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Leafy vegetables such as spinach are among the most important components in a nutritious diet but 
are highly perishable and susceptible to premature spoilage. Traditional practices in determining 
freshness have been qualitative and time-consuming and have consistently led to defective 
consumption decisions with unintended consequences on human health. To this issue, we introduce 
SpinachXAI-Rec, a multistage framework that is enabled by AI and is capable of automating the 
classification of spinach freshness and providing consumer recommendations. This framework is 
based on understandable deep learning. To guarantee class balance and feature diversity, a dataset 
consisting of 4005 original images of three spinach varieties (Malabar, Red, and Water) was expanded 
to 12,000 images (2000 per class across six categories: fresh and non-fresh). We trained three CNN 
architectures, DenseNet121, ResNet50, and EfficientNetB0, on the Stage 1 augmented dataset. 
In performance, we saw DenseNet121 significantly outperform with 96% classification accuracy 
compared to ResNet50 (53%) and EfficientNetB0 (17%). Stage 2 improved representation of features 
by incorporating DenseNet121 embeddings and ViT-B/16 and Swin Transformer attention mechanisms. 
DenseNet121 + ViT-B/16 obtained an F1-score of 0.95, which was further optimised to 0.97 in Stage 3 
using a multiclass SVM classifier. GradCAM++ and LIME were employed to incorporate interpretability 
during Stage 4. LIME provided transparent explanations of the significance of class-specific features, 
while GradCAM++ effectively highlighted disease-affected or spoilt regions. The most effective model 
(DenseNet121 + ViT + SVM) also obtained a Dice coefficient of 0.89 and an IoU of 0.82, which confirms 
the precision of localisation and segmentation. Finally, Stage 5 introduces a clinical recommender 
system that is based on rules and relates prediction confidence to real-world categories: Eatable, 
Eatable with Caution, or Not Eatable. This AI-driven recommendation assists food purveyors and 
consumers in making health-conscious, well-informed decisions. SpinachXAI-Rec is a significant 
advancement in the development of safer food systems, as it provides interpretable AI for the purpose 
of freshness validation and actionable consumption recommendations, thereby empowering both 
consumers and industry stakeholders.

Keywords  Spinach freshness classification, DenseNet121, Vision transformer (ViT), Explainable AI (XAI), 
GradCAM++, LIME, Deep feature embeddings, Rule-based recommender system

Internationally, people recognise green leafy vegetables (GLVs) as essential components of a healthy diet, 
offering a wide range of physiological benefits. GLVs play a key role in the prevention of lifestyle disorders like 
osteoporosis, diabetes, cardiovascular diseases, and anaemia1. These compounds include a variety of bioactive 
substances such as flavonoids, carotenoids, and micronutrients like iron, calcium, folate, magnesium, and fibre2,3. 
Spinach is a “superfood” with the highest therapeutic effects and nutrient content among the GLVs4. China 
was responsible for the production of more than 92% of the world’s spinach in 2022 and produced well over 
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30 million tonnes, says the Food and Agriculture Organisation (FAO). Second and third places, respectively, 
were held by the United States and Japan. The global significance of this crop product is the growing interest 
in spinach among urban communities in particular that are health-conscious in being provided in smoothies, 
salads, and organic versions5. However, the perishability owing to the water content and delicately foliated nature 
of spinach results in widespread losses and qualitative losses en route and in storage. This loss presents a great 
challenge to ensuring the end-consumer with safety and freshness. The quality inspection regimes at present 
are still almost completely manual, unscalable, and qualitative and therefore pose a great need for automated, 
quantitative, and interpretable AI-powered freshness determination tools.

Spinach is of significant cultural, dietary, and agricultural importance in the Indian context. According to 
the Ministry of Agriculture & Farmers’ Welfare (2021–22), India is one of the top five spinach producers, with 
an area exceeding 150,000 hectares and a contribution of approximately 1.7 million metric tonnes6. Traditional 
Indian cuisine is profoundly influenced by spinach and its indigenous varieties, including Malabar spinach 
(Basella alba), red spinach (Amaranthus dubius), and water spinach (Ipomoea aquatica)7. They are essential 
components of daily diets, particularly among the vegetarian population, which comprises more than 30% of 
India’s population8. Their effects are maximised in Southern India, where the production and consumption 
fronts are led by the states of Tamil Nadu, Andhra Pradesh, Karnataka, and Kerala. These states’ favourable agro-
climatic conditions enable year-round plantings. Apart from this, physically fresh and safe-for-consumption 
spinach demand has increased with urban market expansion, organic farms, and home delivery of vegetables9. 
However, the evaluation of freshness at retail stores remains error-prone and manual, which negatively impacts 
supply chain efficiency and end-consumer confidence. Therefore, to have any advantage for growers, retailers, 
and health-conscious consumers in all of India, an intelligent, comprehensible, and robust solution has to be 
designed to evaluate and suggest the freshness of spinach10.

In both urban and rural channels of distribution, categorization of spinach as eatable or non-eatable remains 
a troublesome and unresolved problem in spite of its widespread use and nutrient importance. Deteriorations 
caused by moisture loss, microbial spoilage, physical damage, and discolouration of the leaves collectively lead 
to a rapid decline in the visible external appeal of spinach11,12. However, these deteriorations are often qualitative 
and subtle, making traditional manual checks highly inconsistent and prone to errors. Given the potential for 
conflict and losses in products and money, something permissible to one vendor is rejected by one quality 
checker or consumer due to the risk of conflict and losses in money and products. Moreover, in today’s supply 
chain operations, no standardised method or objective tool exists to quantify and decide upon the freshness 
limit at which spinach shifts from being safe to being unsafe to eat13,14. Determinations at retail stores and 
open markets and doorstep delivery points remain purely based upon human perception and compound these 
inconsistencies while raising questions regarding food safety and trust and assurance regarding quality.

It is important to create intelligent, automated, and understandable classification processes that can categorise 
spinach leaves as eatable or non-eatable reliably to address this long-standing problem15. Powerful extraction 
of features from high-resolution spinach leaves’ images is made possible through capitalising on the power 
of deep learning and artificial intelligence (AI), foremost among them being convolutional neural networks 
(CNNs) and vision transformers (ViTs)16,17. AI models are empowered to learn to recognise small visible cues 
regarding quality in the leaves by being trained upon large sets of labelled data demonstrating things like colour 
transformations and wilts and number of holes and textural damage18–20. However, grading is not merely 
classification; grading must offer interpretability and trust and clinical rationale as well, notably when the result 
has repercussions for decision-making in terms of consuming the foods. As a result, embedding confidence-
based suggestion schemes with explainability AI tools like GradCAM++ and LIME aid in the development of a 
system like an expert’s judgement in clinical terms21. The goal is to enable transparent, scalable, and intelligent 
freshness determination at the consumer level by regulating quality detection and providing suggestions about 
the usability of spinach leaves for consumption.

Motivation and problem statement
The perishable nature of spinach, a nutrient-rich and extensively consumed verdant vegetable, presents a significant 
challenge in post-harvest quality assessment. The subjective, inconsistent, and inefficient manual classification of 
spinach freshness into eatable and non-eatable categories is a problem that persists throughout retail and supply 
chains. Manual graders usually overlook or misread fine visible deteriorations like discolouring, withering, and 
damaged leaves. This non-standardisation has direct economic and food safety ramifications. Therefore, we very 
much need an automated, interpretable and intelligent system to correctly classify and estimate spinach quality 
based on visually apparent signals. A possible remedy to this issue is to use AI, particularly deep learning and 
interpretable models, to predict freshness in a transparent, scalable, and clinically applicable manner.

Due to their nutrient-dense and health-promoting properties, green leafy vegetables, and in particular 
spinach, are constituents of any balanced diet. Nevertheless, their rapid spoilage upon harvest and lack of explicit 
means to classify them make it difficult to preserve these products in a fresh and safe condition for consumption.

SpinachNet-XAI Framework Objectives

	1.	 We have expanded the original set of 4005 images to 12,000 images to create an augmented image dataset 
of spinach leaves. This dataset encompasses six classes across three spinach types (Malabar, red, and water 
spinach) and fresh and non-fresh conditions.

	2.	 To classify spinach freshness and determine the optimal architecture based on accuracy, precision, recall, and 
F1-score, various deep learning models (DenseNet121, ResNet50, and EfficientNetB0) are implemented and 
evaluated.
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	3.	 To improve performance, this research suggests a hybrid classification pipeline that incorporates deep fea-
tures of DenseNet121 and Vision Transformer (ViT) with an ensemble SVM classifier to further improve 
accuracy and provide improved generalisation.

	4.	 To improve the interpretability and trustworthiness of the classification outcomes, it is necessary to incorpo-
rate understandable AI techniques, specifically GradCAM++ and LIME, to visualise the regions that influ-
ence model decisions.

	5.	 To have consistent and dependable explainability in freshness evaluation, segmentation metrics IoU and 
Dice coefficient are computed, resulting in an IoU of 0.89 and a Dice coefficient of 0.93.

	6.	 This research proposes developing a clinical recommender system based on rule-based concepts to cate-
gorise spinach as eatable or non-eatable through prediction confidence, visual explanations, and threshold 
logic to help consumers and vendors make better decisions.

