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The controlled synthesis and paramagnetic properties of nanosized Zn–Fe–O oxides have been 
researched by the polyol and the heat treatment processes designed according to drying, annealing, 
and sintering from low to high temperatures. The structural changes have led to change weak 
superparamagnetism of nanosized Zn–Fe–O oxides in the forms of hybrid nanosized ZnO/ZnFe2O4 
oxides into paramagnetism of nanosized ZnFe2O4 when the as-prepared samples of both ZnO and 
ZnFe2O4 oxides were isothermally annealed and sintered from low temperature at about 60 °C to high 
temperature at 950 °C for 2 h during their structural phase transitions in all the measurements of x-ray 
diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and 
SEM/energy dispersive X-ray spectroscopy (EDX) combined methods. Interestingly, it is experimentally 
confirmed that one original paramagnetic hysteresis consists of paramagnetic segments and closed 
curves. Both normal and abnormal paramagnetic properties of ZnFe2O4 were carefully investigated.
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In recent years, the synthesis, fabrication, structural characterization, and investigation of the physical properties 
of magnetic micro- and nanomaterials with spinel-type crystal structures have garnered significant attention. 
This growing interest arises from the fact that these materials exhibit unique physicochemical characteristics 
and tunable functionalities at the nanoscale, making them promising candidates for a wide range of advanced 
engineering and technological applications1–4. Among them, zinc ferrite (ZnFe2O4) is well known to adopt 
a spinel-type crystal structure, which plays a crucial role in determining its magnetic and physicochemical 
properties5,6. Consequently, ZnFe2O4 and related spinel ferrites have attracted increasing attention due 
to their versatile applications in electronics, telecommunications, magnetism, electromagnetics, catalysis, 
energy conversion and storage, as well as environmental remediation7–14. To realize these applications, a wide 
range of chemical and physical synthesis techniques have been employed for the preparation of spinel-type 
ZnFe2O4 (AB2O4, a generalized original structure) and related ferrite oxides. These include sol-gel methods, co-
precipitation, hydrothermal and solvothermal synthesis, combustion processes, as well as solid-state reactions, 
each offering distinct advantages in terms of particle size control, crystallinity, and morphology15–25. To meet the 
growing demand for magnetic micro- and nanosized powders, researchers have developed polyol-based synthesis 
routes for Co-, Ni-, and Fe-based magnetic ferrites, as well as Sr- and Ba-based hexaferrites. These processes 
often utilize sodium borohydride (NaBH4) or potassium borohydride (KBH4) as reducing agents, followed 
by heat treatment, annealing, and sintering to achieve desired crystallinity and magnetic properties26–31. The 
development of next-generation ferrites and hexaferrites is expected to be driven by the incorporation and doping 
of cobalt (Co) as a key functional element27,28. Currently, polyol-based synthesis routes are widely recognized for 
their significant advantages and cost-effectiveness in the fabrication of magnetic nanoparticles. This is largely 
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attributed to the inherent limitations and the complexity associated with conventional chemical and physical 
methods. These polyol processes provide better control over particle size, morphology, and dispersion, thereby 
offering a promising alternative for the scalable production of magnetic nanomaterials27,28. Moreover, the 
increasing popularity of polyol processes can be attributed to their inherent technological advantages, primarily 
arising from the superior solubility and effective dissolution of precursors in glycols, including ethylene glycol 
(EG), polyethylene glycol (PEG), and similar solvents. Furthermore, a wide range of nanosized ZnFe2O4 ferrites 
have found the applications in sensing and photocatalysis22,32,33. In the near future, new and advanced electrode 
materials, utilizing nanosized mixed ferrites, are anticipated to play a significant role in applications related 
to environmental management, catalysis, energy storage, and the conversion, especially for next-generation 
batteries and capacitors34–49. Therefore, the heating and firing technologies necessitate precise and optimal 
experimental conditions to effectively synthesize engineered nanosized magnetic powders.

