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The nanosized structure and
relative paramagnetic properties
of ZnFe,O, by the polyol processes
and the heat treatment processes
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The controlled synthesis and paramagnetic properties of nanosized Zn—-Fe-O oxides have been
researched by the polyol and the heat treatment processes designed according to drying, annealing,
and sintering from low to high temperatures. The structural changes have led to change weak
superparamagnetism of nanosized Zn-Fe-O oxides in the forms of hybrid nanosized ZnO/ZnFe,O,
oxides into paramagnetism of nanosized ZnFe,O, when the as-prepared samples of both ZnO and
ZnFe,O, oxides were isothermally annealed and sintered from low temperature at about 60 °C to high
temperature at 950 °C for 2 h during their structural phase transitions in all the measurements of x-ray
diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and
SEM/energy dispersive X-ray spectroscopy (EDX) combined methods. Interestingly, it is experimentally
confirmed that one original paramagnetic hysteresis consists of paramagnetic segments and closed
curves. Both normal and abnormal paramagnetic properties of ZnFe,O, were carefully investigated.
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In recent years, the synthesis, fabrication, structural characterization, and investigation of the physical properties
of magnetic micro- and nanomaterials with spinel-type crystal structures have garnered significant attention.
This growing interest arises from the fact that these materials exhibit unique physicochemical characteristics
and tunable functionalities at the nanoscale, making them promising candidates for a wide range of advanced
engineering and technological applications'™. Among them, zinc ferrite (ZnFe,0,) is well known to adopt
a spinel-type crystal structure, which plays a crucial role in determining its magnetic and physicochemical
properties>. Consequently, ZnFe,O, and related spinel ferrites have attracted increasing attention due
to their versatile applications in electronics, telecommunications, magnetism, electromagnetics, catalysis,
energy conversion and storage, as well as environmental remediation’"'*. To realize these applications, a wide
range of chemical and physical synthesis techniques have been employed for the preparation of spinel-type
ZnFe,0, (AB,O,, a generalized original structure) and related ferrite oxides. These include sol-gel methods, co-
precipitation, hydrothermal and solvothermal synthesis, combustion processes, as well as solid-state reactions,
each offering distinct advantages in terms of particle size control, crystallinity, and morphology!>~2>. To meet the
growing demand for magnetic micro- and nanosized powders, researchers have developed polyol-based synthesis
routes for Co-, Ni-, and Fe-based magnetic ferrites, as well as Sr- and Ba-based hexaferrites. These processes
often utilize sodium borohydride (NaBH,) or potassium borohydride (KBH,) as reducing agents, followed
by heat treatment, annealing, and sintering to achieve desired crystallinity and magnetic properties**-*!. The
development of next-generation ferrites and hexaferrites is expected to be driven by the incorporation and doping
of cobalt (Co) as a key functional element?”?%, Currently, polyol-based synthesis routes are widely recognized for
their significant advantages and cost-effectiveness in the fabrication of magnetic nanoparticles. This is largely
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attributed to the inherent limitations and the complexity associated with conventional chemical and physical
methods. These polyol processes provide better control over particle size, morphology, and dispersion, thereby
offering a promising alternative for the scalable production of magnetic nanomaterials??%. Moreover, the
increasing popularity of polyol processes can be attributed to their inherent technological advantages, primarily
arising from the superior solubility and effective dissolution of precursors in glycols, including ethylene glycol
(EG), polyethylene glycol (PEG), and similar solvents. Furthermore, a wide range of nanosized ZnFe,O, ferrites
have found the applications in sensing and photocatalysis?>*>*. In the near future, new and advanced electrode
materials, utilizing nanosized mixed ferrites, are anticipated to play a significant role in applications related
to environmental management, catalysis, energy storage, and the conversion, especially for next-generation
batteries and capacitors**~*°. Therefore, the heating and firing technologies necessitate precise and optimal
experimental conditions to effectively synthesize engineered nanosized magnetic powders.