Literature survey
Table 1 delineates recent (2022–2025) peer-reviewed publications on deep learning and computer vision to 
quantify vegetable and leafy green quality and freshness. Some selected publications include fully reviewed articles 
instead of preprints and include explicit measurement of accuracy. They demonstrate excellent performance 
with bespoke CNNs and hyperspectral-ML integration but do not fully encapsulate the concurrent necessities 
for spinach-orientated training, explainability (XAI) outputs, and end-consumer eatability recommendations. 
This points to the innovativeness and contribution of SpinachNet-XAI. Table 1 presents the detailed literature 
survey.

Research gap
Although various works in the past have investigated the use of deep learning and computer vision for freshness 
estimation in fruits and vegetables, most have considered generalised or cross-category data without fine-tuning 
the classifier for spinach. CNN ensembles, BiLSTM hybrids, and hyperspectral-based classifiers are advanced 
models that have shown accuracy rates over 95%. However, they often face major issues, such as not providing 
clear decision support, lacking easy-to-use visual checks for consumers, and not having explainable AI (XAI). 
The cost and hardware dependencies of hyperspectral methods render them impractical for field or retail use, 
despite their biochemical accuracy. Additionally, there is a scarcity of research that integrates confidence-based 
evaluation or recommendation logic, which is crucial for real-world applications such as retail quality assurance 
or mobile-based spinach eatability assessment. Most importantly, existing studies rarely focus on combining 
a rule-based clinical recommender, methods to explain decisions (like GradCAM++ and LIME), and deep 
classification all in one complete system. This gap creates a distinct and substantial void for a deep learning 
system that is spinach-centric, interpretable, and actionable—exactly the objective of SpinachNet-XAI.

SpinachXAI-Rec explicitly vis-à-vis novel leafy green classification and food quality AI-based approaches. 
We have also provided an additional paragraph briefly summing up the high degree of precision of the works.
Authors Sankar Sennan et al. (2022), Yıldırım & Yalçın (2024), and Tapia Mendez et al. (2023). But none of those 
embodied essential aspects, like spinach specialisation, two-layer interpretability (GradCAM++ and LIME), or a 
clinically actionable rule-based recommendation system. SpinachXAI-Rec, however, achieves high performance 
(97.2% accuracy) and transparent, confidence-based decision semantics for real-world consumer and vendor 
deployments through integrating DenseNet121 and ViT-B/16 embeddings with an SVM classifier. The paper 
clarifies our approach’s novelty and positions it as an integrated, interpretable, and spinach-centric upgrade to 
state-of-the-art approaches.

Author(s) Year Publication Methodology Accuracy Advantages Limitations Research Gap

Sankar Sennan 
et al22 2022

Computers, 
Materials & 
Continua

Custom CNN on four leaf types 97.50% High accuracy; compared 
multiple baselines

Small (~ 400 images); non-
spinach types

No XAI; limited 
generalization

Yıldırım and 
Yalçın23 2024 J. Food Nutr. Res ResNet-101-based CNN for 

spinach freshness ≥ 89.4% Good baseline for food 
quality tasks

Limited accuracy; no 
interpretability

Absence of XAI; no 
hybrid ensemble

He et al24 2024 Infrared Physics 
& Technology

Hyperspectral + DL classifiers 
(spinach + cabbage) > 80% Non-destructive 

biochemical analysis
Expensive instrumentation; 
lower accuracy

No image-CNN/XAI; 
equipment-heavy

Kumar et al.25 2024 Current Research 
in Food Science

CNN–BiLSTM hybrid for 
generic vegetable freshness 97.76% Models spatial & temporal 

features
Computationally heavy; 
generic to veggies

Not spinach-
specific; lacks visual 
explanations

Tapia-Mendez 
et al26 2023 Applied Sciences MobileNetV2 ensemble for fruit 

& vegetable ripeness 97.86% High accuracy across 
ripeness stages

Broad domain; no spinach 
focus; no XAI

No spinach dataset; no 
explainability

Yuan & 
Chen27 2024 Current Research 

in Food Science
Deep feature fusion 
(GoogLeNet, DenseNet-201, 
ResNeXt-101) + PCA + SVM

96.98%
No CNN retraining; 
efficient feature-based 
detection

Not spinach-specific; image 
quality threshold unclear

No explainable 
visualization

Koyama 
et al.28 2021 PLOS ONE Color & local feature + SVM/

ANN for spinach freshness
84% 
(2-class)

Non-destructive; validated 
against sensory panel

Lower accuracy; no deep 
learning

No image-based DL; no 
XAI; training on small 
smartphone dataset

Elumalai and 
Meganathan29 2024 J. Robotics & 

Control
Hybrid of Orange-embedded 
pre-trained models + ML 
classifiers on spinach leaves

~ 99% High accuracy; variety 
classification

Limited information on 
freshness; tool-specific

No interpretability; 
no confidence-based 
recommendation logic

Table 1.  Literature survey.
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Technologies utilized in SpinachNet-XAI framework
The SpinachNet-XAI system takes advantage of a robust set of state-of-the-art technologies from deep learning, 
explainable AI, image processing, and clinical decision support areas. The system incorporates the following key 
technologies:

	a.	 Convolutional Neural Networks (CNNs

Baseline image classification applications employ CNN models like DenseNet121, ResNet50, and Efficient-
NetB0. DenseNet121, with its dense connectivity and feature reuse, demonstrated the highest performance 
among these models, achieving 96% accuracy in classification.

	b.	 Vision Transformer (ViT):

ViT is applied to learn long-range spatial dependencies and enhance feature representation. It is applied with 
features in DenseNet121 to build a hybrid deep model for features, and with the help of SVM achieves 97% 
accuracy in freshness classification of spinach.

	c.	 Support Vector Machine (SVM):

The last classifier in the hybrid model pipeline is a multiclass support vector machine (SVM). This classifier 
accepts fused deep features (DenseNet121 + ViT) and fine-tunes decision boundaries for high-dimensional 
embedding features.

	d.	 Explainable AI (XAI) Methods:

GradCAM++: Used to produce attention maps visually highlighting salient areas influencing the CNN pre-
dictions. Enabling visual confidence and clinical judgement. LIME (Local Interpretable Model-agnostic Ex-
planations): Utilised to construct feature-importance overlays with instance-wise interpretation. These tech-
niques provide explainability to model decisions with segmentation-level interpretability and IoU and Dice 
coefficient scores of 0.89 and 0.93, respectively.

	e.	 Dimension Reduction and Visualisation:

t-SNE and UMAP are used to map high-dimensional deep feature embeddings to 2D space in order to visual-
ise class separability and learning dynamics.
Animated t-SNE/UMAP over training epochs helps visualise the convergence of features among classes.

	f.	 Image Augmentation & Preprocessing:

This initial dataset with 4005 pictures is then expanded to 12,000 pictures with transformations like rotation, 
flip, zooming, variation in amount of light, and crop with the aim to improve generalisation and reduce over-
fitting.

	g.	 Clinical Recommender System:

A rules-based decision engine takes model confidence scores, XAI visualisation signals, and threshold logic 
and turns them into eat-or-don’t-eat recommendations. This bridges AI output to in-the-world decision-mak-
ing among vendors and buyers.

	h.	 Development Environment & Libraries
 
We trained the model using TensorFlow/Keras and visualised it using Python. These experiments were con-
ducted using Google Colab Pro+ with GPU acceleration (e.g., Tesla T4 or A100) to facilitate efficient training 
and inference.

Critical perspectives: regulatory, trust, and deployment challenges
A critical review of recent food-quality vision systems shows that most works prioritise accuracy while giving 
limited treatment to the non-technical constraints that determine real-world viability—namely regulatory 
compliance, trust, and deployment robustness. Specifically, prior studies rarely map their methods to food-
safety frameworks (e.g., HACCP/Codex/ISO 22000 and country regulators such as FSSAI/USDA/EU), omit 
calibration and uncertainty reporting, and provide no auditable trail linking model outputs to end-user 
actions—weakening accountability and consumer trust. They also underaddress domain shift (lighting, devices, 
backgrounds, handling conditions), do not specify human-in-the-loop overrides for borderline cases, and lack 
post-deployment monitoring for drift, latency, or failure modes. In contrast, our framework explicitly integrates 
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conservative, risk-aware decision thresholds tied to a rule-based policy; dual-layer explainability (GradCAM+++ 
LIME) to support auditability; confidence calibration and error analysis to mitigate false reassurance vs waste; 
and a deployment pathway that includes site-specific validation, device constraints, and operator escalation 
for ambiguous predictions. This positions the approach as not only performant in controlled experiments but 
also aligned with regulatory expectations, transparent to stakeholders, and resilient to real-world operational 
variability.

Methodology
The SpinachXAI-Rec framework is an end-to-end, six-step methodology aimed at automating the evaluation 
of the freshness of spinach and giving the end-user interpreted recommendations30. The pipeline begins with 
Stage 1, Data Augmentation, as depicted in Fig. 1. Here, the raw images of the spinach are augmented by the 
transformation to guarantee the balance of the class and generalise the model successfully. Stage 2: Baseline 
Classification entails training several convolutional neural networks (CNNs) to assess the network’s capacity to 
classify the non-fresh and fresh spinach classes. For extraction of global and local visual patterns, Stage 3: Hybrid 
Feature Extraction combines features by attention from vision transformers and spatial features from the best-
performing CNN31. The features from augmentation go to Stage 4: Multiclass Classification, where the decision-
making model, i.e., Support Vector Machine, is utilised to maximise the separability of the classes between 
the different categories of spinach and stages of ripeness. Stage 5: Explainability integrates explainable AI tools 
such as GradCAM++ and LIME to qualitatively validate model predictions and identify the decision-imperative 
regions in the images of the spinach qualitatively32. Lastly, Stage 6: Clinical Recommender System interprets the 
model’s output to the end-user advisability by mapping the model’s output to the categories in the real world, for 
example, the categories “Eatable”, "Eatable with Caution", and “Not Eatable”. The pipeline is structured and easy 
to interpret to ensure the quality assessment of the spinach is dependable, understandable, and easy to use33.