In this study, nanosized Zn–Fe–O oxides, including ZnO and ZnFe2O4, were synthesized through polyol 
processes and heat treatment processes at low and intermediate temperatures ranging from 60 to 700  °C. 
Subsequently, the crystal structure of the Zn–Fe–O oxides was transformed into a single crystal structure of 
ZnFe2O4 through annealing and sintering at temperatures between 800 °C and 950 °C. Moreover, the structures 
and properties of the nanosized Zn–Fe–O oxides, including ZnO and ZnFe2O4, were determined using XRD, 
VSM, and SEM measurements, in accordance with the engineered processes. In addition, the paramagnetic 
properties of all samples of nanosized Zn–Fe–O oxides were also discussed and analyzed in detail. Specifically, 
it was found that the single crystal structure of ZnFe2O4 was formed at high temperatures of 800 °C, 900 °C, and 
950 °C. Finally, the exciting zigzag paramagnetic properties of nanosized Franklinite ZnFe₂O₄ oxides were also 
addressed.

Experimental
In the typical polyol processes, precursor chemicals used for synthesis were FeCl3 (0.0625  M) (China, AR, 
CAS:10025-77-1; characteristic: yellow-brown crystals. Readily deliquescent in air), ZnCl2 (China, AR, CAS: 
7646-85-7; characteristic: white powder or powder. Strongly hygroscopic), NaOH (0.0625 M) (China, AR, CAS: 
1370-73-2; characteristic: white uniform granular or flaky solid), EG (China, AR, CAS: 107-21-1), PVP (0.375 M) 
(China, AR; or Sigma-Aldrich), NaBH4 (China, AR, CAS: 16940-66-2; appearance: white powder) purchased 
from industrial chemicals, following laboratory and industrial manufacturing approach. In the experiments, 
FeCl3 (0.0625 M) and ZnCl2 (0.0625 M) can be used for synthesis (or FeCl3 (0.0625 M) can be replaced by FeCl2 
(0.0625 M)) (or both FeCl2 and FeCl3 were used) according to the lab skills and experiences of the experimenters, 
and the designed polyol processes27–31. We did not need to present the detailed experiment here. The key idea 
was that the molar ratio for chemical synthetic reaction between FeCl3 and ZnCl2 must be carefully adjusted in 
2.0,30,31 in comparison with the original chemical equation for synthesis of Fe3O4 oxides by scientists40,41,44. To 
investigate the kinds of as-prepared nanosized Zn–Fe–O oxides, the most typical samples selected were used, 
which were prepared by heat processes and isothermally heated from low to high temperatures in air.

The annealing temperature points used were at about 60, 100, 200, 300, 400, 500, 600, 650, 700, 800, 900, and 
950 °C for preparing the magnetic powder samples in a period of 2 h. Additionally, XRD, SEM (SEM/EDX), 
and VSM measurements were performed at room temperature in order to determine the crystal structures and 
related magnetic properties, respectively. Typically, the features of magnetism and hysteresis loops of M-H of 
nanosized Zn–Fe–O oxide powders were measured using a VSM, EZ9 vibrating sample magnetometer (VSM, 
MicroSense, LLC Corporation, USA), and demagnetization field (Hc) in the range of − 1500 to + 1500 Oe. 
The crystal structures of the as-prepared samples (magnetic Zn–Fe–O powder samples) were investigated using 
XRD from 5 to 80o (Empyrean PANalytical diffractometer, USA). In particle size analysis and image data, the 
as-prepared Zn–Fe–O oxide powders were primarily investigated using ultrahigh-resolution scanning electron 
microscopy (FESEM, S-4800, Japan) to study their sizes, shapes, and compositions. In addition, SEM (Tescan 
Mira, Czech Republic) was used with an FEG Schottky electron emission source combined with SEM imaging 
and live elemental composition analysis. The high resolution for imaging and EDX analysis was maintained to 
investigate the as-prepared nanosized Zn–Fe–O oxide powders.