In this study, nanosized Zn-Fe-O oxides, including ZnO and ZnFe,O,, were synthesized through polyol
processes and heat treatment processes at low and intermediate temperatures ranging from 60 to 700 °C.
Subsequently, the crystal structure of the Zn-Fe-O oxides was transformed into a single crystal structure of
ZnFe,0, through annealing and sintering at temperatures between 800 °C and 950 °C. Moreover, the structures
and properties of the nanosized Zn-Fe-O oxides, including ZnO and ZnFe,O,, were determined using XRD,
VSM, and SEM measurements, in accordance with the engineered processes. In addition, the paramagnetic
properties of all samples of nanosized Zn-Fe-O oxides were also discussed and analyzed in detail. Specifically,
it was found that the single crystal structure of ZnFe,O, was formed at high temperatures of 800 °C, 900 °C, and
950 °C. Finally, the exciting zigzag paramagnetic properties of nanosized Franklinite ZnFe,O, oxides were also
addressed.

Experimental

In the typical polyol processes, precursor chemicals used for synthesis were FeCl, (0.0625 M) (China, AR,
CAS:10025-77-1; characteristic: yellow-brown crystals. Readily deliquescent in air), ZnCl2 (China, AR, CAS:
7646-85-7; characteristic: white powder or powder. Strongly hygroscopic), NaOH (0.0625 M) (China, AR, CAS:
1370-73-2; characteristic: white uniform granular or flaky solid), EG (China, AR, CAS: 107-21-1), PVP (0.375 M)
(China, AR; or Sigma-Aldrich), NaBH 4 (China, AR, CAS: 16940-66-2; appearance: white powder) purchased
from industrial chemicals, following laboratory and industrial manufacturing approach. In the experiments,
FeCl, (0.0625 M) and ZnCl, (0.0625 M) can be used for synthesis (or FeCl, (0.0625 M) can be replaced by FeCl,
(0.0625 M)) (or both FeCl, and FeCl, were used) according to the lab skills and experiences of the experimenters,
and the designed polyol processes?’~3!. We did not need to present the detailed experiment here. The key idea
was that the molar ratio for chemical synthetic reaction between FeCl, and ZnCl, must be carefully adjusted in
2.0,°°3! in comparison with the original chemical equation for synthesis of Fe,O, oxides by scientists***44, To
investigate the kinds of as-prepared nanosized Zn-Fe-O oxides, the most typical samples selected were used,
which were prepared by heat processes and isothermally heated from low to high temperatures in air.

The annealing temperature points used were at about 60, 100, 200, 300, 400, 500, 600, 650, 700, 800, 900, and
950 °C for preparing the magnetic powder samples in a period of 2 h. Additionally, XRD, SEM (SEM/EDX),
and VSM measurements were performed at room temperature in order to determine the crystal structures and
related magnetic properties, respectively. Typically, the features of magnetism and hysteresis loops of M-H of
nanosized Zn-Fe-O oxide powders were measured using a VSM, EZ9 vibrating sample magnetometer (VSM,
MicroSense, LLC Corporation, USA), and demagnetization field (Hc) in the range of — 1500 to +1500 Oe.
The crystal structures of the as-prepared samples (magnetic Zn-Fe-O powder samples) were investigated using
XRD from 5 to 80° (Empyrean PANalytical diffractometer, USA). In particle size analysis and image data, the
as-prepared Zn-Fe-O oxide powders were primarily investigated using ultrahigh-resolution scanning electron
microscopy (FESEM, S-4800, Japan) to study their sizes, shapes, and compositions. In addition, SEM (Tescan
Mira, Czech Republic) was used with an FEG Schottky electron emission source combined with SEM imaging
and live elemental composition analysis. The high resolution for imaging and EDX analysis was maintained to
investigate the as-prepared nanosized Zn-Fe-O oxide powders.

