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Strapdown inertial navigation systems (SINS) integrated with two-dimensional laser Doppler 
velocimeters (2D-LDVs) present a promising autonomous navigation solution for land vehicles, 
particularly in GNSS-denied environments. However, their performance is often degraded by vehicle 
sideslip and outliers in 2D-LDV measurements. This paper addresses these challenges by proposing 
a novel fault-tolerant SINS/Dual-2D-LDV tightly coupled integration scheme. In this scheme, two 
2D-LDVs are integrated with SINS to create a redundant measurement model. This model utilizes the 
raw measurements from both LDVs along with the vehicle’s lateral zero-velocity constraint. To handle 
anomalies, a fault detection method based on the Local Outlier Factor (LOF) is introduced to identify 
measurement outliers and violations of the zero-velocity constraint. An adaptive filter, whose gain is 
dynamically adjusted by the LOF value, is then employed to mitigate the impact of these anomalies 
on the integrated navigation solution. The effectiveness and robustness of the proposed method 
are validated through two sets of long-distance vehicle experiments. Results demonstrate that the 
proposed scheme achieves superior positioning accuracy in both horizontal and vertical directions 
compared to traditional approaches. Furthermore, the LOF-based fault detection method proves 
to be more sensitive and effective in identifying anomalies than the traditional residual chi-squared 
detection method, enhancing the overall reliability of the system.
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The demand for high-precision, reliable, and real-time navigation in modern vehicles has surpassed the 
capabilities of single-sensor systems1,2. Integrated navigation systems, which fuse data from multiple sensors, 
have emerged as the dominant solution to leverage the strengths of each sensor while mitigating their individual 
weaknesses.

For vehicle-mounted integrated navigation systems, various sensors are typically employed, including 
strapdown inertial navigation systems (SINS), global navigation satellite systems (GNSS), odometers (OD), 
barometers, LiDAR, cameras, and others3–6. SINS offer autonomous, six-degree-of-freedom navigation data, but 
their accuracy degrades over time due to initial alignment errors and sensor drift7. GNSS provide continuous, 
high-precision positioning, but as a satellite-based system, its signals are vulnerable to interference and 
obstruction, leading to significant performance degradation in challenging environments8.

For decades, the integration of SINS and GNSS has been the most effective and widely adopted method for 
high-quality land vehicle navigation. However, the system’s reliability is severely compromised in scenarios with 
poor satellite visibility, such as tunnels and urban canyons. To address this, OD are frequently used to provide 
velocity and distance measurements, maintaining positioning capabilities when GNSS signals are unavailable. 
While ODs are fully autonomous, their accuracy is susceptible to wheel-related issues like skidding, tire pressure, 
and wear. Other sensors, such as barometers, LiDAR, and cameras, also face limitations from environmental 
conditions and vehicle dynamics, which can affect their reliability4,9.

The critical vulnerability of GNSS in specific environments highlights a fundamental challenge for autonomous 
navigation: the need for a robust, reliable, and high-precision solution that can operate independently of 
satellite signals. While SINS/OD integration is a common approach, the limitations of mechanical odometers—
particularly their susceptibility to measurement inaccuracies from wheel dynamics—create a persistent need for 
more reliable alternatives10.
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In recent years, Laser Doppler velocimeter (LDV), widely acclaimed in the field of metrology, has been used 
for the autonomous navigation of land vehicles. LDV emits a laser beam to the ground and determines the 
velocity of the vehicle by measuring the Doppler shift in the scattered light. This non-contact measurement 
mode makes the accuracy of LDV independent of vehicle slippage and wheel conditions, resulting in higher 
measurement accuracy than OD11. Numerous studies have demonstrated the effectiveness and superiority of 
SINS/LDV integration12–15.

Most currently used SINS/LDV integrations utilize one-dimensional LDV (1D-LDV), which only measures 
the forward velocity of the vehicle16. The 3D velocity measurement of the vehicle is achieved by non-holonomic 
constraints (NHC), which assume that the vehicle does not slip or jump during driving, keeping the lateral 
and vertical velocities at zero17. However, actual driving conditions often cause bumps, violating the NHC and 
reducing the height estimation accuracy of the integrated navigation system. Additionally, for both SINS/OD and 
SINS/1D-LDV integration, factors such as vehicle load changes, ground conditions, and tire inflation coefficients 
can change the pitch misalignment angle between the vehicle frame and the body frame, indirectly reducing the 
height estimation accuracy12. To improve height estimation accuracy in SINS/1D-LDV integration, Wang et al. 
proposed a Schmidt state-transform Kalman filter algorithm, which enhances the observability of the vertical 
channel and improves height positioning accuracy13. Chiang et al. introduced a barometer into the integrated 
navigation system, significantly enhancing the height accuracy18. Although these algorithmic improvements 
and additional barometers can improve height estimation accuracy, they also increase algorithm complexity and 
economic cost. To address these issues, our prior research improved the optical path structure and modeling 
method of the LDV, enabling it to measure both forward and vertical velocities simultaneously, resulting in a 
2D LDV19,20. Compared to SINS/1D-LDV integration, SINS/2D-LDV integration significantly improves height 
accuracy21–23.