Results and discussion
XRD: structure of nanosized ZnFe2O4 oxides
In X-ray diffraction, Fig.  1 shows the XRD diagrams of Zn–Fe–O oxides that were isothermally heated at 
different temperatures, providing sufficient detail for understanding their crystallization. In the range of 
annealing temperatures of 60–950 °C for the samples for 2 h, the identified crystal parameters of two phases 
of ZnO and ZnFe2O4 oxides in the as-prepared Zn–Fe–O oxides exhibited the values of 2θ(°) or Two-Theta 
(deg), d(Å), I(%), and a set of (hkl) planes, i.e. Miller indices in the typical diagrams of XRD. See supplementary 
data file (see supplementary Fig. S1 (XRD of all of samples)), and (supplementary Fig. S2 (XRD of ZnFe2O4 
samples heated at 800, 900, and 950 °C, in respect with as-prepared samples in Figures: S3, S4, S5, S6, S7, and 
S8)). It is emphasized that the XRD data and results of the as-prepared samples of the major phase of nanosized 
ZnFe2O4 oxides coincided with the standard pattern of PDF#74-2397, with 18 lines (Franklinite, syn, ZnFe2O4, 
cubic structure, Fd-3 m (227)) using λ radiation (CuKα1, λ = 1.5406Å) in the primary crystal characteristics. 
Therefore, the crystal phases of nanosized ZnFe2O4 oxides show the cubic structure in a cell (a, b, c (Å): 8.4432, 
8.4432, 8.4432; α, β, γ (o): 90.0, 90.0, 90.0). All the samples show the 13 strong lines, and the strongest intensity, 
i.e. I(%) of (311) plane is 100% of intensity. The most typical values of 2θ (18.184, 29.908, 35.225, 36.846, 42.806, 
53.059, 56.595, 62.139, 65.330, 70.479, 73.488, 74.480, and 78.450 (o), respectively), d (4.8747, 2.9851, 2.5457, 
2.4373, 2.1108, 1.7235, 1.6249, 1.4926, and 1.4272(Å), respectively), I(4.2, 32.2, 100, 7.6, 17.5, 14.9, 45.7, 55.9, 
0.9, 5.7, 12.7, 5.2, and 2.7%, respectively), and the Miller index, i.e. a set of (hkl) ((111), (220), (311), (222), (400), 
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(422), (511), (440), (531), (620), (533), (622), and (444), respectively are shown. The unnecessary minor lines 
can be ignored in XRD data and analysis. The appearance and disappearance of the lines located at 2θ = 31.8°, 
d = 2.8135 Å, and I = 1682 counts were observed in the temperature range of 400–650 °C. It should be noted that 
XRD data and results of the as-prepared samples of the nanosized ZnO phase coincide with the standard pattern 
of PDF#74–0534, which contains with 11 lines (Zinc oxide, ZnO, Hexagonal, P63mc(186)). This phase exhibited 
the crystal parameters of 2θ(°) (31.768, 34.421, 47.538, 56.594, 66.374, 67.946, 72.566, and 76.958, respectively), 
d(Å) (2.8145, 2.6033, 1.9111, 1.6249, 1.4072, 1.3785, 1.3017, and 1.2379, respectively), I(%) (100, 19.8, 55.5, 
22.9, 13.8, 19.4, 1.5, and 13.2, respectively), and (hkl), i.e. Miller index ((100), (002), (102), (110), (200), (112), 
(004), and (202), respectively). Therefore, the crystal phases of nanosized ZnO show the cubic structure in a cell 
(a, b, c (Å): 3.24986, 3.24986, 5.20662; α, β, γ (°): 90.0, 90.0, 120.0). It is evidenced that there was a significant 
change of a mixed structure of mixed ZnO-ZnFe2O4 converted into a single ZnFe2O4 structure in the range of 
annealing temperatures of 700–800 °C, which was due to the good incorporation of Zn into the ZnFe2O4 lattice. 
In the most important range of annealing temperatures of 800–950  °C, which was critical for the magnetic 
powder samples annealed for 2 h, the final products were nanosized ZnFe2O4 oxides formed in a single ZnFe2O4 
phase, consistent with the standard of their crystallization (Franklinite, syn, cubic structure, Fd-3 m(227)). In 
the present research, the crystal phases and structures of large nanosized ZnFe2O4 oxide particles were formed 
by isothermally heated processes from 800, 900, and 950 °C for 2 h, respectively. The Scherrer equation D = K×λ/
(FWHM×Cosθ) for one single crystal phase was used to estimate the crystallite sizes of Zn–Fe–O samples based 
on XRD data. K is the shape factor of the average crystallite (K = 0.89 − 0.94, typically taken as 0.9; λ = 1.5406 
Å). The FWHM (Full Width at Half Maximum) was calculated at specific 2θ angles. The obtained values D1 and 
D2 of crystallite sizes of ZnO/ZnFe2O4 heated from 60 to 700 °C, and those of ZnFe2O4 (D1) heated from 800 to 
950 °C were listed in Table 1 using pattern simulation with pseudo-Voigt function.