Results and discussion

XRD: structure of nanosized ZnFe,O, oxides

In X-ray diffraction, Fig. 1 shows the XRD diagrams of Zn-Fe-O oxides that were isothermally heated at
different temperatures, providing sufficient detail for understanding their crystallization. In the range of
annealing temperatures of 60-950 °C for the samples for 2 h, the identified crystal parameters of two phases
of ZnO and ZnFe,0, oxides in the as-prepared Zn-Fe-O oxides exhibited the values of 26(°) or Two-Theta
(deg), d(A), I(%), and a set of (hkl) planes, i.e. Miller indices in the typical diagrams of XRD. See supplementary
data file (see supplementary Fig. S1 (XRD of all of samples)), and (supplementary Fig. S2 (XRD of ZnFe,O,
samples heated at 800, 900, and 950 °C, in respect with as-prepared samples in Figures: S3, $4, S5, S6, S7, and
$8)). It is emphasized that the XRD data and results of the as-prepared samples of the major phase of nanosized
ZnFe,0, oxides coincided with the standard pattern of PDF#74—2397,°with 18 lines (Franklinite, syn, ZnFe,O,,
cubic structure, Fd-3 m (227)) using A radiation (CuKal, A=1.5406A) in the primary crystal characteristics.
Therefore, the crystal phases of nanosized ZnFeZO 4 oxides show the cubic structure in a cell (a, b, ¢ (A): 8.4432,
8.4432, 8.4432; a, B, y (°): 90.0, 90.0, 90.0). All the samples show the 13 strong lines, and the strongest intensity,
i.e. 1(%) of (311) plane is 100% of intensity. The most typical values of 20 (18.184, 29.908, 35.225, 36.846, 42.806,
53.059, 56.595, 62.139, 65.330, 70.479, 73.488, 74.480, and 78.450 (°), respectively), d (4.8747, 2.9851, 2.5457,
2.4373, 2.1108, 1.7235, 1.6249, 1.4926, and 1.4272(A), respectively), 1(4.2, 32.2, 100, 7.6, 17.5, 14.9, 45.7, 55.9,
0.9,5.7,12.7, 5.2, and 2.7%, respectively), and the Miller index, i.e. a set of (hkl) ((111), (220), (311), (222), (400),
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Fig. 1. XRD diagrams of samples of spinel-type nanosized Zn-Fe-O oxides were isothermally heated at (1) 60,
(2) 100, (3) 200, (4) 300, (5) 400, (6) 500, (7) 600, (8) 650, (9) 700, (10) 800, (11) 900, and (12) 950 °C for 2 h.

(422), (511), (440), (531), (620), (533), (622), and (444), respectively are shown. The unnecessary minor lines
can be ignored in XRD data and analysis. The appearance and disappearance of the lines located at 26=31.8°,
d=2.8135 A, and I= 1682 counts were observed in the temperature range of 400-650 °C. It should be noted that
XRD data and results of the as-prepared samples of the nanosized ZnO phase coincide with the standard pattern
of PDF#74-0534, which contains with 11 lines (Zinc oxide, ZnO, Hexagonal, P63mc(186)). This phase exhibited
the crystal parameters of 20(°) (31.768, 34.421, 47.538, 56.594, 66.374, 67.946, 72.566, and 76.958, respectively),
d(A) (2.8145, 2.6033, 1.9111, 1.6249, 1.4072, 1.3785, 1.3017, and 1.2379, respectively), 1(%) (100, 19.8, 55.5,
22.9,13.8, 19.4, 1.5, and 13.2, respectively), and (hkl), i.e. Miller index ((100), (002), (102), (110), (200), (112),
(004), and (202), respectively). Therefore, the crystal phases of nanosized ZnO show the cubic structure in a cell
(a, b, ¢ (A): 3.24986, 3.24986, 5.20662; a, B, y (°): 90.0, 90.0, 120.0). It is evidenced that there was a significant
change of a mixed structure of mixed ZnO-ZnFe,O, converted into a single ZnFe,O, structure in the range of
annealing temperatures of 700-800 °C, which was due to the good incorporation of Zn into the ZnFe,O, lattice.
In the most important range of annealing temperatures of 800-950 °C, which was critical for the magnetic
powder samples annealed for 2 h, the final products were nanosized ZnFe,O, oxides formed in a single ZnFe,O,
phase, consistent with the standard of their crystallization (Franklinite, syn, cubic structure, Fd-3 m(227)). In
the present research, the crystal phases and structures of large nanosized ZnFe,O, oxide particles were formed
by isothermally heated processes from 800, 900, and 950 °C for 2 h, respectively. The Scherrer equation D =Kx\/
(FWHMxCos0) for one single crystal phase was used to estimate the crystallite sizes of Zn-Fe-O samples based
on XRD data. K is the shape factor of the average crystallite (K=0.89 — 0.94, typically taken as 0.9; A=1.5406
A). The FWHM (Full Width at Half Maximum) was calculated at specific 20 angles. The obtained values D, and
D, of crystallite sizes of ZnO/ZnFe,O, heated from 60 to 700 °C, and those of ZnFe,O, (D)) heated from 800 to
950 °C were listed in Table 1 using pattern simulation with pseudo-Voigt function.