In summary, LDV, particularly 2D-LDV is well-suited for constraining SINS errors in environments 
without GNSS signals. Previous studies by Du et al. and Xiang et al. on SINS/GNSS/1D-LDV and SINS/
GNSS/2D-LDV integration, respectively, demonstrated that SINS/GNSS/LDV integration can maintain high 
positioning accuracy even in GNSS-obstructed environments, such as urban canyons22,24. Additionally, Fu et 
al. investigated a high-precision SINS/1D-LDV integration under GNSS-denied conditions, accounting for the 
installation misalignment between SINS and LDV, as well as the influence of the lever arm, and analyzed system 
observability12. In a 230 km long-distance experiment, this system achieved positioning accuracy better than 
0.02% of the total mileage in both horizontal and vertical directions. For special applications, such as military 
vehicles that must operate without GNSS, the reliability of the integrated navigation system is crucial. Although 
SINS/LDV integration provides high-precision autonomous navigation, one of its key requirements is that the 
LDV operates normally and is not affected by measurement outliers. The SINS/1D-LDV integration cannot 
handle prolonged LDV failures or abnormal outputs. To address this limitation, Wang et al. introduced an OD to 
form a SINS/OD/1D-LDV integration, using a federated Kalman filter to fuse the data from all three sensors25. 
Furthermore, in reference13a centralized state transformation Kalman filter was applied to fuse SINS, OD, and 
1D-LDV data, significantly improving accuracy over SINS/OD and SINS/1D-LDV integrations. For 2D-LDV, 
which uses multiple measurement beams, raw velocity data from each beam can directly constrain SINS errors 
in a tightly coupled integration, improving the robustness of the system22,23. However, it can only handle short-
term failure of a single 2D-LDV beam. If both beams fail simultaneously or a single beam fails for an extended 
period, the system degrades to pure inertial navigation, causing rapid error divergence. Moreover, 2D-LDV 
cannot measure lateral velocity, so SINS/2D-LDV integration still relies on the lateral zero-velocity constraint 
from the NHC. Any violation of this constraint negatively impacts the system’s performance.

To enhance the reliability of autonomous navigation for land vehicles and address the limitations of existing 
SINS/2D-LDV integration methods, this paper proposes a fault-tolerant SINS/Dual-2D-LDV tightly coupled 
integration scheme. The primary contributions of this work are as follows:

	(1) 	 A Fault-Tolerant SINS/Dual 2D-LDV Tightly Coupled Integration Scheme: Unlike previous SINS/single 
2D-LDV schemes, this paper utilizes the raw measurements from two 2D-LDVs and a lateral zero-velocity 
constraint. This creates a redundant and multi-constrained tightly coupled measurement model, which is 
then combined with a fault diagnosis method and an adaptive filter to handle vehicle sideslip and 2D-LDV 
outliers.

	(2)	 A LOF-Based Adaptive Filtering Strategy: The LOF algorithm is applied to simultaneously detect meas-
urement outliers and violations of the zero-sideslip constraint. This differs from traditional residual-based 
chi-squared test methods and is more effective at handling nonlinear and complex outlier scenarios. Fur-
thermore, the LOF value is used as an adaptive factor to dynamically adjust the filter’s gain based on the 
severity of the outlier, allowing for more precise fault-tolerant control.

	(3)	 Dual-Verification: The effectiveness of the proposed method is comprehensively validated through two 
long-distance real-vehicle experiments conducted in different environments.

The subsequent sections of this paper are structured as follows: Sect. Proposed integration scheme introduces 
the proposed fault-tolerant SINS/Dual-2D-LDV tightly coupled integration scheme. Section Experiment results 
and analysis validates and analyzes the effectiveness of the proposed scheme through two sets of long-distance 
vehicle experiments. Section Conclusion provides the conclusions of this paper.

Proposed integration scheme
Before describing the proposed integrated scheme, the coordinate frames used in this paper are defined. The 
east-north-up geographic frame is selected as the navigation frame (n frame) for SINS calculations. The inertial 
measurement unit (IMU) body frame, determined by the calibrated sensitive axes of the inertial sensors, is 
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referred to as the b frame, with its origin at the IMU’s sensitive center and its axes oriented rightward, forward, 
and upward, respectively. Similarly, the body frames of the first and second LDVs are denoted as the m1 frame 
and m2 frame, respectively, with their origins at the LDV’s measuring centers and their axes directed rightward, 
forward, and upward, respectively. The LDV beam frames for the first and second LDVs, defined by the beams 
of each LDV (comprising two actual beams and one virtual beam), are denoted as the beam1 frame and beam2 
frame, respectively.

The SINS/Dual-2D-LDV tightly coupled integration scheme is shown in Fig. 1. This scheme comprises three 
primary components: First, the SINS/Dual-2D-LDV tightly coupled model is constructed, where the SINS is 
tightly coupled with each of the two 2D-LDVs to calculates the velocity difference between the two 2D-LDVs and 
the SINS within the beam1 frame and beam2 frame. Second, fault diagnosis is performed based on the velocity 
difference obtained in the first step. The LOF is used to detect the six components of the velocity differences, 
yielding the LOF value that reflects the degree of data abnormality. Finally, the velocity difference obtained in the 
first step and the LOF value obtained in the second step are input into a sequential adaptive Kalman filter. In this 
filter, the velocity difference serves as the measurement value, and each value is processed individually. Different 
processing strategies—normal filtering, adaptive filtering, or isolation—are applied based on the magnitude of 
the LOF value. A detailed explanation of these three components is provided below.

SINS/Dual-2D-LDV tightly coupled model
Error model analysis
The 2D-LDV features two intersecting measurement beams. Each beam measures the Doppler shift to obtain 
the 1D velocity along its direction. Based on the geometric relationship between the two measurement beams, 
the 2D velocity can be determined, as detailed in reference21. Figure 2 illustrates a commonly used optical path 
structure of a 2D-LDV, the beam relationship of 2D-LDV, and the geometric relationship between the beam 
frame and the 2D-LDV body frame (m frame) based on this optical path structure.