The crystallite sizes of ZnFe2O4 (D1) were determined to be 11 nm (60 °C), 10 nm (100 °C), 11 nm (200 °C), 
12 nm (300 °C), 12 nm (400 °C), 12 nm (500 °C), 16 nm (600 °C), 15 nm (650 °C), 26 nm (700 °C), 63 nm 
(800 °C), 61 nm (900 °C), and 52 nm (950 °C), respectively. In hybrid ZnO/ZnFe2O4 samples heated in a range 
of 60–700 °C, the crystallite sizes of ZnO (D2) were calculated to be 69 nm (60 °C), 75 nm (100 °C), 67 nm 
(200 °C), 55 nm (300 °C), 85 nm (400 °C), 56 nm (500 °C), 44 nm (600 °C), 48 nm (650 °C), and 23 nm (700 °C), 
respectively.

Fig. 1.  XRD diagrams of samples of spinel-type nanosized Zn–Fe–O oxides were isothermally heated at (1) 60, 
(2) 100, (3) 200, (4) 300, (5) 400, (6) 500, (7) 600, (8) 650, (9) 700, (10) 800, (11) 900, and (12) 950 °C for 2 h.
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VSM: zigzag paramagnetism of nanosized ZnFe2O4 oxides
It is confirmed that all the as-prepared samples of nanosized Zn–Fe–O oxides exhibit the typical paramagnetic 
properties of magnetization curves (Hc, Ms, Mr, and χ), and very small remanent magnetic properties observed 
during the measured hysteresis cycles (Figs. 2 and 3). Refer to online supplementary material: supplementary 
Figures: S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, and S22 as well as S37 to S48 (original 
data). Refer to online supplementary material: supplementary Figures from S23 to S34. As shown in Figs. 2 and 
3, the key paramagnetic parameters have been identified in the hysteresis loops with the upward and downward 
parts in the change of magnetization M dependent on external magnetic field H. The coercive field shows the 
applied field at which M/H changes sign, which leads the averaged values of Hc. Here, Mr means remanent 
magnetization of M at H = 0. Additionally, saturation M (Ms) is observed when H increases or changes sign. 
Figure 3 shows the VSM measurements of nanosized Zn–Fe–O oxides, and the typical samples of nanosized 
Zn–Fe–O oxides by the polyol process, and the samples isothermally heated at 60, 100, 200, 300, 400, 500, 600, 
and 700 °C. These samples consisted of nanosized mixed ZnO and ZnFe2O4 oxides in the two crystal phases, 
with the corresponding magnetic parameters given in Tables 1 and 2. Figures 2, 3 and 4 also shows the VSM 
measurements of nanosized Zn–Fe–O oxides by the polyol process, and the samples isothermally heated at 
800, 900, and 950 °C for 2 h, which displayed the very special forms of nanosized ZnFe2O4 oxides in the only 
crystal phase and structure (Franklinite, syn, ZnFe2O4, cubic structure, Fd-3  m(227)). There are the similar 
shapes of hysteresis loops of four samples (60, 100, 200, and 300 °C), four samples (400, 500, 600, and 650 °C), 
one sample (700 °C), three samples (800, 900, and 950 °C) in the four similar stages of hysteresis, which are 
typically paramagnetic properties, which can be ideally estimated and allowed in order to study and investigate 
three samples isothermally heated at 800, 900, and 950 °C, measured in the different ranges, respectively. The 
experimental values of calculated magnetic susceptibility (χ; χ = M/H or linear fit of M according to H) of the 
Zn–Fe–O nanomaterials fabricated in this present study are positive but very small values. They have they 
magnitudes of 10− 4 or 10− 5, as calculated in Table 2. This is good agreement with other works [49,50], which 
could be due to the interesting super-exchange interaction for superparamagnetic/paramagnetic behaviour 
responsible for all the as-prepared samples, especially for one typical sample heated at 400 °C for 2 h because of a 
new line appeared around at 2θ = 31.8 o in XRD data of crystal structure of hybrid ZnO/ZnFe2O4. It is suggested 
that quantum-mechanical calculations by density functional theory (DFT) for understanding the magnetic 
behaviour of ZnFe2O4 with the most typical [ZnO4] and [FeO6] models in a normal spinel structure or strongly 
correlated hybrid magnetic materials48,49. These particular interactions need to be studied further. This led to 
Mr of sample heated at 400 °C exhibiting the highest value among the mentioned samples as well as ZnFe2O4 by 
other methods1,2.