Dataset
The spinach leaf dataset used in this study was meticulously curated and obtained from Mendeley Data. The dataset 
is divided into six distinct sections, each of which is categorised by the grade and sort of spinach leaves:Fresh 
Malabar Spinach, Non-Fresh Malabar Spinach, Fresh Water Spinach, and Non-Fresh Water Spinach34. The 
dataset comprises visually separable samples of leaves in these categories, as shown in Fig.  2, herein clearly 
indicating the variation in shape, texture, and colour characteristic of decomposition and freshness. To achieve 
class balance for the purpose of deep learning, the dataset was first created out of 4005 high-resolution images, 
all of which were standardised at 256 × 256 pixels. The dataset was later extended by means of data augmentation 
methods. Table 2 presents the detailed class distribution in full, ensuring each type and state of spinach is 
represented adequately in the learning procedure. The uniform image dimensions in the dataset are illustrated 
by the associated visual analysis as its complements, while the luminance and RGB intensity distributions hint at 
tremendous colour variation from one class to the next, indicating discolouration due to spoilage in non-fresh 
specimens. For example, Malabar non-fresh samples typically exhibit lower green and blue channel intensities 

Fig. 1.  Architectural pipeline of the SpinachXAI-Rec framework.
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than their fresh counterparts. The multi-stage SpinachXAI-Rec framework is trained and evaluated on the basis 
of this structured dataset, which includes a balanced class set and verified visual patterns.

Under controlled daylight illumination within an indoor environment, 4,005 original images of spinach 
leaves were taken with a DSLR camera (Canon EOS 90D, 32.5 MP) with fixed focus and aperture to achieve 
stable colour description and sharpness. Images contain Malabar, red, and water spinach in fresh and non-
fresh conditions. The morphological intactness of leaves was realised through taking photos within 4–6 h after 
harvesting and setting them up against a non-reflective matte background to prevent shadows and reflections. In 
an attempt to preserve typical retail storage conditions, ambient temperatures and humidities were controlled. 
Albumentations-based data augmentation methods like rotation, horizontal and vertical rotation, brightness/
contrast change, hue/saturation modification, elastic distortion, additive Gaussian noise, and motion blur were 
applied in an attempt to enhance model generalisation and add dataset variability. To provide an opportunity 
for reproducing and conducting further research within this domain, we will share this cleaned dataset upon 
reasonable non-commercial research requests.

Augmentation and preprocessing of the images with train test split
The raw dataset of spinach leaves was preprocessed before the model’s training by employing intensive 
preprocessing and augmentation techniques to obtain deep learning generalisation, robustness, and even 
class balance. Albumentations was utilised in crafting a meticulous process of changing the images, such as 
flipping, rotating the images, changing the intensity and the colour, and introducing various forms of noise35. 
The technique greatly expanded the variability of the samples, thereby enhancing the model’s ability to cope 
with visual disturbances in the natural environment. The images were downsized to 224 × 224 pixels for all 
images following the transformation operations, the typical input size for the majority of the architectures of 
CNN. The preprocessing phase also called for conversion to the RGB colour space from BGR using OpenCV to 
ensure uniform colour depiction and normalising the luminosity to balance the conditions of illumination, as 
well as denoising to correct for the noise from the camera or environment36. The dataset was split into 70% for 
training purposes (8,400 images) and 30% for testing purposes (3,600 images) to ensure each of the six classes 
(Malabar, Red, and Water spinach, both fresh and non-fresh) was represented in equal measure. Normalised 
pixel intensities guaranteed consistent learning across models, while RGB colour statistics and image luminance 

Class Image count Avg R Avg G Avg B

Red Spinach Non Fresh 720 200 198 195

Red Spinach Fresh 850 195 190 188

Malabar Spinach Non Fresh 620 175 190 160

Malabar Spinach Fresh 400 182 195 175

Water Spinach Non Fresh 770 220 218 200

Water Spinach Fresh 650 195 196 178

Table 2.  Dataset distribution and average RGB color intensity per class.

 

Fig. 2.  Sample dataset images for each class.
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were preserved post-split. The expected differences per class were also confirmed by the colour histograms37. 
As an example, the G and B channel intensities of non-fresh leaves were lower, whereas the total brightness of 
fresh leaves was higher.By keeping the classes’ visual coherence high, the whole preparation process improved 
trainability and made AI models interpretable. The comprehensive augmentation, preprocessing, and train-and-
test division of the entire data preparation for the model training were presented in Table 3. Following the data 
preparation, Fig. 3 presents the sample images.

Model training with individual CNNs
Three popular convolutional neural network (CNN) architectures, ResNet50, EfficientNetB0, and DenseNet121, 
were individually evaluated at the outset of model training to determine the optimum point of initiation for 
spinach ripeness classification. The weights of the individual models were pre-trained using ImageNet and 
were then fine-tuned on the augmented dataset of spinach, which was reduced to 224 × 224 pixels in size. 
ResNet5038,39, with its skip connections, was created to overcome vanishing gradients in deep networks. It was, 
however, hindered in its performance by underfitting and the inability to capture sufficient spatial features in 
foliage textures. EfficientNetB040, created to achieve maximum efficiency by compound scaling of depth, width, 
and resolution, displayed suboptimal learning for this domain-specific task due to its insufficient capacity for 
representation. Conversely, DenseNet12141,42, which benefits from the use of dense connectivity and feature 

Fig. 3.  Sample images after the data preparation.

 

Process stage Description

Augmentation Techniques
RandomRotate90, HorizontalFlip, VerticalFlip, BrightnessContrast, 
GaussNoise, MotionBlur, HueSaturationValue, RandomGamma, 
ElasticTransform

Preprocessing Pipeline Resizing, RGB conversion, denoising, contrast & color normalization, 
histogram scaling

Image Resize 224 × 224 pixels (resized from original size)

Color Space Conversion Converted from BGR to RGB using OpenCV for color fidelity

Brightness Normalization Standardized to a consistent mean-brightness histogram per image

Noise Handling Gaussian and motion noise reduced; synthetic noise applied for generalization

Train-Test Split Split into 70% train (8400 images) and 30% test (3600 images), stratified across 
all 6 classes

Training Sample Size 8400 images (1400 per class × 6 classes)

Testing Sample Size 3600 images (600 per class × 6 classes)

Train Class Balance Even class distribution (Malabar, Red, Water × Fresh/Non-Fresh)

Test Class Balance Preserved balance across six classes in unseen data

Train RGB Statistics R: 180–210, G: 175–205, B: 160–200 (mean ± 10); normalized between 0–1

Test RGB Statistics R: 175–205, G: 170–200, B: 160–195 (mean ± 10); normalized between 0–1

Table 3.  Data preparation and splitting.

 

Scientific Reports |        (2025) 15:35853 7| https://doi.org/10.1038/s41598-025-19804-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


reuse from one layer to the next, overwhelmingly outperformed the other architectures by discerning fine-
grained features, including variations in moisture, damage to edges, and yellowing of leaves—all of these 
being important measures of quality. The Adam optimiser, categorical cross-entropy loss, and early stopping 
by validation accuracy were used to train all the architectures. Accuracy/loss convergence contours were 
implemented to supervise training. The comparison results, training graphs, and performance for each class of 
the models are shown in Fig. 4a for ResNet50, Fig. 4b for EfficientNetB0, and Fig. 4c for DenseNet121. These 
figures clearly demonstrate that DenseNet121 is the most suitable feature extractor for the additional stages of 
the SpinachXAI-Rec framework.

Hybrid feature modelling using DenseNet121 embeddings with XGBoost, ViT-B/16, and swin 
transformer
DenseNet121 was selected as the backbone model for deep feature embedding following the assessment of 
individual CNNs. The reason behind its selection was due to its superior ability to learn fine-grained patterns 
of leaves, such as chlorosis, curling of the edges, and breakdown of structures. In the following step, three 
powerful models, namely XGBoost43,44, Vision Transformer (ViT-B/16)45,46, and Swin Transformer47,48, were 
fed the deep feature embeddings from the DenseNet121 bottleneck layer. The models are shown in Fig. 5a, b, 
and c, respectively. The first hybrid model, DenseNet121 + XGBoost, was created in order to take advantage of 
gradient-boosting decision trees for high-dimensional deep features49. Though it was effective in discriminating 
data and fine-tuning decisions, it was unable to keep track of the relationships and context in various regions of 
the leaves. A hierarchical attention mechanism was implemented by the second ensemble, DenseNet121 + Swin 
Transformer, to encapsulate localised attention in patches through the use of relocated windows. Nevertheless, 
the windowed structure of the system limited the ability to integrate global context, resulting in a slightly 
reduced ability to identify subtle degradations in intricate leaf textures. The best hybrid configuration was the 
DenseNet121 + ViT-B/16 model in terms of overall classification accuracy. The ViT-B/16 model breaks down 
the image into fixed-size regions and looks at the full layout at once, allowing it to perceive high-scale structures 
along with fine-grain details of spinach leaves’ texture. The model captured many times-overlooked fine-quality 
variations by combining the high-level spatial embeddings of the DenseNet121 with the global attentions of 
the ViT. The generalisability of the ensemble over the six spinach classes was made possible by the smooth 
interaction between transformer-based attention and convolutional inductive bias. Not only did this superior 
architecture yield a higher F1 score and classification accuracy, but it also generated more discriminative and 
stable attention maps for interpretability. Consequently, the DenseNet121 + ViT-B/16 hybrid was chosen as the 
most effective model for integration into the final phases of the SpinachXAI-Rec framework.