As shown in Fig. 2, the two measurement beams of the 2D-LDV are emitted at inclination angles θ1 and θ2, 
with corresponding measured velocities υbeam1 and υbeam2. The virtual beam is perpendicular to the plane 
formed by these two measurement beams, with a velocity υbeam3 of zero in its direction to satisfy the lateral 
zero-velocity constraint of land vehicles. Together, the two measurement beams and the virtual beam form the 
beam frame of the 2D-LDV. The m′ frame is directly defined based on the geometric relationship between the 
two measurement beams of the 2D-LDV, as follows: the angle bisector between the two measurement beams 
serves as the Z-axis, with the upward direction being positive; the Y-axis is perpendicular to the Z-axis and lies 

Fig. 1.  Designed system architecture for SINS/ Dual-2D-LDV integration.
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in the plane formed by the two measurement beams, with the forward direction being positive; and the X-axis is 
determined by the right-hand rule, based on the Y-axis and Z-axis. According to the definition of the m′ frame, 
there are defined transformation relationships between the m′ frame, the beam frame, and the m frame. The 
transformation matrix Cm′

m  from the m frame to the m′ frame and the transformation matrix Cbeam
m′  from the 

m′ frame to the beam frame are expressed as follows, according to reference21:

	
Cm′

m =

[
1 0 0
0 cos α − sin α
0 sin α cos α

]T

� (1)

	
Cbeam

m′ =

[
0 sin θ − cos θ
0 − sin θ − cos θ
1 0 0

]
� (2)

where θ denotes the angle between the angular bisector of the two measurement beams and each of the beams. 
α represents the deviation angle between the m′ frame and the m frame, which is determined by the inclination 
angles of the two measurement beams of the 2D-LDV, and is expressed as follows:

	
α = π − (θ1 + θ2)

2
� (3)

According to Eqs. (1) and (2), the following transformation relationship exists between the velocities in the beam 
frame and the n frame:

	 υbeam = [ υbeam1 υbeam2 υbeam3 ]T = Cbeam
m′ Cm′

m Cm
b Cb

nυn� (4)

where υbeamand υn are the true velocities in the beam frame and n frame, respectively. Cm
b  and Cb

n are 
the attitude transformation matrices from the b frame to the m frame and from the n frame to the b frame, 
respectively.

In practice, when considering the attitude errors of SINS, the mounting misalignment angle error between 
the b frame and the m frame, and the deviation of the actual beam inclination of the 2D-LDV from its design 
value, the used C̃beam

m′ , C̃m
b , and C̃b

n satisfy the following equations:

	
C̃

beam
m′ =

[
0 sin θ − cos θ
0 − sin θ − cos θ
1 0 0

]
+

[
0 cos θ sin θ
0 − cos θ sin θ
0 0 0

]
∆θ = Cbeam

m′ + Cθ∆θ� (5)

	 C̃
m
b ≈ (I3 + δϕm×) Cm

b � (6)

	 C̃
b
n ≈ Cb

n (I3 + φ×)� (7)

where ∆θ denotes the deviation between the design value of θ and its actual value, I3 is the identity matrix of 
size three, (·) × is employed to resolve the antisymmetric matrix, φ represents the attitude error of the SINS, and 
δϕm = [ δϕmx δϕmy δϕmz ]T  denotes the residual mounting misalignment angle error after calibration 
of the SINS/2D-LDV integrated navigation system.

Fig. 2.  (a) Optical path structure of the 2D-LDV. (b) The beam relationship of 2D-LDV. (c) Geometric 
relationship between the beam frame and m frame.
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It is worth noting that the influence of ∆θ on α is not considered in Cm′
m , as this influence will be reflected 

in the pitch mounting misalignment angle error term in δϕm.
Based on Eqs. (4)-(7), the velocity of SINS in the beam frame can be expressed as:

	

υ̃beam
SINS = C̃

beam
m′ Cm′

m C̃
m
b C̃

b
nυ̃n

SINS

≈ υbeam + Cbeam
m′ Cm′

m C̃
m
b Cb

nδυn
SINS − Cbeam

m′ Cm′
m C̃

m
b Cb

n (υn×) φ − Cbeam
m′ Cm′

m (υm×) δϕm + CθCm′
m C̃

m
b Cb

nυn∆θ
� (8)

where υ̃n
SINS  and δυn

SINS  denote the velocity and velocity error of SINS in the n frame, respectively, and satisfy 
the equation υ̃n

SINS = υn + δυn
SINS . υm is the true velocity in the m frame.

When the mounting misalignment angle between the b frame and the m frame is sufficiently small—a 
condition that is easily satisfied—pre-calibration of the SINS/2D-LDV integration may not be required, and in 
this case, C̃m

b = I3 and υm ≈ υb.

SINS/Dual-2D-LDV tightly coupled state equation
The error state vector of the SINS/Dual-2D-LDV tightly coupled integration is defined as:

	 xk =
[

xT
SINS xT

LDV 1 xT
LDV 2

]T � (9)

where

	
xSINS =

[
φT (δυn

SINS)T (δpSINS)T
(
εb

ib

)T (
∇b

ib

)T
]T

� (10)

	 xLDV 1 =
[

δϕT
m−LDV 1 ∆θLDV 1

]T = [ δϕmx−LDV 1 δϕmy−LDV 1 δϕmz−LDV 1 ∆θLDV 1 ]T � (11)

	 xLDV 2 =
[

δϕT
m−LDV 2 ∆θLDV 2

]T = [ δϕmx−LDV 2 δϕmy−LDV 2 δϕmz−LDV 2 ∆θLDV 2 ]T � (12)

where δpSINS  represents the position error of the SINS, while εb
ib and ∇b

ib denote the constant biases of the 
gyroscopes and accelerometers, respectively. The subscripts LDV1 and LDV2 refer to the two 2D-LDVs used in 
the SINS/Dual-2D-LDV tightly coupled integration. Given that the 2D-LDV and IMU are rigidly fixed to the 
vehicle, and that the lasers used in LDVs generally exhibit very high beam stability, both δϕm and ∆θ can be 
treated as random constants. The corresponding error equations are as follows:

	

δϕ̇m−LDV 1 = 03×1
∆θ̇LDV 1 = 0

δϕ̇m−LDV 2 = 03×1
∆θ̇LDV 2 = 0

� (13)

Based on Eq. (13) and the error model of SINS, the error state equation of SINS/Dual-2D-LDV tightly coupled 
integration can be written as

	 ẋk = F kxk + Gkwk � (14)

where F k , Gk , and wk  denote the system state transition matrix, the noise transfer matrix, and the system noise 
vector, respectively, and are expressed as follows:

	
F k =

[
F SINS 015×8
08×15 08×8

]
� (15)

	
Gk =

[
−Cn

b 03×3
03×3 Cn

b
017×3 017×3

]
� (16)

	
wk =

[
εb

w

∇b
w

]
� (17)

where F SINS  is the state transfer matrix derived from the classical 15-dimensional SINS error model26.εb
w  and 

∇b
w  denote the gyroscope and accelerometer noise, respectively.