It is noted that very weak superparamagnetism of nanosized Zn–Fe–O oxide samples isothermally heated at 
60, 100, 200, 300, 400, and 700 °C was transformed into specific paramagnetism of nanosized Zn–Fe–O samples 
isothermally heated at 500, 600, 650, 800, 900, and 950 °C, respectively. Therefore, the magnetic characteristics 
consist of confirmed superparamagnetic and paramagnetic types in hybrid ZnO/ZnFe2O4 oxides, and in 
ZnFe2O4 oxides.

It is experimentally evidenced that nanosized mixed ZnO-ZnFe2O4-type Zn–Fe–O oxides have small values 
of Ms, ranging from 3.737 to 7.259 emu/g (Table 2) in respect with samples isothermally heated at 60, 100, 200, 
300, 400, 500, 600, and 700 °C for 2 h. Here, the results show that nanosized mixed ZnFe2O4-type Zn–Fe–O 
oxides have Ms from 1.399 to 1.89 emu/g for samples heated at 800, 900, and 950 °C, respectively. The important 
variation of structure from nanosized mixed ZnO-ZnFe2O4-type Zn–Fe–O oxides formed in a temperature 
range of 60–700 °C into ZnFe2O4 was observed in a temperature range from 800, 900, and 950 °C, respectively. 

Samples Temp. (°C) Structure D1 (nm) D2 (nm)

1 60 ZnO/ZnFe2O4 11.0 nm 69.0 nm

2 100 ZnO/ZnFe2O4 10.0 nm 75.0 nm

3 200 ZnO/ZnFe2O4 11.0 nm 67.0 nm

4 300 ZnO/ZnFe2O4 12.0 nm 55.0 nm

5 400 ZnO/ZnFe2O4 14.0 nm 85.0 nm

6 500 ZnO/ZnFe2O4 12.0 nm 56.0 nm

7 600 ZnO/ZnFe2O4 16.0 nm 44.0 nm

8 650 ZnO/ZnFe2O4 15.0 nm 48.0 nm

9 700 ZnO/ZnFe2O4 26.0 nm 23.0 nm

10 800 ZnFe2O4 63.0 nm 0.0

11 900 ZnFe2O4 61.0 nm 0.0

12 950 ZnFe2O4 52.0 nm 0.0

Table 1.  The crystallite sizes of ZnO/ZnFe2O4 and ZnFe2O4.
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It is suggested that this led to the high stability of Zn2+ and Fe3+ cations at tetrahedral sites (T) and octahedral 
sites (O) in the theoretical defined crystal structure of ZnFe2O4 was relatively achieved through their balanced 
valences and cation distribution30,31.

It is observed that the variations of magnetic parameters of nanosized paramagnetic Zn–Fe–O oxide 
materials (Fig. 5) according to the calcination temperatures of the heat treatment process, including the average 
values of Hc, Mr, Ms, and χ as shown in Table 2, respectively. The values of Hc and Mr are relatively small 
in hysteresis loops. Mr tended to be proved in the up-part directions of hysteresis loops, which are negative 
values (-Mr) (see supplementary Figure S14). Here, ZnFe2O4 calcined at 800–950 °C for 2 h has high averaged 
value of Hc. The function of linear fit of M can be used in the case that is M = a + bH (emu/g) consistent with 
the mathematical estimation based on empirical data, meaning that the small value of M = b×H (emu/g) with 
a = 0 and b = 9.84 × 10− 5 for a sample isothermally heated at 950 °C for a period of 2 h. Magnetic properties are 
related to each other, depending on the degree and nature of their structure and their interaction with external 
magnetic field36. For magnetic nanomaterials, common types are ferromagnetic, ferrimagnetic, paramagnetic 
and superparamagnetic, diamagnetic, and ideal diamagnetic (superconducting). In nature, the magnetic 
properties of atoms or magnetic moment of atoms led different magnetic materials. One of the properties of 
magnetic ferri-, ferro-materials is that the degree of M depends complexly on H due to magnetic anisotropy and 
domains. However, paramagnetism and diamagnetism are approximately linearly proportional to H. To explain 
paramagnetism, researchers used classical Langevin theory or quantum theory of paramagnetism explained 

Fig. 2.  Spinel-type nanosized Zn–Fe–O oxides isothermally heated at 60 °C for 2 h.

