

The Resnet Blocks consist of multiple stacked residual layers, each containing two (3 × 3) convolutional layers, 
followed by Batch Normalization and ReLU activation. This skip connection ensures stable gradient flow and 
prevents vanishing gradient issues. The residual unit can be represented by:

	 H (X) = F (X) + X � (15)

Where F (X) represents the convolutional transformation applied to the input X . The final activation function 
used in ShuffleResnet is Hardtanh, which constrains the output values within a fixed range. The Pixel Shuffling 
operation restores the spatial resolution while reducing the number of channels, effectively reconstructing the 
output. The transformation is:

Fig. 9.  The schematic model architecture of ShuffleResnet. The model ShuffleResnet contains pixel unshuffling 
operation as the first followed by Resnet blocks in the middle, and pixel shuffling operation as the final stage.
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(
B, C × r2,

H

r
,

W

r

)
→ (B, C, H, W )� (16)

The training dataset contains 800 images in DIV2K dataset, which consists of high-resolution natural images. 
Each image is resized to 1080 × 1920 pixels and converted into a complex-valued hologram. To enhance 
generalization, a random propagation depth is assigned for each sample. The base propagation zbase is taken as 
40 mm and N = 8 represents the number of discrete propagation depths. The complex hologram is separated 
into real and imaginary components, which are concatenated along the channel dimension to form the input to 
the model. These holograms undergo pixel unshuffling to rearrange spatial information before being processed 
by Resnet blocks, after which pixel shuffling restores the spatial arrangement while preserving phase structure. 
The model is trained for 400 epochs using Adam optimizer with a learning rate of 0.0001, and a batch size of 1. 
The training time for the model is 25 h. For validation, we use DIV2K validation dataset, which contains 100 
images. In this case, the fixed depth of -10 mm was used to generate the hologram input. The reconstruction 
was performed in the SLM plane using ASM. A band-limiting optical filter was applied during the simulation to 
reduce diffraction noise. Finally, the reconstructed output was propagated to 5 mm to get the final intensity-field 
representations, simulating the output seen on a real optical display.

Validation results across various distances
Table 2 shows the validation performance of proposed model across various distances for complex field in terms 
of PSNR and light efficiency using 100 images from the DIV2K validation dataset. The results demonstrate 
that reconstruction quality shows minimal dependency on propagation distance, with PSNR values remaining 
within a narrow range of ± 0.8 dB and efficiency values stable around 0.44–0.47, confirming the model’s robust 
generalization across different depths.

Ablation study results
To validate the contribution of each proposed component in ShuffleResnet, we conducted systematic ablation 
experiments by removing key architectural elements and training objectives. Table 3 summarizes the ablation 
study results, demonstrating the impact of individual components on reconstruction quality and light efficiency 
for complex field.

The removal of pixel shuffle and unshuffle operations yielded a PSNR decrease of 7.39 dB, illustrating 
their critical role in managing the complex spatial structure of double phase encoding. While the efficiency 
slightly increased to 0.4954 in this configuration, this improvement came at the severe cost of reconstruction 
quality. Elimination of the unsupervised reconstruction loss produced an even more substantial performance 
degradation, with PSNR decreasing by 7.94 dB and efficiency declining to 0.2764, performing lower than 
conventional DPM. These results indicate that the reconstruction loss constitutes the primary mechanism 
driving both quality enhancement and efficiency improvement, as it optimizes the network to generate clean, 
artifact-free holograms from the original complex field rather than replicating conventional DPM patterns.

Experimental setup
Our experimental setup consists of a 638 nm red laser, a phase-only SLM, a 4-f imaging system, and a camera 
to capture the reconstructed hologram. The phase-only hologram, generated by either the ShuffleResnet model 
or the conventional DPM method, is uploaded onto the SLM. The collimated laser beam illuminates the SLM, 
modulating the wavefront based on the encoded phase. The modulated light is then relayed through a 4-f system 
to remove the undesired patterns, and the resulting reconstructed field is recorded by a CMOS camera placed 
at a propagation distance of − 60 mm from the SLM plane. The captured intensity data is used to assess light 
efficiency by computing the sum of pixel intensities in the red channel.

Components PSNR (dB) Efficiency

ShuffleResnet 30.47 0.4677

w/o pixel shuffle 23.08 0.4954

w/o unsupervised loss 22.53 0.2764

Table 3.  Ablation study results for individual components on reconstruction quality and light efficiency.

 

z (mm) -10 -20 -30 -40 -50 -60 -70 -80

PSNR (dB) 30.47 30.99 30.28 30.86 30.22 30.78 30.47 30.30

Efficiency 0.4677 0.4555 0.4699 0.4671 0.4654 0.4376 0.4406 0.4592

Table 2.  Validation results performance of ShuffleResnet across various distances for complex field in terms of 
PSNR and light efficiency.

 

Scientific Reports |        (2025) 15:35720 10| https://doi.org/10.1038/s41598-025-19567-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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