SINS/Dual-2D-LDV tightly coupled measurement equation
For the SINS/Dual-2D-LDV tightly coupled integration, the velocity difference between the 2D-LDV and SINS 
in the beam frame is used as the measurement value. The measurement equations for this system are constructed 
as follows, based on Eqs. (4) and (8):

	
zk =

[
υ̃beam1

LDV 1 − υ̃beam1
SINS

υ̃beam2
LDV 2 − υ̃beam2

SINS

]
≈

[
υbeam1 − υ̃beam1

SINS

υbeam2 − υ̃beam2
SINS

]
= Hkxk + vk � (18)
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where zk  represents the measurement vector, while vk  denotes the measurement noise, which is zero-mean 
Gaussian white noise, and Hk  is the measurement transition matrix, expressed as follows:

	

Hk =
[

Cbeam1
m′1

Cm′
1

m1 C̃
m1
b Cb

n (υn×) −Cbeam1
m′1

Cm′
1

m1 C̃
m1
b Cb

n 03×9

Cbeam2
m′2

Cm′
2

m2 C̃
m2
b Cb

n (υn×) −Cbeam2
m′2

Cm′
2

m2 C̃
m2
b Cb

n 03×9

Cbeam1
m′1

Cm′
1

m1 (υm1 ×) −Cθ1 Cm′
1

m1 C̃
m1
b Cb

nυn 03×3 03×1

03×3 03×1 Cbeam2
m′2

Cm′
2

m2 (υm2 ×) −Cθ2 Cm′
2

m2 C̃
m2
b Cb

nυn

]� (19)

Fault detection
For the SINS/2D-LDV tightly coupled integration, when the measurement value of a single measurement 
beam of 2D-LDV is abnormal, the measurement value of the remaining normal measurement beam will still 
partially limit the velocity error of SINS. This presents a clear advantage over the SINS/2D-LDV loosely coupled 
integration. Therefore, the SINS/Dual-2D-LDV tightly coupled integration, which employs two 2D-LDVs, can 
better constrain the SINS velocity error by utilizing more normal velocity measurements when some beams 
of the 2D-LDV exhibit anomalies, thereby achieving higher reliability than the SINS/2D-LDV tightly coupled 
integration. However, measurement anomalies in the 2D-LDVs are not detected and processed, leaving their 
influence on the system unaddressed. Additionally, since the 2D-LDV cannot measure the lateral velocity of 
the vehicle, the lateral velocity measurement of the vehicle is typically realized using NHC lateral zero-velocity 
constraint. Consequently, any violation of this constraint will affect the performance of the SINS/Dual-2D-LDV 
tightly coupled integration. In summary, detecting NHC lateral zero-velocity constraint violations and 2D-LDV 
outliers, and appropriately mitigating their effects, is crucial for maintaining the reliability and accuracy of the 
integrated navigation system.

Local outlier factor
The residual chi-square test method, based on the innovation vector Mahalanobis distance, is among the 
most widely used outlier detection techniques in integrated navigation systems. Its detection performance is 
closely related to the test statistic and threshold. While this method performs well in detecting abrupt faults, it 
is insufficiently sensitive to slow-varying faults. In 2D-LDVs, faults initially manifest themselves as small and 
slowly changing, resulting in small residuals that are difficult to detect. Additionally, the residual chi-square test 
assumes that measurement errors follow a Gaussian distribution. However, the measurement accuracy of the 
2D-LDV is closely related to the scattered light signal received by the internal detector, which can be influenced 
by factors such as ground conditions, lens cleanliness, the distance between the detector and the scattering 
point, and the operational status of the laser. When the scattered light signals are weak, the error distribution 
may deviate from the Gaussian assumption, leading to missed or false detections when thresholds are based on 
the preset chi-square distribution. Thus, it is necessary to develop new methods to detect slow-varying faults 
and non-Gaussian error distributions in the SINS/Dual-2D-LDV tightly coupled integration, and to reduce the 
constraints of assuming a specific statistical distribution on fault detection capability. The LOF method, which 
assesses the degree of an outlier based on the density between an object and its neighboring objects, is a density-
based outlier detection technique. LOF does not require any specific distribution assumptions and has been 
widely applied in power system testing and industrial process monitoring27–29. The specific calculation process 
of LOF is as follows30:

Step 1: Define the K-distance: Given a dataset D, an object p, and a positive integer K, the K-distance of p is 
defined as the distance from the Kth nearest object q to the p in the D to p, denoted as Kdis (p).

Step 2: Define the K-distance neighborhood: Given the K-distance Kdis (p) of p, the K-distance neighborhood 
of p is the set of objects in D whose distance to p is not greater than Kdis (p), i.e.,

	 Nk (p) = {q ∈ D\ {p} |dis (p, q) ⩽ Kdis (p)}� (20)

where dis (p, q) denotes the distance between p and q.
Step 3: Define the reachable distance: Given the K-distance Kdis (q) of q, the reachable distance of p with 

respect to q is defined as the maximum of the Kdis (q) and the distance between the p and q, denoted as:

	 reach − disk (p, q) = max {Kdis (q) , dis (p, q)}� (21)

Step 4: Based on the above definitions, the local reachable density of p is defined as the reciprocal of the average 
reachable distance of its K-nearest neighbors, denoted as:

	

lrdk (p) =


 1

k

∑
q∈Nk(p)

reach − disk (p, q)




−1

� (22)

Step 5: Based on the definition of the local reachable density, the LOF value of p is calculated to evaluate its 
abnormal degree, denoted as:

	
LOFk (p) = 1

k

∑
q∈Nk(p)

lrdk (q)
lrdk (p) � (23)
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From the above LOF calculation steps, it can be seen that the LOF of p is the average of the ratios between the 
local reachability density of p and that of its K-nearest neighbors. The local reachability density reflects the 
degree of object aggregation within a specified neighborhood. If p is a normal value, it does not significantly 
deviate from its neighboring objects, and its local reachable density is at the same level as that of its neighboring 
normal values, resulting in an LOF value close to 1. In contrast, if p is an outlier, it will deviate substantially 
from its neighbors, and its reachable distance to its neighboring objects is often larger. This leads to a lower local 
reachable density for p compared to other normal objects, resulting in an LOF value significantly greater than 1.