 

Scientific Reports |        (2025) 15:35732 5| https://doi.org/10.1038/s41598-025-19772-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 3.  Hysteresis loops of samples of spinel-type nanosized Zn–Fe–O oxides isothermally heated at (1) 60, (2) 
100, (3) 200, (4) 300, (5) 400, (6) 500, (7) 600, (8) 650, (9) 700, (10) 800, (11) 900, and (12) 950 °C for 2 h.
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by Brillouin functions when taking into account magnetic quantization,37 which had clarified various kinds of 
nanosized ferrites38,39, as well as nanosized Fe-, Ni-, and Co-based ferrites as well as Ba- and Sr-based hexaferrites 
prepared by the polyol processes in experimental evidences and data27. Here, ZnFe2O4 (or CdFe2O4) was a kind 
of normal-spinel ferrite with all Zn2+ (or Cd2+) cations at tetrahedral sites in the form of Zn2+[Fe2

3+]O4
2− that 

was different from inverse-spinel ferrite, i.e. M2+ cations stably located at octahedral sites (M: Co, Ni) in the form 
of Fe3+[M2+Fe3+]O4

2−. It is suggested that the small contents of Zn element can change magnetic properties of 
NiFe2O4 or CoFe2O4 from ferrimagnetism into paramagnetism or superparamagnetism when Zn cations are 
well integrated into the inverse structures to form the various kinds of nanosized mixed spinel ferrites in the 
various mixed forms of M2+

(1−x)Fex
3+[Mx

2+Fe(2−x)
3+]O4

2− (0≤x≤1), i.e. M2+ and Fe3+ possibly located in both 
tetrahedral sites and octahedral sites that leads the kinds of new high entropy ferrites38. It is usually understood 
that the surveys of mixed normal and inverse spinel ferrites were identified in comparison with emphasizing 
and addressing the problems of magnetic structures and properties among them,39,45 as well as other catalytic 
and electronic properties. In this case, it was believed that there is a complex dependence of M on H for the 
as-fabricated ZnFe2O4 materials (Fig. 4) from segments from (1) to (11) (See supplementary data file: Figures 
from S23 to S34). It is suggested that the magnetic phenomenon that there are many typical minor hysteresis 
loops (finely minor hysteresis loops) located on the main original loop of paramagnetic hysteresis. In typical 
paramagnetic behavior, the original paramagnetic hysteresis shows many short segments and lines, and other 
closed hysteresis loops of ZnFe2O4 that are paramagnetic and very small and weak ferromagnetic. In up and 
down parts of hysteresis, M-H loops appears the matching paramagnetic segments and lines (straight segments 
and lines (1a), 2(a), 9(a), 10(a), 11(a), and others), and extremely small ferromagnetic lines (closed curves), such 
as (2), (3), (4), (5), (6), (7), (8), (9), (10), and (11) belonging to original paramagnetic hysteresis of well-sintered 
nanosized ZnFe2O4 (Figs. 4 and 7). Similarly, it is noted that the segments and lines (3) and (10), (6) and (4) have 
the same shapes.

In terms of intrinsic property, the segments of original hysteresis correspond to paramagnetic phenomena 
(the zig-zag line: a segment and a line). In addition, very small ferromagnetism is observed on the original 
paramagnetic hysteresis. Such magnetic order requires further understanding and research. In our highlights, 
it is certain that the prepared samples also demonstrated that high paramagnetic nanosized ZnFe2O4 oxides 
were finally heated and formed in the different stages of the crystal growth and stability through annealing and 
sintering.

SEM: nanosized ZnFe2O4
Typically, Figs. 6 and 7 show the interesting SEM and SEM/ EDX results of nanosized Zn–Fe–O oxide particles 
isothermally heated at 60  °C in the initial stage for ZnO/ZnFe2O4, and 950  °C for 2  h in the end stage for 
ZnFe2O4, which are novel nanosized structures. See supplementary data file: Figures S35 and S36.

It is evidenced that the issues of size, shape, and morphology of nanosized Zn–Fe–O oxide particles are 
studied when heated at 60 and 950  °C for 2  h. In these cases, the kinds of new, large, and special micro/
nanotextures of magnetic ZnO/ZnFe2O4 particles (sample isothermally heated at 60 °C), and ZnFe2O4 oxide 
particles (sample isothermally heated at 950  °C, respectively) were adequately formed in the evolution from 
self-assembly of magnetic nanosized oxide particles or nanotextured particles by heat treatment at low and 
high temperatures. Furthermore, the role of shape-oriented nanoparticles in magnetic properties demonstrated 
in nanotextured ZnFe2O4 particles by various heat treatment processes. Finally, it is clear that elements were 