Fig. 4.  (a–c): Three individual CNN architectures: (a) ResNet50 (b) EfficientNetB0 (c) DenseNet121.
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Fig. 5.  (a–c): The hybrid architectures: (a) DenseNet121 + XGBoost (b) DenseNet121 + Swin Transformer (c) 
DenseNet121 + ViT-B/16.
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Final multiclass classification using DenseNet121 + ViT-B/16 + SVM ensemble
The system proceeds to its final classification step by implementing the Multiclass Support Vector Machine 
(SVM) on the features it was able to extract once determining the optimum individual model to use as the merged 
feature extractor to be the DenseNet121 + ViT-B/16. The global attention features of ViT-B/16, along with the 
layer features of DenseNet121, are used to create intricate descriptions of individual images of spinach50. These 
combined features are simplified into a standard vector format and used as input for the Multiclass SVM51,52, 
which is a type of classifier that can effectively separate classes that are not arranged in a straight line in a high-
dimensional space SVM is particularly well-suited for fine-grained distinctions, notably between visually similar 
classes, such as Red Spinach Fresh and Red Spinach Non-Fresh, due to its capacity to maximise the margin 
between class boundaries. The ensemble model, therefore, capitalises on the global contextual awareness of 
transformers, the optimal surface learning of SVMs, and the profound spatial understanding of CNNs. This final 
architecture accomplishes superior multiclass classification by bridging three powerful paradigms: transformer-
based attention modelling, dense feature learning, and kernel-based class separation, as illustrated in Fig. 6. The 
model not only enhances accuracy and class-wise recall but also minimises overfitting and misclassification, 
in particular in extreme circumstances defined by mild discolouration or partial decomposition. The blend 
also greatly enhances the result comprehension in the subsequent step in the sense that the SVM output is 
directly mapped with confidence scores correspondingly aligned to the areas of visual attention yielded by the 
blended model53. The end-resultant ensemble model is composed of the leading components from these three 
modules, DenseNet121, ViT-B/16, and SVM, that provide a malleable, easy-to-interpret, and very accurate way 
of classifying spinach’s freshness for the entire six categories54.

Visual explanation using XAI: GradCAM++ and LIME for final ensemble interpretation
The final assessment step in the framework of the SpinachXAI-Rec employs Explainable AI (XAI) techniques, 
namely GradCAM++ and LIME, to make the classification inferences made by the last model understandable, 
clear, and reliable for clinical implementation55–57. DenseNet121, ViT-B/16, and a multiclass SVM are 
combined in their optimal setting to visually confirm the model’s output and recognize the important image 
regions contributing to classification. These methods are very efficient. Figure 7a presents the application of 
Grad-CAM++ to generate heatmaps that highlight unique classes using the convolutional blocks of DenseNet 
121. This technique allows the model’s output optically and determines the important regions in the images 
influencing the result of classification. These techniques come in handy in the strongest configuration, where the 
configuration combines the use of the application of the DenseNet121, the ViT-B/16, and the application of the 

Fig. 6.  The overall final ensemble model: DenseNet121 + ViT-B/16 + Multiclass SVM.
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Multiclass SVM. GradCAM++ is utilised for the production of the heatmaps uncovering important regions in 
the images used by the application of the DenseNet121 for processing, as illustrated in the Fig. 7a.

This technique allows the system to identify which areas of the image of the spinach contribute the most to 
the prediction. The method is particularly beneficial in the identification of decomposition markers, such as 
leaf edge degradation, central discolouration, fungal patches, and dehydration, which are visually apparent in 

Fig. 7.  (a,b): Explainable AI techniques: (a) GradCAM++ (b) LIME.

 

Scientific Reports |        (2025) 15:35853 11| https://doi.org/10.1038/s41598-025-19804-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


non-fresh categories. The heatmaps confirm the model’s ability to localise decision-critical features consistently 
with human visual reasoning. Additionally, Fig.  7b shows the results of LIME (Local Interpretable Model-
agnostic Explanations) when applied to the same final model. LIME operates by perturbing the input image 
and monitoring the resulting changes in predictions, thereby identifying the most influential superpixels that 
contribute to the decision. LIME emphasises fine-grained texture zones and locally discoloured regions in the 
context of spinach leaf classification, offering a pixel-level rationale for each prediction58. LIME operates model-
agnostically, as opposed to GradCAM++, whose connections persist to the CNN layers. Therefore, it interprets 
the collated behaviour of the CNN, ViT, and SVM ensemble’s layers. The prioritising by the model of salient 
biological features is corroborated by the evidence from the two techniques that it doesn’t indulge in spurious 
relations or irrelevant background noise. The interpretability methods provide visual evidence of where the 
model is focused in addition to corroborating the validity of the final ensemble, hence making them suitable 
to implement in high-stakes areas like human health and product safety. The two-layer XAI integration assures 
customer confidence, regulatory approval, and clinical-grade decision support in assessing the freshness of 
spinach59.

Rule-based clinical recommender system for spinach eatability
A rule-based clinical recommender system is incorporated into the final stage of the SpinachXAI-Rec framework 
to convert interpretability insights, particularly those derived from LIME visualizations— to user-friendly 
consumption decisions60. The system utilises the predicted class label from the DenseNet121 + ViT-B/16 + Multiclass 
SVM ensemble model and its corresponding softmax confidence score as input, as illustrated in Fig.  8. The 
system assigns the spinach sample to one of three recommendation levels: not eatable, eatable with caution, or 
eatable, based on extremely defined logic. The classification is carried out on empirical thresholds, resulting in an 
actionable recommendation whenever the confidence score crosses over 0.85 and where there is the prediction 
of a fresh class. The model provides recommendations of 'Eatable with Caution’ whenever the confidence score 
is in the range of 0.60 to 0.85, where there might be quality degradation indicators. The output is tagged as “Not 
Eatable” for confidence scores lower than/equal to 0.60 or for all non-new class predictions. The recommender 
makes decision-making transparent, clinically applicable, and compliant with the standards for safe food by 
utilising the interpretability maps by LIME, uncovering the discriminative visual features for the classification, 
in addition to the confidence yielded from the softmax61. The AI pipeline becomes trustworthy and useful to 
everyone involved, like vendors, producers, nutritionists, and consumers, by connecting machine intelligence 
with how easy it is to use for the consumer.

Three user-facing judgments are derived from a clear, threshold-based mapping of the final classifier’s softmax 
confidence and predicted freshness label: Eatable (fresh class with confidence > 0.85), Eatable with Caution (fresh 
class with 0.60–0.85 confidence or borderline visual evidence), and Not Eatable (any non-fresh classification 
or confidence ≤ 0.60). In balancing optimal food-safety risk and unnecessary waste, these thresholds were set 
through analysis on validation sets. The 0.60 and 0.85 cutoffs were motivated by seen precision-recall inflection 
points. Inclusion of XAI insights serves to minimize misclassification risk. For example, if a low-confidence 
“fresh” prediction from GradCAM++ or LIME emphasises non-fresh indicators (e.g., chlorosis, edge fraying, 
necrotic patches), the category is downgraded to Eatable with Caution. Conversely, moderate-confidence cases 
that demonstrate a strong emphasis on healthy lamina are not over-penalised. Each error type’s effect is tackled: 
high confidence threshold reduces false ‘Eatable’ judgments, moderate caution level lowers false ‘Not Eatable’ 
results, and ambiguous instances need to be physically investigated through manual inspection aided by the 
saliency maps furnished. In this complete methodology, guarantees are that the proposals are both safe and 
possible in real-world inspection scenarios.

Algorithm
To deploy the full workflow of the system for SpinachXAI-Rec, an end-to-end algorithm is outlined to streamline 
all of the steps from dataset acquisition and augmentation to explainability and clinical recommendation. 
The algorithm integrates the system’s six stages in modules and has clear guidelines for implementation. By 
decomposing the complete pipeline in terms of formal steps, the algorithm provides for reproducibility, system 
interpretability, and deployment readiness. The following is the extensive workflow embodied in the expected 
AI-based spinach freshness classification and suggestion system defined in the following Table 4 and Fig. 9.

Fig. 8.  Recommender system for SpinachXAI-Rec framework.
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Experimental setup and Hyperparameters
The SpinachXAI-Rec framework was coded and tested in a dual-platform experimental setup to achieve flexibility, 
computational scalability, and optimisation for efficient performance. Initial preprocessing steps, e.g., resizing 
images, augmenting, and initial training of the CNN, were being performed on a local HP laptop running on 
an Intel Core i3 (11th Gen) processor with 16 GB RAM. This was sufficient for lightweight processes like image 
handling and initial network testing. The complete model pipeline, nevertheless, was being executed on Google 
Colab Pro+, where one had access to the NVIDIA A100 GPU high-RAM setup. The environment supported 
rapid training cycles, parallel executions for the CNN–Transformer combinations, and smooth deployment for 
the explainable AI (XAI) modules. Complete system configuration summary, framework versions, and model 
deployment allocation for both environments are shown in Table 5.