Fault detection solution
Since the measurement errors of the filter are reflected in the filter innovation vector, the filter innovation vector 
is chosen as the evaluation object for the LOF. The filter innovation vector is denoted as:

	 ek = zk − Hkxk|k−1� (24)

where xk|k−1 represents the one-step prediction of system state in the Kalman filter.
Based on the filter innovation vector, the dataset required for LOF is constructed as follows:

	

D =




D1
D2
D3
D4
D5
D6


 =




ek−N+1 (1) ek−N+2 (1) · · · ek (1)
ek−N+1 (2) ek−N+2 (2) · · · ek (2)
ek−N+1 (3) ek−N+2 (3) · · · ek (3)
ek−N+1 (4) ek−N+2 (4) · · · ek (4)
ek−N+1 (5) ek−N+2 (5) · · · ek (5)
ek−N+1 (6) ek−N+2 (6) · · · ek (6)


� (25)

where N denotes the set sample size, i.e., the window size of the dataset.
From the implementation of the LOF algorithm, it’s clear that the frequent distance calculations between data 

points lead to high time complexity. For SINS/Dual-2D-LDV tightly coupled integration, with a data update 
frequency of 100 Hz, this presents a significant challenge. While reducing the data window size can lower the 
computational load, it may also cause LOF to miss or incorrectly detect outliers, especially when continuous 
outliers exceed the neighborhood value, K. To balance computation speed and detection accuracy, we use historical 
normal data to construct a dataset, Dh. During real-time operations, we compare the new filter innovation vector 
with Dh to identify abnormal measurements. To further enhance LOF’s detection accuracy, we classify the data 
in Dh based on the vehicle’s forward velocity. This classification strategy is crucial for accounting for the impact 
of vehicle maneuvers on measurement accuracy. Greater vehicle maneuvers can increase measurement noise 
due to effects like Doppler frequency spread and a reduced number of sampling points within a signal period. 
Additionally, aggressive maneuvers can increase vehicle jolting, further compromising the LDV’s measurement 
precision. Based on these potential issues, we build our dataset from historical normal filter innovation vectors 
and classify them according to the vehicle’s forward velocity. This allows us to compare the current innovation 
vector against a more relevant and specific dataset to identify abnormal measurements. Different classification 
standards are applied for the dataset components related to 2D-LDV beam measurements and those related to 
the NHC lateral zero-velocity constraint, as shown below:

	
Dhj(j=1,2,4,5) = {Dhj (υfor = 0) , Dhj (0 < υfor ⩽ 5) , Dhj (5 < υfor ⩽ 10) , Dhj (10 < υfor ⩽ 15) , Dhj (15 < υfor ⩽ 20) ,

Dhj (20 < υfor ⩽ 25) , Dhj (25 < υfor ⩽ 30) , Dhj (υfor ⩾ 30)} � (26)

	 Dhj(j=3,6) = {Dhj (υfor = 0) , Dhj (υfor ̸= 0)}� (27)

where υfor  denotes the forward velocity of the vehicle obtained by the SINS/Dual-2D-LDV integration, in 
meters per second (m/s).

According to Eqs. (26) and (27) and the current υfor , (25) can be rewritten as

	

D =




Dh1 (υfor) ek (1)
...

...
Dh6 (υfor) ek (6)


� (28)

To identify the specific location of outliers, each component of the filter innovation vector is individually 
analyzed by calculating its respective LOF value. For clarity, this paper demonstrates the LOF calculation process 
using the first component of the filter innovation vector as an example. Based on Eq. (28), the spatial distance 
matrix (SDM) for the dataset D is expressed as follows:

	

SDM1 =




dis (D1 (1) , D1 (1)) · · · dis (D1 (1) , D1 (N))
...

...
...

dis (D1 (N) , D1 (1)) · · · dis (D1 (N) , D1 (N))


� (29)

In Eq.  (29), each row of the SDM represents the Euclidean distances between a specific object and all other 
objects in the dataset. By sorting each row of the SDM in ascending order, the neighborhood set and K-distance 
of the object are determined based on the pre-set number of neighbors. Using Eqs. (21) to (23), the LOF value of 
the current innovation vector component, denoted as LOFi(i=1,··· ,6) (ek (i)), can be calculated. The calculated 
LOF value is then compared with the preset threshold T 1

i  to assess the anomaly degree of each component of 
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the filter measurement. If the LOF value is below the threshold, it indicates that the local density of the current 
measurement aligns with the historical data, signifying normal, and traditional Kalman filtering is applied. 
However, if the LOF value exceeds the threshold, it suggests the presence of measurement errors, prompting 
additional measures to mitigate the impact of these errors on the integrated navigation system.

There are two primary methods for setting the LOF threshold: an empirical approach, which is simple and 
effective for most outliers, and a more rigorous method using Kernel Density Estimation (KDE). In the KDE 
approach, a collection of LOF values from a dataset is used to build a smoothed probability density function 
(PDF). A false alarm rate, PLOF , is then set, and the corresponding threshold, TLOF , is calculated from the 
PDF. To avoid the added computational complexity of running KDE in real time, and since we use a dataset of 
historical normal data to calculate our LOF values, our final threshold is a fixed value derived from a combination 
of these two methods. We used multiple sets of past normal data to build several test thresholds via KDE and 
then averaged them to get a single, robust, and fixed value. This approach effectively combines the simplicity of 
the empirical method with the statistical rigor of KDE.