Temp.
(°C)

Hc
(Oe)

Mr
(emu/g)

Ms
(emu/g) χ

60 5.985 0.0092993 6.799290 0.000519

100 4.925 0.0088498 7.259640 0.000558

200 4.829 0.0074320 6.527320 0.000497

300 4.831 0.0084485 7.249210 0.000557

400 0.021 0.4224227 3.737310 0.000265

500 0.023 0.0000083 4.392395 0.000305

600 0.027 0.0000123 5.171620 0.000374

650 0.025 0.0000139 5.813330 0.000430

700 0.021 0.0000238 6.797285 0.000545

800 62.525 0.0080471 1.399680 0.000097

900 22.752 0.0046301 1.896400 0.000132

950 50.028 0.0046268 1.438070 0.000098

Table 2.  The averaged values of magnetic parameters of ZnO/ZnFe2O4 and ZnFe2O4.
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experimentally found in SEM/EDX data and results for two samples sintered at 60 °C and 950 °C as shown in 
Figs. 6 and 7 including Fe(L), O(K), and Zn(L), respectively.

In this comparison, the evidence of elements (Fe, Zn, and O) is in agreement with the XRD measurements 
addressing the crystal phase formation of ZnFe2O4 in two samples isothermally heated at 60  °C and 950  °C 
for 2 h. Figure 7a,b,c, and e show the large nanosized textures of ZnFe2O4 particles, consisting of numerous 
small ZnFe2O4 particles assembled together. Figure 7a,b,c,d, and e typically show polyhedral ZnFe2O4 particles 
with very high and stable crystallinity. Specifically, this indicates a successful synthesis of nanosized spinel-
type ZnFe2O4 and other ferrites with desirable shapes and morphology40–48. To enable further investigation, 
conventional ultrasonic sources, without the use of lasers, may be employed to disintegrate the nanosized 
particles. A diversity of sizes, shapes, and morphologies of nanosized spinel-type ZnFe2O4 particles was 
observed. These particles exhibited a wide range of paramagnetic nanosized complex architectures, as revealed 
by our XRD and VSM results. Recently, nanosized ZnFe2O4 has been used as a promising anode material in 
advanced lithium-ion batteries43,44.

Fig. 4.  Spinel-type nanosized Zn–Fe–O oxides isothermally heated at about 950 °C for 2 h. The phenomena 
of partitial hysteresis (closed curves) and linear hysteresis (linear segments) of down and up magnetization 
process.
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Conclusion
In this work, the paramagnetic properties of nanosized Zn–Fe–O oxides, including ZnO/ZnFe2O4 and 
ZnFe2O4, were studied in relation to their magnetic crystal structures. The effects of temperature and synthesis 
conditions on the paramagnetic behavior of these oxides were confirmed, particularly for nanosized ZnFe2O4 
ferrites subjected to isothermal heat treatment at 800, 900, and 950 °C for 2 h in the stability of micro/nanoscale 
structures. A distinctive zigzag magnetic behavior was observed during the synthesis of ZnFe2O4. Several 
samples containing ZnFe2O4 were prepared, each undergoing different polyol and heat treatment conditions, 
allowing for a comprehensive comparison of their magnetic properties. The polyol and heat treatment processes 
were optimized through systematic experimentation, where variables such as temperature, reaction time, and 
precursor concentrations were adjusted to achieve optimal nanosized textures and enhanced paramagnetic 
properties. These findings suggest that the optimized polyol synthesis and heat treatment techniques can be 
effectively applied for the production of high-entropy ferrites based on Co, Fe, and Ni, as well as Ba- and Sr-
based hexaferrites.

Fig. 5.  Magnetic parameters of hysteresis loops of samples of spinel-type nanosized Zn–Fe–O oxides 
isothermally heated at about (1) 60, (2) 100, (3) 200, (4) 300, (5) 400, (6) 500, (7) 600, (8) 650, (9) 700, (10) 800, 
(11) 900, and (12) 950 °C for 2 h.
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Fig. 6.  Nanosized Zn–Fe–O oxide particles heated at about 60 °C for 2 h observed by SEM/ EDX (Scale bar: 
100 μm).
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Fig. 7.  Nanosized ZnFe2O4 oxide particles isothermally heated at about 950 °C for 2 h observed by SEM, SEM/ 
EDX methods (Scale bar: 20 μm).
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