The crystallite sizes of ZnFe,O, (D) were determined to be 11 nm (60 °C), 10 nm (100 °C), 11 nm (200 °C),
12 nm (300 °C), 12 nm (400 °C), 12 nm (500 °C), 16 nm (600 °C), 15 nm (650 °C), 26 nm (700 °C), 63 nm
(800 °C), 61 nm (900 °C), and 52 nm (950 °C), respectively. In hybrid ZnO/ZnFe,O, samples heated in a range
of 60-700 °C, the crystallite sizes of ZnO (D,) were calculated to be 69 nm (60 °C), 75 nm (100 °C), 67 nm
(200 °C), 55 nm (300 °C), 85 nm (400 °C), 56 nm (500 °C), 44 nm (600 °C), 48 nm (650 °C), and 23 nm (700 °C),
respectively.
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Samples | Temp. (°C) | Structure D, (nm) | D, (nm)
1 60 ZnO/ZnFe,O, | 11.0nm | 69.0 nm
2 100 ZnO/ZnFe, O, | 10.0 nm | 75.0 nm
3 200 ZnO/ZnFe,O, | 11.0nm | 67.0 nm
4 300 ZnO/ZnFe,O, | 12.0 nm | 55.0 nm
5 400 ZnO/ZnFe, O, | 14.0nm | 85.0 nm
6 500 ZnO/ZnFe,O, | 12.0 nm | 56.0 nm
7 600 ZnO/ZnFe,0O, | 16.0 nm | 44.0 nm
8 650 ZnO/ZnFe, O, | 15.0nm | 48.0 nm
9 700 ZnO/ZnFe, O, | 26.0nm | 23.0 nm
10 800 ZnFe,0, 63.0nm | 0.0

11 900 ZnFe,0, 61.0nm | 0.0

12 950 ZnFe,0, 520 nm | 0.0

Table 1. The crystallite sizes of ZnO/ZnFe,O, and ZnFe,O,.

VSM: zigzag paramagnetism of nanosized ZnFe,O, oxides

It is confirmed that all the as-prepared samples of nanosized Zn-Fe-O oxides exhibit the typical paramagnetic
properties of magnetization curves (Hc, Ms, Mr, and x), and very small remanent magnetic properties observed
during the measured hysteresis cycles (Figs. 2 and 3). Refer to online supplementary material: supplementary
Figures: S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, and S22 as well as S37 to S48 (original
data). Refer to online supplementary material: supplementary Figures from S23 to S34. As shown in Figs. 2 and
3, the key paramagnetic parameters have been identified in the hysteresis loops with the upward and downward
parts in the change of magnetization M dependent on external magnetic field H. The coercive field shows the
applied field at which M/H changes sign, which leads the averaged values of Hc. Here, Mr means remanent
magnetization of M at H=0. Additionally, saturation M (Ms) is observed when H increases or changes sign.
Figure 3 shows the VSM measurements of nanosized Zn-Fe-O oxides, and the typical samples of nanosized
Zn-Fe-O oxides by the polyol process, and the samples isothermally heated at 60, 100, 200, 300, 400, 500, 600,
and 700 °C. These samples consisted of nanosized mixed ZnO and ZnFe,O, oxides in the two crystal phases,
with the corresponding magnetic parameters given in Tables 1 and 2. Figures 2, 3 and 4 also shows the VSM
measurements of nanosized Zn-Fe-O oxides by the polyol process, and the samples isothermally heated at
800, 900, and 950 °C for 2 h, which displayed the very special forms of nanosized ZnFe,O, oxides in the only
crystal phase and structure (Franklinite, syn, ZnFe,O,, cubic structure, Fd-3 m(227)). There are the similar
shapes of hysteresis loops of four samples (60, 100, 200, and 300 °C), four samples (400, 500, 600, and 650 °C),
one sample (700 °C), three samples (800, 900, and 950 °C) in the four similar stages of hysteresis, which are
typically paramagnetic properties, which can be ideally estimated and allowed in order to study and investigate
three samples isothermally heated at 800, 900, and 950 °C, measured in the different ranges, respectively. The
experimental values of calculated magnetic susceptibility (x; x=M/H or linear fit of M according to H) of the
Zn-Fe-O nanomaterials fabricated in this present study are positive but very small values. They have they
magnitudes of 10~* or 1072, as calculated in Table 2. This is good agreement with other works [49,50], which
could be due to the interesting super-exchange interaction for superparamagnetic/paramagnetic behaviour
responsible for all the as-prepared samples, especially for one typical sample heated at 400 °C for 2 h because of a
new line appeared around at 20=31.8 © in XRD data of crystal structure of hybrid ZnO/ZnFe,0,. It is suggested
that quantum-mechanical calculations by density functional theory (DFT) for understanding the magnetic
behaviour of ZnFe,O, with the most typical [ZnO,] and [FeO,] models in a normal spinel structure or strongly
correlated hybrid magnetic materials*®*°. These particular interactions need to be studied further. This led to
Mr of sample heated at 400 °C exhibiting the highest value among the mentioned samples as well as ZnFe,O, by
other methods'.