Sequential adaptive Kalman filter
Sequential Kalman filter
To facilitate the detection of outliers in each component of the measurements and mitigate their impact on the 
SINS/Dual-2D-LDV tightly coupled integration, sequential Kalman filter is used instead of standard Kalman 
filter. References31,32 demonstrates the equivalence between sequential and standard Kalman filter. The process 
of sequential Kalman filter is as follows:

Step 1: Time update

	 x̂k/k−1 = F k/k−1x̂k−1� (30)

	 Pk/k−1 = F k/k−1Pk−1F T
k/k−1 + Gk−1Qk−1GT

k−1� (31)

where x̂k/k−1 and Pk/k−1 represent the one-step predicted state vector and the one-step predicted state error 
covariance matrix, respectively, and Qk−1 denotes the system noise covariance matrix.

Step 2: Initialize the measurement update loop

	 x̂
(0)
k = xk/k−1� (32)

	 P(0)
k = Pk/k−1� (33)

Step 3: Measurement update loop for each measurement.
First rewrite (18) as:

	




z
(1)
k

z
(2)
k

z
(3)
k

z
(4)
k

z
(5)
k

z
(6)
k




=




H(1)
k

H(2)
k

H(3)
k

H(4)
k

H(5)
k

H(6)
k




xk +




v
(1)
k

v
(2)
k

v
(3)
k

v
(4)
k

v
(5)
k

v
(6)
k




� (34)

For l = 1, · · · , 6(where l is the number of the measurements), perform the following:

	
K(l)

k = P(l−1)
k

(
H(l)

k

)T
[

H(l)
k P(l−1)

k

(
H(l)

k

)T

+ R(l)
k

]−1

� (35)

	 x̂
(l)
k = x̂

(l−1)
k + K(l)

k (z(l)
k − H(l)

k x̂
(l−1)
k )� (36)

	 P(l)
k = (I − K(l)

k H(l)
k )P(l−1)

k
� (37)

where K(l)
k  and R(l)

k  denote the filter gain matrix and the measurement noise covariance matrix corresponding 
to the l-th measurement, respectively.

Step 4: Complete the measurement update

	 x̂k = x̂
(l)
k

� (38)

	 Pk = P(l)
k

� (39)

Adaptive filter
The vehicle’s motion state and ground conditions are variable, resulting in different degrees of violation of the 
NHC lateral zero-velocity constraint and varying levels of anomalies in the 2D-LDV measurements. Therefore, 
in addition to the threshold T 1

i , a second threshold T 2
i  is introduced to develop an adaptive filter based on the 

LOF value. The formula for calculating the adaptive factor in the adaptive filter is as follows:
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βki =




1 LOFi (ek (i)) ⩽ T 1
i

1 + LOFi(ek(i))−T 1
i

T 2
i

−T 1
i

Wi T 1
i < LOFi (ek (i)) ⩽ T 2

i

+∞ LOFi (ek (i)) > T 2
i

� (40)

where Wi is the scale factor, representing the inflation multiple of the measurement noise covariance matrix 
when the LOF value reaches T 2

i . For the SINS/Dual-2D-LDV tightly coupled integration used in this paper, 
empirical evidence suggests that this factor typically ranges from 1 to 4.

When the LOF value is less than T 1
i , the measurement is deemed normal, and the adaptive filter is not 

required; in this case, the adaptive factorβki is set to 1. If the LOF value falls between T 1
i  and T 2

i , the measurement 
is considered to have a low degree of anomaly. In this scenario, the measurement’s weight in the filter is reduced 
by inflating the measurement noise covariance matrix, which helps mitigate the impact of measurement errors 
on the system. When the LOF value exceeds T 2

i , the measurement is regarded as highly anomalous, indicating 
significant measurement errors, and the measurement is isolated by setting the adaptive factor to infinity.

According to Eq. (40), Eq. (35) can be rewritten as:

	
K(l)

k = P(l−1)
k

(
H(l)

k

)T
[

H(l)
k P(l−1)

k

(
H(l)

k

)T

+ β2
klR

(l)
k

]−1

� (41)

By using Eq. (41), the filter gain matrix for anomalous measurements is reduced to mitigate the impact of outliers 
on the system.

Experiment results and analysis
Before conducting experimental validation, a SINS/Dual-2D-LDV tightly coupled integration onboard 
experiment was conducted to construct the dataset required for the LOF outlier detection method. Subsequently, 
two sets of onboard experiments were conducted using the same system to verify effectiveness of the proposed 
method. As depicted in Fig. 3, the test system consists of two independently developed 2D-LDVs, a self-developed 
high-precision IMU, and a high-precision dual-antenna differential GNSS system produced by BDSTAR. The 
main parameters of these components are detailed in Table 1.

The vehicle trajectory and the distribution of forward and lateral velocities during the vehicle’s motion, 
required for constructing the dataset for the LOF-based outlier detection method, are shown in Fig. 4. To ensure 

Sensor Performance Specification

IMU

Gyro bias stability 0.003°/h

Gyro random walk 0.0005◦/√h

Accelerometer bias stability 20 µg

Accelerometer random walk 5 µg/√h

Data update rate 100 Hz

2D-LDV
Measurement accuracy 0.08%

Data update rate 100 Hz

GNSS
Measurement accuracy 0.1 m (RTK)

Data update rate 10 Hz

Table 1.  Specifications of the experimental apparatus.

 

Fig. 3.  Test vehicle and experimental system.
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that the constructed dataset contains only normal data, the SINS/GNSS integration, based on a high-precision 
IMU and differential GNSS, was used to evaluate the 2D-LDV outliers and vehicle sideslip to remove abnormal 
data during the dataset construction process. Additionally, to further improve dataset accuracy, the data was 
classified based on the vehicle’s forward and lateral velocities. After constructing the required dataset, the 
following parameters were configured to ensure the efficiency and accuracy of the proposed LOF-based outlier 
detection method: the data window size N for LOF detection was set to 100, where 99 values were randomly 
selected from the classified dataset based on the current vehicle velocity to evaluate whether the current data was 
normal. The neighborhood value K for LOF was set to 75, the four primary detection thresholds for the 2D-LDV 
measurements were set to 7.5, and both primary detection thresholds for the vehicle’s lateral velocity were set to 
3. A secondary detection threshold of 20 was applied to all measurements.