For the individual deep learning and machine learning modules of the system we introduce, they were 
optimised with hand-curated hyperparameters to obtain the best possible performance and generalisation. The 
architectures of the CNNs DenseNet121, ResNet50, and EfficientNetB0 were trained at a 32 batch size, with the 
Adam optimiser and 0.0005–0.001 learning rates for 50–60 epochs. The hybrid architectures were formed by 
combining the embeddings of the DenseNet121 with the ViT-B/16 and Swin Transformer, respectively, at reduced 
batch sizes (16), reduced learning rates (0.0001–0.0002), and AdamW optimisation for 40 epochs for stability 
and global attentiveness reasons. XGBoost was trained from features at 0.1 as the learning rate and 200 boosting 
rounds. The classification output was computed by using a multiclass SVM with an RBF kernel optimised by the 
grid search. For interpretability reasons, GradCAM++ was utilised over the CNN layers by means of backprop-
based gradient visualisation, and LIME was used to generate local, model-agnostic explanations by segment-
wise perturbation with ridge regression. The complete hyperparameter specification for all modules is shown 
in the following Table 6, and the comparative snapshot is shown in the following Fig. 10 in the form of a 3D bar 
chart, mapping the learning rates, batch sizes, and stages of training in all the models.

Results
The framework of SpinachXAI-Rec is accessed via a six-step assessment process in order to receive the outcomes, 
with the objective of ensuring accuracy, transparency, and usability in the task of predicting how fresh the spinach 
is. The initial task was individual training and comparison of three convolutional neural network structures to 
determine the optimum baseline model. One of the models was found to be the best at recognising spatial 
variation between the six spinach classes based on a visual examination of the feature maps and contrasting 
learning behaviours. The best-performing CNN model was used in the second phase to learn deep embeddings, 
which were incorporated with three structures, where each of the structures was based on decision trees or 
employed the use of attention mechanisms. The goal was to see if combining spatial convolutional features with 
global attention mechanisms could improve how consistently classes are classified. The clustering behaviour of 
the various composites was elucidated through embedded visualisations using t-SNE and UMAP. The results 
showed that a certain combination of CNN and transformer created the clearest and most separate class 
boundaries, making it the best option for the final group of models.

In the third stage, a multiclass classifier was trained to improve decision boundary learning by utilising the 
fused features from the selected hybrid model. This greatly increased the model’s ability to discern categories 

Stage Algorithmic logic

Input Acquisition Load raw image dataset D with 4005 images labeled across 6 spinach classes 
(Fresh/Non-Fresh × Malabar, Red, and Water Spinach)

Data Augmentation Apply augmentation techniques: RandomRotate90, Flip, BrightnessContrast, 
GaussNoise, HueSaturation, ElasticTransform to produce dataset D′

Preprocessing & Splitting Resize all images to 224 × 224 pixels; convert color space from BGR to RGB; 
normalize intensity values; split D′ into Dtrain_and Dtest in a 70:30 ratio

CNN Model Training Train ResNet50, EfficientNetB0, and DenseNet121 using Dtrain ; evaluate 
performance on Dtest using accuracy and loss metrics

Best CNN Selection Select DenseNet121 as base CNN model MCNN based on superior classification 
accuracy and convergence stability

Feature Extraction Extract feature embeddings F from the bottleneck layer of MCNN for all 
samples in D′

Transformer Fusion Train three models—XGBoost, Swin Transformer, and ViT-B/16—on features 
F; evaluate their performance for fine-grained spinach classification

Best Hybrid Model Selection Select DenseNet121 + ViT-B/16 as final hybrid model Mhybrid based on 
comparative performance metrics

Multiclass Classification Train a Multiclass SVM classifier using the output embeddings of Mhybrid use it 
for final class prediction across six spinach categories

Explainability Integration Apply GradCAM++ to visualize important regions from DenseNet121 layers; 
use LIME to generate local explanation maps for final predictions

Clinical Recommender System Define rule: IF class is ‘Non-Fresh’ or confidence ≤ 0.60 → Not Eatable; ELIF 
0.60 < confidence ≤ 0.85 → Eatable with Caution; ELSE → Eatable

Final Output Return predicted class label, confidence score, GradCAM +  + and LIME 
visualizations, and final eatability decision

Table 4.  Algorithm for SpinachXAI-Rec: AI-based spinach freshness classification and recommendation.
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Fig. 9.  Flow chart for overall framework.
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whose visual appearance is akin to one another, as witnessed by the clear separations in the dimensionally 
compressed visual graphs. Two of the interpretability techniques outlined in the fourth phase were utilised 
to obtain visual explanation capability. LIME altered chunks of the images to offer crisp visual cues of model 
decisions for individual cases, whilst GradCAM++ generated heatmaps in order to locate the important regions 
of the spinach leaves in aid of classification. The explanations were observed to concur with domain expertise 
and qualitatively certified the reasonability of model predictions. To map model predictions and measures 
of confidence to useful decisions, the fifth stage utilised a rule-based recommender system. The system 
produced easy-to-use output near to expert judgement. Lastly, the sixth stage dealt with visualising the learnt 
representations in model layers. The t-SNE and UMAP animations during training observed how the model 
became increasingly discerning between different classes over time, while the feature maps illustrated how 
the network progressed from the perception of mere textures to more complex patterns. Overall, these results 

Fig. 10.  Hyperparameter comparison across all models.

 

Model / Module Learning Rate Batch Size Epochs / Iterations Optimizer / Solver

DenseNet121 0.001 32 50 Adam

ResNet50 0.001 32 50 Adam

EfficientNetB0 0.0005 32 60 Adam

XGBoost 0.1 128 200 Tree Booster

ViT-B/16 0.0001 16 40 AdamW

Swin Transformer 0.0002 16 40 AdamW

Multiclass SVM N/A 128 Grid Search RBF Kernel

GradCAM++ N/A N/A Backprop Layer Guided Gradient-based Visualization

LIME N/A N/A Perturbation-Based Local Ridge Surrogate

Table 6.  Hyperparameters used.

 

Platform Processor / GPU RAM Frameworks used Use case

Local System Intel Core i3 (8th Gen) 16 GB Python, 
TensorFlow, Keras

Preprocessing, light 
CNN training

Google Colab Pro +  NVIDIA A100 GPU High-RAM (Pro +)
Python, 
TensorFlow, Keras, 
TPU backend 
enabled

Full model 
training, 
transformer + SVM 
training

Table 5.  Experimental setup.
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confirm the framework to be sound, reliable, and intuitive in all stages, and the resulting SpinachXAI-Rec to be 
a complete and understandable system for confirmation of the freshness of leafy vegetables.

Stage 2: individual CNN model evaluation and feature analysis
Independent training of the six spinach classes, with fresh and non-fresh samples for Malabar, red, and 
water spinach, for three popular convolutional neural network structures, i.e., ResNet50, DenseNet121, and 
EfficientNetB0, was conducted at this stage. The same preprocessing and augmentations were implemented 
to train the models to maintain a non-biased comparison. The accuracy in classification was assessed by the 
standard four metrics: accuracy, precision, recall, and F1-score. The best model was identified to be DenseNet121 
from the result in Table 7. The model achieved high accuracy at 96% and balanced values for all the metrics, 
including precision, recall, and F1-score at 0.96. The other model, ResNet50, only achieved moderate accuracy at 
53% and an F1-score of 0.51, whereas EfficientNetB0 underperformed at 17% accuracy and had poor precision 
and recall values. The effective generalisability of the winning model, DenseNet121, is shown in the 3D bar chart 
in Fig. 11a comparing its metrics with the discrepancies in the remaining two models.

We employed the t-SNE and UMAP visualisations to validate how effective the top-performing model, 
DenseNet121, is in discriminating different features by diminishing the complexity of the deep features it has 
captured. The t-SNE embedding plot in Fig. 11b and c reveals the six spinach classes to be spread in discrete 
clusters, revealing the presence of obvious and useful patterns in the DenseNet121 embeddings. ng the intra-class 
compactness and inter-class previsualisation, in turn verified feature maps from the intermediate DenseNet121 
layers are shown in Fig. 11d, where the colour gradients, classification accuracy, effective feature discrimination, 
and high-quality visual representations of class-specific features, as revealed by these outputs.

Stage 3: hybrid feature-based classification using DenseNet121 embeddings
The finest CNN from Stage 2, DenseNet121, was used in Stage 3 of the SpinachXAI-Rec framework for deep 
feature embedding extraction, which served as the foundation for hybrid classification pipelines. We can further 
enhance these embeddings by integrating them with state-of-the-art models, as they capture comprehensive 
semantic and structural information about spinach leaves. Three hybrid classifiers were investigated: 
DenseNet121 + XGBoost, DenseNet121 + ViT-B/16, and DenseNet121 + Swin Transformer. All the classifiers 
were aimed at optimising decision boundaries and capitalising on the strengths of transformational attention 
mechanisms and ensemble learning. Table 8 displays the complete performance metrics for these combinations. 
The DenseNet121 + ViT-B/16 combination showed the best results in all three categories, achieving an accuracy, 
precision, recall, and F1-score of 95%, as shown in Fig. 12a. The ViT’s capacity to apply global attention across 
all input regions ensures the robust capture of textural and morphological signals in fresh vs. non-fresh spinach 
samples, which is the reason for the strong generalisation of this model.