It is noted that very weak superparamagnetism of nanosized Zn-Fe-O oxide samples isothermally heated at
60, 100, 200, 300, 400, and 700 °C was transformed into specific paramagnetism of nanosized Zn-Fe-O samples
isothermally heated at 500, 600, 650, 800, 900, and 950 °C, respectively. Therefore, the magnetic characteristics
consist of confirmed superparamagnetic and paramagnetic types in hybrid ZnO/ZnFe,O, oxides, and in
ZnFe,0, oxides.

It is experimentally evidenced that nanosized mixed ZnO-ZnFe,O,-type Zn-Fe-O oxides have small values
of Ms, ranging from 3.737 to 7.259 emu/g (Table 2) in respect with samples isothermally heated at 60, 100, 200,
300, 400, 500, 600, and 700 °C for 2 h. Here, the results show that nanosized mixed ZnFe,0,-type Zn-Fe-O
oxides have Ms from 1.399 to 1.89 emu/g for samples heated at 800, 900, and 950 °C, respectively. The important
variation of structure from nanosized mixed ZnO-ZnFe,O,-type Zn-Fe-O oxides formed in a temperature
range of 60-700 °C into ZnFe,O, was observed in a temperature range from 800, 900, and 950 °C, respectively.
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Fig. 2. Spinel-type nanosized Zn-Fe-O oxides isothermally heated at 60 °C for 2 h.
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It is suggested that this led to the high stability of Zn** and Fe>* cations at tetrahedral sites (T) and octahedral
sites (O) in the theoretical defined crystal structure of ZnFe,O, was relatively achieved through their balanced
valences and cation distribution®3!.

It is observed that the variations of magnetic parameters of nanosized paramagnetic Zn-Fe-O oxide
materials (Fig. 5) according to the calcination temperatures of the heat treatment process, including the average
values of Hc, Mr, Ms, and x as shown in Table 2, respectively. The values of Hc and Mr are relatively small
in hysteresis loops. Mr tended to be proved in the up-part directions of hysteresis loops, which are negative
values (-Mr) (see supplementary Figure S14). Here, ZnFe,O, calcined at 800-950 °C for 2 h has high averaged
value of Hc. The function of linear fit of M can be used in the case that is M=a+bH (emu/g) consistent with
the mathematical estimation based on empirical data, meaning that the small value of M=bxH (emu/g) with
a=0and b=9.84 x 107" for a sample isothermally heated at 950 °C for a period of 2 h. Magnetic properties are
related to each other, depending on the degree and nature of their structure and their interaction with external
magnetic field*. For magnetic nanomaterials, common types are ferromagnetic, ferrimagnetic, paramagnetic
and superparamagnetic, diamagnetic, and ideal diamagnetic (superconducting). In nature, the magnetic
properties of atoms or magnetic moment of atoms led different magnetic materials. One of the properties of
magnetic ferri-, ferro-materials is that the degree of M depends complexly on H due to magnetic anisotropy and
domains. However, paramagnetism and diamagnetism are approximately linearly proportional to H. To explain
paramagnetism, researchers used classical Langevin theory or quantum theory of paramagnetism explained
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Temp. | Hc Mr Ms