To evaluate the performance of the proposed SINS/Dual-2D-LDV tightly coupled integration scheme, the 
following five schemes were designed for comparative analysis:

Scheme 1: SINS/2D-LDV tightly coupled integration based on the first 2D-LDV.
Scheme 2: SINS/2D-LDV tightly coupled integration based on the second 2D-LDV.
Scheme 3: SINS/Dual-2D-LDV tightly coupled integration.
Scheme 4: SINS/Dual-2D-LDV tightly coupled integration based on the robust Kalman filter from reference33.
Scheme 5: SINS/Dual-2D-LDV tightly coupled integration scheme proposed in this paper.
The first vehicle validation experiment lasted approximately 2.15 h, covering a distance of about 170.65 km. 

The vehicle’s trajectory and the outputs from the two 2D-LDVs are illustrated in Fig. 5, where υLDV  denotes 
the vehicle’s forward velocity, derived from the raw outputs of the two 2D-LDVs. Figures 6 and 7 display the 
horizontal and vertical positioning accuracies for the different schemes, with the maximum position error (Max) 
and root mean square error (RMSE) for each scheme provided in Table 2. Figures 8 and 9 present the estimation 
results for the misalignment angles between the 2D-LDVs and the IMU, as well as the beam inclination angle 
deviations of the 2D-LDVs. From Figs. 6 and 7, and Table 2, it is evident that all five schemes achieve satisfactory 
positioning accuracy without prior system calibration. The maximum horizontal position error is less than 60 m, 
which is better than 0.35‰ of the total mileage, and the corresponding RMSE is less than 0.2‰ of the total 
mileage. This highlights the excellent performance of the SINS/2D-LDV integration, the ultra-high measurement 
precision of the 2D-LDVs, and the advantages of non-contact measurement, making 2D-LDVs highly suitable for 
vehicular navigation. Differences in positioning accuracy between Schemes 1 and 2 are attributed to the distinct 
performance characteristics of the two 2D-LDVs, their varied installation relationships with the vehicle body 
and IMU, and discrepancies in the Kalman filter’s estimation of the misalignment angles and beam deviations of 
the two 2D-LDVs. The horizontal positioning accuracy of Schemes 3, 4, and 5 exceeds that of Schemes 1 and 2, 
indicating that utilizing two 2D-LDVs in the SINS/2D-LDV tightly coupled integration improves accuracy over 
using a single 2D-LDV. This improvement results from the additional information provided by the two 2D-LDVs, 
which helps mitigate the impact of outliers in the 2D-LDV data on the system. The positioning accuracy of 
Scheme 4 is slightly better than that of Scheme 3, demonstrating that the traditional robust Kalman filter, based 
on residual chi-square detection, can further alleviate the influence of outliers. Scheme 5 achieves the highest 
positioning accuracy, highlighting the effectiveness and superiority of the proposed method. Figures 8 and 9 
show that all five schemes are capable of estimating the misalignment angles between the 2D-LDVs and the 

Fig. 4.  (a) Vehicle trajectories for constructing LOF dataset. (b) Vehicle forward velocity obtained from SINS/
GNSS integration. (c) Vehicle lateral velocity obtained from SINS/GNSS integration.
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IMU, as well as the beam inclination angle deviations. The roll misalignment angle ϕmy  converges more slowly 
due to weaker observability, as the vehicle’s lateral and vertical maneuvers are much smaller than its forward 
maneuvers. Additionally, Fig. 8 reveals that the pitch misalignment angleϕmy−LDV 1 in Scheme 1 significantly 
deviates from the other four schemes, explaining the considerably larger height error in Scheme 1 compared to 
the others.

For RMSE and Max, the left column represents absolute errors, while the right column represents relative 
errors.

To demonstrate the advantages of the proposed method in fault detection, Fig.  10 compares the outlier 
detection results of the LOF-based fault detection method with the traditional residual chi-square test based 
on Mahalanobis distance for the first set of experiments. Both methods assess the six components of the filter 
innovation vector. For the residual chi-square test, the preferred threshold is χ2 (0.1), where 0.1 denotes the 
significance level, commonly used in most integrated navigation systems, is selected34. At this threshold, only 
a few 2D-LDV anomalies are detected, and violations of the vehicle’s lateral zero-velocity constraint are not 

Fig. 6.  Horizontal location error of the first experiment. The top is the absolute position estimation error and 
the bottom is the relative position error.

 

Fig. 5.  (a) Vehicle trajectory in the first experiment. (b) 2D-LDV velocity output curve in the first experiment.

 

Scientific Reports |        (2025) 15:35671 11| https://doi.org/10.1038/s41598-025-19574-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


identified at all. Even when using a lower threshold,χ2 (0.25), the residual chi-square test detects only a limited 
number of faults. This is primarily because the 2D-LDV developed by our team has excellent performance, 
with rare occurrences of measurement value loss during use. The most frequent faults encountered are velocity 
retention during poor signal conditions and velocity zeroing when the Doppler signal is overwhelmed by noise at 
very low velocities. However, these faults are slow-varying and minor, while the residual chi-square test is more 
effective at identifying sudden, large faults and is less sensitive to gradual, minor faults. This limitation explains 
why Scheme 4 is less effective compared to the proposed Scheme 5. In contrast, the LOF-based fault detection 
method demonstrates high sensitivity to anomalies in the SINS/2D-LDV tightly coupled integration, whether 
they arise from 2D-LDV measurement errors or violations of the vehicle’s lateral zero-velocity constraint, 
underscoring the superiority of the proposed approach.