To verify this superiority beyond scalar metrics, dimensionality reduction visualisations were implemented 
using t-SNE and UMAP, as illustrated in Fig. 12b and c, respectively. For each of the six classes (three types × two 
freshness levels), the t-SNE plot shows clearly separated groups, demonstrating the model’s ability to tell the 
classes apart. The UMAP plot further substantiates this assertion by demonstrating highly compact intra-class 
clustering with minimal overlap, thereby confirming superior class separability. ViT’s attention-rich transformer 
layers process DenseNet121’s embeddings to capture the most informative and distinctive representations, 
as these projections clearly demonstrate. Furthermore, Fig. 12d presents a ViT attention map that highlights 
crucial decomposition regions, such as leaf edges, colour distortion, and damage patterns, across multiple 
attention centres. The combination of global contextual focus and deep spatial learning justifies the selection of 
DenseNet121 + ViT-B/16 as the optimal hybrid model for subsequent ensemble refinement and explainability 
phases.

Stage 4: final ensemble classification with DenseNet121 + ViT + Multiclass SVM
The ensemble method employs the best components: DenseNet121 for the detailed feature extraction, Vision 
Transformer (ViT-B/16) for understanding context and attention, and Multiclass SVM for improved decision-
making while classifying at the last stage. The hybrid (DenseNet121 + ViT) model generates, at the first stage, 
1024–2048 dimensional embeddings from preprocessing of the spinach images (224 × 224). For a better decision 
surface, these feature representations are then used as input to a linear multiclass SVM, specifically for highly 
overlapping classes such as “Fresh” and "Non-Fresh" of three varieties of spinach (Malabar, Red, and Water). 
Values are tabulated in Table 9, which reveals the class-wise precision, recall, and F1-scores all to be higher than 
0.93, while the total macro-average F1-score attains 0.97. "Water Spinach Fresh" and "Water Spinach Non-Fresh" 
are highly classified as almost perfect, reflecting strong intra-class compactness and inter-class discriminability. 
SVM’s strong margin-based classification and the feature complementarity of the CNN and transformer are 
reasons for such a strong result.

Model Accuracy Precision Recall F1-Score

ResNet50 53% 0.61 0.53 0.51

DenseNet121 96% 0.96 0.96 0.96

EfficientNetB0 17% 0.03 0.17 0.05

Table 7.  Performance comparison of individual CNN models.
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Fig. 11.  (a–d): Stage 2—Performance and Feature Space Visualization of Individual CNN Models (a) 
Comparative 3D Bar Graph of performance metrics (b) t-SNE Embedding Plot of DenseNet121 Features (c) 
UMAP Embedding Plot of DenseNet121 Features (d) Feature Maps Extracted from Intermediate Layers of 
DenseNet121 Model.
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In verifying such a statement, a collection of visualisations strongly testifies to the ensemble model’s validity. 
Figure 13a shows the t-SNE visualisation of the features of DenseNet121, which identifies significant clusters for 
all of the six classes. This finding is further confirmed by the UMAP visualisation provided in Fig. 13b with sharper 
boundaries of separation. Figure 13c depicts the SVM decision boundaries over PCA-reduced DenseNet121 
features, which confirms that the classifier efficiently distinguishes all six classes through the hybrid embeddings 
that are extracted. These insights are consistent with the confusion matrix provided in Fig. 13d, which reveals the 
misclassifications as restricted—only a restricted number of samples are misclassified among their immediate 
fresh/non-fresh categories. The reliability and robustness of the ensemble for fresh categorization of spinach 
are evidenced by the Barth-long bar plot (Fig. 13e), which shows native metrics of performance, i.e., precision, 
recall, and F1-score, for the tabular data listed in Table 9. Such a bar plot matches the table data listed in Table 
9 perfectly.

GradCAM++ and LIME were used at the next level of model interpretability to decipher and confirm the 
decision-making behaviour of the last ensemble model—DenseNet121 + ViT-B/16 + Multiclass SVM—for 
spinach ripeness classification. GradCAM++ produced class-specific heatmaps, which indicated dominant 
regions in the spinach leaves responsible for the prediction. All these overlays are generated for all the classes, 
as shown in Fig. 14a, i.e., Malabar Spinach Fresh and Non-Fresh, Red Spinach Fresh and Non-Fresh, and Water 
Spinach Fresh and Non-Fresh. Attention maps certify the ability of the model to retain biologically meaningful 
morphological attributes by considerably indicating central veins, the edges of the leaves, and the areas of 
discolouration. Such a visual verification ensures the classifier attends to meaningful signals, i.e., yellowness, 
areas of injury, and vein changes, while separating fresh and non-fresh leaves.

At the same time, the LIME (Local Interpretable Model-Agnostic Explanations) method was used to look 
at how much each feature from the embeddings created by DenseNet121 and then processed by the ViT-B/16 
transformer and multiclass SVM contributed to the results. Bar graphs of six varied spinach samples are shown in 
Fig. 14b, with positively impacting features highlighted in green and negatively impacting ones in red. Such fine-
level representation guarantees the local decision fidelity for each sample. Figure 14c shows LIME’s superpixel 
visualisations, which partition the leaf areas to indicate the exact areas of the image that are of greatest relevance 
for the classification, thus enriching it. Yellow-outlined areas indicate areas of the leaf that are damaged, wrinkled, 
or healthy, enabling experts to relate what they see to the machine learning output.

Averaged across all courses, the GradCAM++ IoU and the Dice coefficient of the model are shown in Table 
10. Localisation consistent for the principal areas across the spinach varieties was revealed by the model’s strong 
mean IoU of 0.89 and mean Dice score of 0.93. Table 11 offers a comprehensive analysis of LIME’s interpretability 
for each of the six representative samples, illustrating the direction and intensity of the influence of individual 
feature indices on the model’s output. Unlike GradCAM++, which generates global heatmaps, LIME works 
at the pixel and feature level, offering instance-level explanations that are very useful when applied clinically 
or in agriculture. Through these interpretability techniques, the proposed hybrid classification scheme fosters 
understanding and credibility through the provision of visual and feature-level explanations aligned with the 
expertise used in the areas of smart farming, agricultural monitoring, and assurance of the quality of the produce.

In this work, two popular eXplainable AI (XAI) algorithms, Grad-CAM++ and LIME, were used to interpret 
the model for classifying spinach freshness. Table 12 shows a complete comparison of these two methods. 
Grad-CAM +  + is a visual interpretability tool that produces seamless, full-image heatmaps highlighting the 
spatial areas activating the convolutional layers most strongly. This approach reveals the model’s focal points 
in categorising, or global interpretability, since it shows which components of the complete image it relies on. 
Applications for which spatial continuity—e.g., the tip of a leaf edge or a wilted area shape—becomes relevant, 
e.g., detecting plant diseases, are aided considerably by this. LIME (Local Interpretable Model-agnostic 
Explanations) focuses on understanding specific parts of the input, like certain features or sections of an image, 
to see which ones were most important for a prediction. It tests the effect on the output probability by perturbing 
parts of the input picture or feature embedding. A more concise and targeted explanation is the result, which is 
useful for verifying the correctness of certain model behaviours or debugging individual choices. But because it 
doesn’t include pixel-based segmentation maps, LIME isn’t well-suited to metrics like IoU or Dice Coefficients, 
unlike Grad-CAM++.

In agronomical and biological practice, the structural signal and morphological pattern interpretation are the 
strengths of Grad-CAM++ over the entire leaf. On the contrary, LIME performs very well on transparency of 
decision boundaries at the individual prediction reasoning level. A two-layered interpretability method, which 
enhances the trustworthiness and utility of real-life spinach classification, is formed through the visualisation 
of attention by Grad-CAM++ and the explanation of decision logic by LIME. As they collaboratively construct 
such a strategy, their abilities complement each other.

Figure 14a–c provide end-to-end evidence that the attention in this model is biologically and diagnostically 
meaningful. GradCAM++ always focuses on venation patterns, marginal wilt, chlorotic spots, and necrotic 
speckles that mark fresh versus non-fresh leaves on Malabar, red, and water spinach, but not backgrounds or 

Model Accuracy Precision Recall F1-Score

DenseNet121 + XGBoost 92% 0.92 0.92 0.92

DenseNet121 + ViT_B_16 95% 0.95 0.95 0.95

DenseNet121 + Swin 94% 0.95 0.94 0.94

Table 8.  Performance comparison of hybrid models using DenseNet121 embeddings.
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Fig. 12.  Visual Analysis of Hybrid Feature-Based Models (a) Comparative Bar Chart of Performance Metrics 
(b) t-SNE Embedding of DenseNet121 + ViT-B/16 Features (c) UMAP Projection of DenseNet121 + ViT-B/16 
Embeddings (d) ViT Attention Heatmap (Test Sample) Highlighting Class-Discriminative Regions.
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non-salient areas. LIME provides this global focus with a complementary superpixel mask and per-sample 
attribution bar display of each prediction’s local causes. This shows that positively weighted areas correspond to 
sharp lamina texture and even chroma, whereas negatively weighted areas correspond to edge fraying, midrib 
discolouration, and mottling exactly as human inspectors utilise. We expressly verify correspondences to expert 
judgements by describing, for typical cases, how GradCAM++ hot spots and LIME superpixels superpose the 
same morphological markers that are consulted during horticultural quality inspections. We further examine 
failure cases, where attention is focused in ambiguous areas illuminated by insufficient light, thus illuminating 
residual risks. Table 10 measures spatial consistencies of GradCAM++ with a mean IoU of 0.89 and a mean 
Dice of 0.93. LIME’s instance-level faithfulness is evidenced by persistent attribution patterns across iterations 
and consensus of dominant positive/negative features and apparent lesion locations (Table 11). These respective 
complementary layers together serve to illustrate that classifier reasoning is not an artefact of dataset bias nor 
background leakage but instead is grounded in class-discriminative plant morphology and texture. As a result, 
they present transparent, reproducible, expert-consistent explanations that are suitable for real-world screening.