(°C) | (Qe) | (emu/g) | (emu/g) |x

60 5.985 | 0.0092993 | 6.799290 | 0.000519
100 4.925 | 0.0088498 | 7.259640 | 0.000558
200 4.829 | 0.0074320 | 6.527320 | 0.000497
300 4.831 | 0.0084485 | 7.249210 | 0.000557
400 0.021 | 0.4224227 | 3.737310 | 0.000265
500 0.023 | 0.0000083 | 4.392395 | 0.000305
600 0.027 | 0.0000123 | 5.171620 | 0.000374
650 0.025 | 0.0000139 | 5.813330 | 0.000430
700 0.021 | 0.0000238 | 6.797285 | 0.000545
800 62.525 | 0.0080471 | 1.399680 | 0.000097
900 22.752 | 0.0046301 | 1.896400 | 0.000132
950 50.028 | 0.0046268 | 1.438070 | 0.000098

Table 2. The averaged values of magnetic parameters of ZnO/ZnFe,O, and ZnFe,O,.

by Brillouin functions when taking into account magnetic quantization,*” which had clarified various kinds of
nanosized ferrites’®3?, as well as nanosized Fe-, Ni-, and Co-based ferrites as well as Ba- and Sr-based hexaferrites
prepared by the polyol processes in experlmental evidences and data®’. Here, ZnFe,O, (or CdFe,0,) was a kind
of normal-spinel ferrite with all Zn?* (or Cd?*) cations at tetrahedral sites in the form of an*[Fe 3]0,% that
was different from inverse-spinel ferrite, i.e. M?* cations stably located at octahedral sites (M: Co, N1) in the form
of Fe*' [M?*Fe’*]0,*. It is suggested that the small contents of Zn element can change magnetic properties of
NiFe,O, or CoFe,O, from ferrimagnetism into paramagnetism or superparamagnetism when Zn cations are
well integrated into the inverse structures to form the various kinds of nanosized mixed spinel ferrites in the
various mixed forms of M?* | Fe 3*[M Z*Fe( )3*]0 2= (0<x<1), i.e. M?* and Fe3* pos51b1y located in both
tetrahedral sites and octahedral sites that leads the kinds of new high entropy ferrites®®. It is usually understood
that the surveys of mixed normal and inverse spinel ferrites were identified in comparison with emphasizing
and addressing the problems of magnetic structures and properties among them,*>*> as well as other catalytic
and electronic properties. In this case, it was believed that there is a complex dependence of M on H for the
as-fabricated ZnFe,O, materials (Fig. 4) from segments from (1) to (11) (See supplementary data file: Figures
from S23 to S34). It is suggested that the magnetic phenomenon that there are many typical minor hysteresis
loops (finely minor hysteresis loops) located on the main original loop of paramagnetic hysteresis. In typical
paramagnetic behavior, the original paramagnetic hysteresis shows many short segments and lines, and other
closed hysteresis loops of ZnFe,O, that are paramagnetic and very small and weak ferromagnetic. In up and
down parts of hysteresis, M-H loops appears the matching paramagnetic segments and lines (straight segments
and lines (1a), 2(a), 9(a), 10(a), 11(a), and others), and extremely small ferromagnetic lines (closed curves), such
as (2), (3), (4), (5), (6), (7), (8), (9), (10), and (11) belonging to original paramagnetic hysteresis of well-sintered
nanosized ZnFe,O, (Figs. 4 and 7). Similarly, it is noted that the segments and lines (3) and (10), (6) and (4) have
the same shapes.

In terms of intrinsic property, the segments of original hysteresis correspond to paramagnetic phenomena
(the zig-zag line: a segment and a line). In addition, very small ferromagnetism is observed on the original
paramagnetic hysteresis. Such magnetic order requires further understanding and research. In our highlights,
it is certain that the prepared samples also demonstrated that high paramagnetic nanosized ZnFe,O, oxides
were finally heated and formed in the different stages of the crystal growth and stability through annealing and
sintering.

SEM: nanosized ZnFe,O,

Typically, Figs. 6 and 7 show the interesting SEM and SEM/ EDX results of nanosized Zn-Fe-O oxide particles
isothermally heated at 60 °C in the initial stage for ZnO/ZnFe,O,, and 950 °C for 2 h in the end stage for
ZnFe,0,, which are novel nanosized structures. See supplementary data file: Figures S35 and S36.