To further validate the reliability and superiority of the proposed scheme, a second vehicle experiment was 
conducted. Unlike the first experiment, where the SINS/Dual-2D-LDV tightly coupled integration system was 
not pre-calibrated, this system underwent calibration prior to the second experiment. The vehicle’s trajectory 
and the outputs of the two 2D-LDVs during this experiment are shown in Fig. 11. The experiment lasted 1.66 h, 
covering a distance of 174.77 km. The position errors of the various schemes are presented in Figs. 12 and 13, and 
Table 3. The results indicate that the performance of each scheme in the second experiment mirrors that of the 

Schemes
RMSE (m, 
‰) Max (m, ‰)

Scheme 1
Horizontal error 29.05 0.170 57.02 0.334

Height error 20.16 0.118 37.78 0.222

Scheme 2
Horizontal error 33.59 0.197 59.21 0.347

Height error 8.18 0.048 20.98 0.123

Scheme 3
Horizontal error 26.31 0.154 50.89 0.298

Height error 10.58 0.062 22.04 0.129

Scheme 4
Horizontal error 25.23 0.148 51.49 0.302

Height error 9.79 0.057 18.46 0.108

Scheme 5
Horizontal error 14.17 0.083 37.18 0.218

Height error 7.40 0.043 13.87 0.081

Table 2.  Comparison of the performance of the five schemes in the first test (170.56 Km). Significant values 
are in bold.

 

Fig. 7.  Height positioning error of the first experiment.
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first. Specifically, the SINS/Dual-2D-LDV tightly coupled integration outperforms the SINS/2D-LDV system, 
and the proposed method significantly improves the performance of the SINS/Dual-2D-LDV integration.

For RMSE and Max, the left column represents absolute errors, while the right column represents relative 
errors.

Fig. 9.  Estimation results of the beam inclination angle deviation of the second 2D-LDV and the misalignment 
angle between it and the IMU.

 

Fig. 8.  Estimation results of the beam inclination angle deviation of the first 2D-LDV and the misalignment 
angle between it and the IMU.
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Computing efficiency is just as critical as positioning error for evaluating different integration schemes, as 
it directly relates to their practicality. To this end, the single-step execution time for each integration scheme in 
the two experiments was calculated using a Python performance analysis tool. The hardware environment was 
an AMD Ryzen 7 5800 H processor with a clock speed of 3.20 GHz. The average single-step execution times for 
the different schemes are shown in Table 4. As the table illustrates, the average single-step execution times for 
Scheme 1 and Scheme 2 are comparable and lower than the other three comparative schemes. The execution time 
for Scheme 3 is longer than Schemes 1 and 2, but the increase is marginal, indicating that adding one 2D-LDV 
does not significantly increase the computational burden. The single-step execution time of Scheme 4 is longer 
than that of Scheme 3, suggesting that steps such as calculating the chi-squared statistic add a computational 
overhead. However, this increase is limited due to the low dimensionality of the measurements. The proposed 
Scheme 5 exhibits a substantial increase in execution time, exceeding all other schemes. This is attributed to the 
computational demands of frequently executing the LOF algorithm. Nevertheless, the single-step execution time 
for Scheme 5 is only 2.54 ms, which is well within the 10 ms limit required for a 100 Hz update frequency. This 
analysis demonstrates that the significant improvement in positioning performance achieved by Scheme 5 is a 

Fig. 10.  Fault detection results. (a)–(f): The outlier detection result of the LOF-based fault detection method, 
i.e., LOF1 (ek (1))-LOF6 (ek (6)). (g)–(l) The outlier detection results of the residual chi-square detection 
method, respectively based on ek (1)-ek (6).
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fully acceptable trade-off for its increased computational cost, as the algorithm’s efficiency remains well within 
the system’s operational limits.

Conclusion
To achieve reliable autonomous navigation for land vehicles, this paper proposes a fault-tolerant SINS/Dual-
2D-LDV tightly coupled integration scheme. This scheme employs two 2D-LDVs tightly coupled with SINS to 
enhance the accuracy and reliability of the integrated navigation system. Additionally, LOF is used to evaluate 
anomalies in the 2D-LDV measurements and violations of the vehicle’s lateral zero-velocity constraint. To 
mitigate the impact of these anomalies and violations, an adaptive filter based on the LOF value is developed. 
The effectiveness of the proposed scheme was validated through two long-distance vehicular experiments, each 
exceeding 170 km. Results show that the proposed scheme delivers superior horizontal and vertical positioning 
accuracy compared to other schemes, achieving RMSE values better than 0.1‰ of the total mileage. Moreover, 

Fig. 12.  Horizontal location error of the second experiment. The top is the absolute position estimation error 
and the bottom is the relative position error.

 

Fig. 11.  (a) Vehicle trajectory in the second experiment. (b) 2D-LDV velocity output curve in the second 
experiment.
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the proposed LOF-based outlier detection method outperforms the traditional residual chi-square test in 
identifying 2D-LDV measurement anomalies and violations of the lateral zero-velocity constraint. In future 
work, the use of 3D-LDVs could further reduce the impact of lateral zero-velocity violations, and performance 
could be enhanced with more advanced adaptive algorithms.

Data availability
The data and code used during the current study are available from the corresponding author upon reasonable 
request.

Schemes Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Times (ms) 0.25 0.24 0.37 0.48 2.54

Table 4.  Average single-step execution times of comparison schemes.

 

Schemes
RMSE (m, 
‰) Max (m, ‰)

Scheme 1
Horizontal error 8.90 0.051 18.67 0.107

Height error 1.66 0.009 3.99 0.023

Scheme 2
Horizontal error 8.96 0.051 19.08 0.109

Height error 0.89 0.005 2.61 0.015

Scheme 3
Horizontal error 5.49 0.031 11.23 0.064

Height error 1.23 0.007 1.83 0.010

Scheme 4
Horizontal error 5.25 0.030 10.90 0.062

Height error 0.60 0.003 1.12 0.006

Scheme 5
Horizontal error 4.70 0.027 10.17 0.058

Height error 0.44 0.002 1.11 0.006

Table 3.  Comparison of the performance of the five schemes in the second test (174.77 Km). Significant values 
are in bold.

 

Fig. 13.  Height positioning error of the second experiment.
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