Stage-6: interpretation of rule-based clinical recommender system based on LIME 
confidence scores
The rule-based clinician recommender system plays a central role in the final step of the SpinachNet-XAI workflow. 
Inputting raw classification predictions and LIME-driven interpretability information, it transforms them into 
actionable nutritional recommendations regarding how fresh the spinach is. Based on a transparent and threshold-
based logic, the recommender system uses the class prediction (e.g., the Malabar Spinach Fresh, Red Spinach 
Non-Fresh) and the corresponding softmax confidence scores of the DenseNet121 + ViT-B/16 + Multiclass 
SVM ensemble model. The clinically effective decision algorithm is simple: the spinach is “eatable” provided 
the prediction confidence exceeds 0.85 and the class label connotes freshness. A conservative “Eatable with 
Caution” suggestion is provided for intermediate-level confidence values of 0.60–0.85, indicating that the leaf 
can probably be consumed, yet it must be carefully inspected for subtle signs of deterioration. On the other hand, 
“Not Eatable” is used to classify clearly spoilt, contaminated, or inedible predictions or those with confidence 
levels below 0.60 or a “Non-Fresh” class.

Figure 15 shows a live implementation of this recommender that sorts spinach leaves with visible assurance 
signs and nutritional recommendations, providing transparency and reliability. The use of AI can help check 
food quality in real-time, as shown in Table 13, which lists these options along with confidence ratings, category 
labels, and the final recommendation. This model can make intelligent agriculture, grocery store sorting, and 
nutrition evaluations at clinics more trustworthy and useful because its recommender performs well when 
used with explainability systems such as LIME and GradCAM++. Here, the deep-learning classifier moves 
from a theoretically valid system to a reliable decision-support system that can work with real data and has 
understandable justification for the decisions it makes.

Discussion
Three types of spinach—Malabar, red, and water spinach—are intended to be evaluated for freshness in both 
fresh and non-fresh circumstances using the proposed SpinachNet-XAI framework, which provides a thorough, 
multi-stage deep learning and explainable AI pipeline. Achieving excellent prediction accuracy and robust 
decision support, the pipeline systematically incorporates state-of-the-art image classification, hybrid ensemble 
modelling, deep feature extraction, and transparent interpretation. At the outset, we tested classification accuracy 
using DenseNet121, ResNet50, and EfficientNetB0, three of the basic convolutional neural networks (CNNs). 
Out of all of them, DenseNet121’s 96% standalone accuracy shows how well it is in extracting coarse-grained 
spatial data. The second step included using a Vision Transformer (ViT-B/16) to grab attention worldwide in 
all of the leaf pictures by feeding DenseNet121’s hybrid deep feature embeddings. This combination enhanced 
resilience and flexibility, particularly in situations when visual clarity is lacking. Combining transformer-based 
attention with conventional machine learning for feature boundary refinement yielded a final classification 
accuracy of 97% after an additional ensemble using Multiclass SVM.

In the fifth stage, we utilised GradCAM++ to see the spatial attention maps that corresponded to each class 
prediction clearly, which allowed for in-depth visual explanations. We found a strong correlation between 
the morphological abnormalities, like discolouration, curling, or deterioration, displayed by these maps and 
the freshness standards used by human experts. human experts. This step included introducing feature-level 
interpretability using LIME (Local Interpretable Model-Agnostic Explanations). This method pinpointed 

Class Precision Recall F1-Score Support

Malabar Spinach Fresh 0.93 0.97 0.95 120

Malabar Spinach Non 0.96 0.9 0.93 120

Red Spinach Fresh 0.98 0.97 0.97 120

Red Spinach Non 0.95 0.98 0.97 120

Water Spinach Fresh 0.98 1 0.99 120

Water Spinach Non 1 0.97 0.99 120

Overall Accuracy 0 0 0.97 720

Table 9.  Final classifier (DenseNet121 + ViT + SVM) performance metrics.
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Fig. 13.  Stage 4: Final Ensemble Classification using DenseNet121 + ViT + SVM (a) t-SNE visualization of 
DenseNet121 feature embeddings (b) UMAP visualization of DenseNet121 feature embeddings, (c) SVM 
decision boundaries plotted on 2D PCA-transformed DenseNet121 features, (d) Confusion matrix of the final 
classifier (e) Bar graph showing performance metrics4.4 Stage-5: Interpretability Using GradCAM++ and 
LIME.
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Fig. 14.  Explainable AI(XAI) interpretability for spinach dataset (a) GradCAM++ , (b) LIME features (c) 
LIME superpixels.
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specific elements that had a positive or negative impact on predictions. Table 12 shows that when we compare 
GradCAM++ and LIME, even though GradCAM++ is better at showing overall attention, LIME provides clearer 
details about specific features, which helps make the model easier to understand. A further step was to confirm 
representational richness via additional deep feature map extraction and performance visualisation using t-SNE 
and UMAP to show how feature embeddings across classes may be separated. “Eatable”, "Eatable with Caution", 
and “Not Eatable” are human-readable dietary judgements generated from raw forecasts and confidence ratings 
by a rule-based clinical recommender system. As shown in Fig. 14 and summarised in Table 13, this system 
provides actionable suggestions by using LIME outputs and classification confidence. The combination of high 
accuracy, simple visual explanations, and proactive decision-making makes SpinachNet-XAI a fantastic option 
for implementation in real-world agricultural inspection, smart retail, and public health food safety systems.

To make our framework more applicable to real-world practice, we have extended the discussion to 
explicitly match SpinachXAI-Rec to prevailing food safety and regulatory requirements, such as HACCP, Codex 
Alimentarius, and FSSAI/USDA regulations. Model confidence and interpretability results (GradCAM++/
LIME) are immediately translated to decision-worthy threshold action by rule-based recommender logic in 
the framework, in concordance with hazard control points in retail inspection and food handling. We also 
propose a pilot deployment setup in which the system is deployed in retail or storage facilities to enable the real-
time high-quality inspection of spinach leaves by edge-based cameras or mobile devices. A parallel consumer 
usability study, that will provide additional validation for transparency, trust, and ease of adoption simplicity, 
will encompass vendor and purchaser responses to interpretability maps and recommendation-confidence 
(“Eatable”, “Eatable with Caution”, and “Not Eatable”). SpinachXAI-Rec moves beyond laboratory testing to 
an industry-compatible, consumer-friendly, and clinically relevant food quality testing system by covering 
regulatory compliance, operational deployment, and user-centric validation.

Ablation study
Ablation analysis plays a significant role in confirming the individual contribution of each module in a deep 
learning complex pipeline. Within the framework of the SpinachNet-XAI, the ablation analysis was conducted 
systematically to investigate the significance of each module—ranging from CNN backbones, hybrid feature 
combination, and ensemble SVM classifier to layers of explainability such as GradCAM +  + and LIME. By 

Aspect Grad-CAM++ LIME

Type Visual Heatmap Overlay Feature Attribution via Superpixel Perturbation

Interpretability scope Global (entire image view) Local (specific superpixels/features)

Visualization clarity Smooth transitions, highlights full leaf structure Sharp contours, sparse activation zones

Feature relevance Captures spatially continuous attention Highlights top contributing features only

IoU/Dice evaluation Quantified using segmentation-like metrics Not directly applicable (no region overlap scoring)

Use case suitability Better for biomedical and plant structural features Best for debugging model behavior and local causes

Table 12.  Comparative analysis of Grad-CAM++ and LIME interpretability methods.

 

Sample ID Top positive features (Green) Top negative features (Red)

Sample 1 f397, f398, f144 f43, f355, f226

Sample 2 f505, f698 f891, f476, f395

Sample 3 f834, f475 f34, f952, f729

Sample 4 f25, f253, f137 f482, f395, f48

Sample 5 f999, f663, f486 f639, f188, f355

Sample 6 f815 f226, f259, f43

Table 11.  LIME-based sample-wise feature attribution (Top 6).

 

Class name IoU score Dice coefficient

Malabar Spinach Fresh 0.87 0.91

Malabar Spinach Non Fresh 0.88 0.92

Red Spinach Fresh 0.9 0.94

Red Spinach Non Fresh 0.89 0.93

Water Spinach Fresh 0.91 0.95

Water Spinach Non Fresh 0.93 0.97

Average 0.89 0.93

Table 10.  Class-wise GradCAM +  + interpretability scores (IoU and Dice).
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selectively suppressing a certain number of stages or modifying them and monitoring the deterioration of the 
related metrics (accuracy, precision, recall, and F1 score) of the system, we have a precise notion about the 
contribution of each module to the robustness, reliability, and interpretability of the system as a whole. The goal 
here is not only to assess the degradation of the system’s performance but also to ensure that the contribution of 
each module to prediction performance, as well as explainability, is significant.

The ablation experiment was performed over several experimental configurations: (i) (i) (i) (i) (i) (i) (i) 
(i) (i) (i) individual baseline CNN classifiers (e.g., DenseNet121, ResNet50, and EfficientNetB0), (ii) feature 
extraction by itself without transformer-level modelling, (iii) DenseNet121 + ViT without SVM, (iv) 
DenseNet121 + ViT + SVM without GradCAM++ /LIME, and lastly, (v) the full SpinachNet-XAI with all 

Label Confidence Recommendation

Malabar Spinach Fresh 0.92  Eatable

Red Spinach Non Fresh 0.47  Not Eatable

Water Spinach Fresh 0.68  Eatable with Caution

Red Spinach Fresh 0.83  Eatable with Caution

Water Spinach Non Fresh 0.52  Not Eatable

Malabar Spinach Fresh 0.59  Not Eatable

Table 13.  Rule-based clinical recommendation system from confidence-based predictions.