It is evidenced that the issues of size, shape, and morphology of nanosized Zn-Fe-O oxide particles are
studied when heated at 60 and 950 °C for 2 h. In these cases, the kinds of new, large, and special micro/
nanotextures of magnetic ZnO/ZnFe,0, particles (sample isothermally heated at 60 °C), and ZnFe,O, oxide
particles (sample isothermally heated at 950 °C, respectively) were adequately formed in the evolution from
self-assembly of magnetic nanosized oxide particles or nanotextured particles by heat treatment at low and
high temperatures. Furthermore, the role of shape-oriented nanoparticles in magnetic properties demonstrated
in nanotextured ZnFe,O, particles by various heat treatment processes. Finally, it is clear that elements were
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Fig. 4. Spinel-type nanosized Zn-Fe-O oxides isothermally heated at about 950 °C for 2 h. The phenomena
of partitial hysteresis (closed curves) and linear hysteresis (linear segments) of down and up magnetization
process.

experimentally found in SEM/EDX data and results for two samples sintered at 60 °C and 950 °C as shown in
Figs. 6 and 7 including Fe(L), O(K), and Zn(L), respectively.

In this comparison, the evidence of elements (Fe, Zn, and O) is in agreement with the XRD measurements
addressing the crystal phase formation of ZnFe,O, in two samples isothermally heated at 60 °C and 950 °C
for 2 h. Figure 7a,b,c, and e show the large nanosized textures of ZnFe,O, particles, consisting of numerous
small ZnFe,O, particles assembled together. Figure 7a,b,c,d, and e typically show polyhedral ZnFe,O, particles
with very high and stable crystallinity. Specifically, this indicates a successful synthesis of nanosized spinel-
type ZnFe,O, and other ferrites with desirable shapes and morphology*~*. To enable further investigation,
conventional ultrasonic sources, without the use of lasers, may be employed to disintegrate the nanosized
particles. A diversity of sizes, shapes, and morphologies of nanosized spinel-type ZnFe,O, particles was
observed. These particles exhibited a wide range of paramagnetic nanosized complex architectures, as revealed
by our XRD and VSM results. Recently, nanosized ZnFe,O, has been used as a promising anode material in
advanced lithium-ion batteries*>*4.
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Fig. 5. Magnetic parameters of hysteresis loops of samples of spinel-type nanosized Zn-Fe-O oxides
isothermally heated at about (1) 60, (2) 100, (3) 200, (4) 300, (5) 400, (6) 500, (7) 600, (8) 650, (9) 700, (10) 800,
(11) 900, and (12) 950 °C for 2 h.

Conclusion

In this work, the paramagnetic properties of nanosized Zn-Fe-O oxides, including ZnO/ZnFe,O, and
ZnFe,0,, were studied in relation to their magnetic crystal structures. The effects of temperature and synthesis
conditions on the paramagnetic behavior of these oxides were confirmed, particularly for nanosized ZnFe,O,
ferrites subjected to isothermal heat treatment at 800, 900, and 950 °C for 2 h in the stability of micro/nanoscale
structures. A distinctive zigzag magnetic behavior was observed during the synthesis of ZnFe,O,. Several
samples containing ZnFe,O, were prepared, each undergoing different polyol and heat treatment conditions,
allowing for a comprehensive comparison of their magnetic properties. The polyol and heat treatment processes
were optimized through systematic experimentation, where variables such as temperature, reaction time, and
precursor concentrations were adjusted to achieve optimal nanosized textures and enhanced paramagnetic
properties. These findings suggest that the optimized polyol synthesis and heat treatment techniques can be
effectively applied for the production of high-entropy ferrites based on Co, Fe, and Ni, as well as Ba- and Sr-
based hexaferrites.
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Fig. 6. Nanosized Zn-Fe-O oxide particles heated at about 60 °C for 2 h observed by SEM/ EDX (Scale bar:
100 pum).
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Fig. 7. Nanosized ZnFe,O, oxide particles isothermally heated at about 950 °C for 2 h observed by SEM, SEM/
EDX methods (Scale bar: 20 pm).
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