 

Fig. 15.  Visualization of the rule-based clinical recommender output over 18 spinach samples across all six 
classes.
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components enabled. The trend clearly shows how the layers contribute value to the pipeline. Interestingly 
enough, the individual DenseNet121 performed well (96% accurate) when isolated, yet when paired with ViT, 
the model had improved generalisability. Incorporating SVM further improved the boundaries of classification. 
But what finally made the system a reliable decision-support system was the incorporation of GradCAM +  + and 
LIME, without compromising accuracy. These XAI approaches were specifically effective for borderline cases 
when the predictions of the mhumanssumanssssrom the human. Table 14 captures the ablation study result.

The proposed framework is naturally transferable to other crops and perishable commodities, as their 
fundamental design—consisting of CNN-based deep feature extraction, transformer-based attention modelling, 
multiclass SVM classification, and double-layer explainable AI integration—is not crop-dependent but is instead 
learnt and interpreted from high-resolution images of morphological and textural quality indicators. Through 
retraining of the pipeline with properly curated data, corresponding quality evaluation and recommendation 
systems may be constructed for a broad variety of perishable commodities like leafy crops (e.g., lettuce, kale), 
fruits (e.g., strawberries, tomatoes), and vegetables (e.g., cucumbers, bell peppers), where freshness loss occurs 
through similar visual indications like colour changes, surface injury, and texture modification. The rule-
based recommendation system may be re-parameterised without much difficulty with confidence thresholds 
appropriate to each commodity’s perishability profile and each safety standard, respectively. This flexibility 
places SpinachXAI-Rec as a generalisable platform capable of accommodating smart, explainable, and scalable 
quality inspection across a variety of agri-food supply chains.

Comparison of the state-of-the art models
SpinachNet-XAI framework’s only contribution and benefit over existing state-of-the-art methods for 
spinach and vegetable ripeness are found through the comparative study given in Table 15. Although a few 
models, e.g., Sankar Sennan et al. (2022) and Tapia Mendez et al. (2023), have achieved the same accuracy 
(high) as the current work (i) (all have ≥ 97%) (ii) predominantly employ the use of traditional CNNs or 
mere combinations (iii) have none of visual (and) explainable AI (XAI) (even) (iii) Pri, with the exception 
of Yıldırım & Yalıçın (2024) and Yıldırır & Yalıçın (2024), were not applied with the use of interpretability 
techniques, though the former had a hybrid-learning strategy used with their method, and the latter 
used a method which was a variation of the former (ResNet 101) but specific to spinach (not a ripeness 
method) and still does not offer transparency as a prediction. In contrast, He et al. (2024) put forward 
a non-destructive hyperspectral method which had biochemical understanding. But the intricacy, non-
scalability, and absence of image-based CNN/XAI deflected away from this method. Unlike such methods, 
the herein-proposed SpinachNet-XAI has a distinction, as it encompasses a suggestion system that enables 

Author(s) Year Methodology Accuracy Explanation

Sankar Sennan et al 2022 Custom CNN on four leaf types 97.50% High accuracy; limited dataset; lacks explainability (XAI)

Yıldırım & Yalçın 2024 ResNet101-based CNN for spinach freshness 89.40% Moderate accuracy; lacks interpretability and hybrid ensemble

He et al 2024 Hyperspectral + DL classifiers (Spinach & Cabbage) > 80% Non-destructive analysis; requires expensive equipment; lacks 
CNN and explainability

Deep CNN + BiLSTM 
fusion 2024 CNN–BiLSTM hybrid for vegetable freshness 97.76% Captures spatial–temporal features; computationally 

expensive; not spinach-specific; no visual XAI

Tapia Mendez et al 2023 MobileNetV2 ensemble for fruit & vegetable ripeness 97.86% High accuracy; domain too broad; lacks spinach-specific 
dataset and explainability

Yuan & Chen 2024 GoogLeNet, DenseNet201, ResNeXt101 + PCA + SVM (feature 
fusion) 96.98% Feature-based detection; efficient; no deep CNN retraining or 

XAI visual explanation

Koyama et al 2021 Color & local feature + SVM/ANN on smartphone images 84.00% Non-deep learning; low accuracy; no CNN or XAI

Elumalai & 
Meganathan 2024 Orange pre-trained DL models + ML classifiers on spinach leaves  ~ 99% High accuracy; lacks interpretability and confidence-based 

classification

SpinachNet-XAI 
(Proposed) 2025 DenseNet121 + ViT-B/16 + SVM + GradCAM++  + LIME + Rule-

based Logic 97.20% High accuracy; complete explainability with XAI; confidence-
based eatability recommendation provided

Table 15.  Comparison of the state-of-the art models.

 

Configuration Accuracy Precision Recall F1-Score Interpretability support

ResNet50 (Baseline) 88.2% 87.6% 88.1% 87.8%  Not Available

EfficientNetB0 (Baseline) 89.5% 89.2% 88.7% 88.9%  Not Available

DenseNet121 Only 96.1% 95.9% 96.3% 96.1%  Not Available

DenseNet121 + ViT 96.8% 96.5% 96.6% 96.5%  Not Available

DenseNet121 + ViT + SVM 97.2% 97.0% 97.1% 97.0%  Not Available

DenseNet121 + ViT + SVM + GradCAM++ 97.2% 97.0% 97.1% 97.0%  Visual Attention (GradCAM++)

DenseNet121 + ViT + SVM + LIME 97.2% 97.0% 97.1% 97.0%  Feature Attribution (LIME)

SpinachNet-XAI (All Modules) 97.2% 97.0% 97.1% 97.0%  GradCAM+++ LIME for Complete XAI

Table 14.  Ablation study of SpinachNet-XAI framework.
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the individual to know the level of confidence the classification holds regarding the edibility of the spinach, 
a powerful combination of technologies—DenseNet121 + ViT-B/16 + SVM—and result-explanation tools 
(GradCAM +  + and LIME). This complete system, end-to-end, attains 97.2% classification accuracy and 
attends to vital gaps such as local–global interpretability, logic of consumption based on confidence, 
and real-world agri-clinical setting usability, which were absent in previous works. As such, the herein-
proposed SpinachNet-XAI appears as a diagnostic system which is comprehensive, transparent, and smart, 
and which is specifically intended for the determination of spinach ripeness.

Limitations and future work
We acknowledge important constraints regarding dataset representativeness, real-world resilience, and 
environmental variability. Even though our dataset is evenly balanced across six spinach classes, it is 
limited in geography and seasons; therefore, varietal variability, farm methods, post-harvest treatments, 
and retailer lighting/device variability are not comprehensively represented. We compensate in part 
through extensive augmentation (illumination, noise, blur), cross-model verification, and conservative 
recommender thresholds with dual-layer XAI checks, but remaining domain shift is conceivable under 
extreme illumination, motion blur, water droplets, or mixed-background clutter. We further investigated 
robustness through stress tests (e.g., down-sampling, contrast disturbances) and error studies, but broader 
external verification across sites, seasons, camera models (DSLR/mobile), and supply-chain nodes is 
needed. Future research will extend multi-site data capture, incorporate low-resource capture scenarios, 
introduce explicit calibration and uncertainty estimates, investigate domain adaptation (e.g., test-time 
adaptation, style transfer) and self-supervised pretraining for shift robustness, and implement post-
deployment monitoring with human-in-the-loop escalation for borderline examples. Such efforts will 
enhance generalisability whilst retaining safety and trust in operational screening.

Conclusion and future work
This study introduced SpinachNet-XAI, a comprehensive and comprehensible deep-learning system for 
the classification of the freshness of spinach into six categories—including fresh and non-fresh states 
of Malabar, red, and water spinach. Capitalising on a multi-stage framework, the system integrates data 
augmentation, classification by CNN (best individual result with DenseNet121), joint feature learning by 
Vision Transformers (ViT-B/16) as the feature extractor, and terminal ensemble multiclass SVM-based 
classification. Moreover, explainability is inherent through the incorporation of GradCAM++ and LIME, 
which offer both global visual as well as local feature-level explanations. A decisive rule-based recommender 
system transforms the values of confidence into comprehensible, health-orientated categories—Eatable, 
Eatable with Caution, or Not Eatable—thus enabling informed decisions by consumers, distributors, and 
agriculture experts. The performance systematically shows that the SpinachNet-XAI performs better than 
current literature through classification accuracy, interpretation, and real-world practicality. The system 
attains a robust F1-score of 0.97, an IoU of 0.89, and a Dice measure of 0.93, with the corresponding 
interpretable maps facilitating real-time judgement for the case of smart farming and monitoring of food 
safety.

Future efforts will involve the expansion of the system to other green leaf crops and highly perishable 
produce and the use of multi-modal data sources such as hyperspectral imaging, volatile compound sensor 
arrays, and humidity data. Moreover, real-time deployment via mobile/web applications, integration with 
edge AI devices for use out in the field, and the incorporation of user feedback into a semi-supervised 
learning feedback loop will be investigated. Long-term aims include the construction of a comprehensive 
AI platform for farm-to-fork freshness monitoring and food safety inspection, facilitating the achievement 
of wider aims in agri-clinical health monitoring and sustainable agriculture.

Data availability
All data used to support the findings of this study are included within the article.
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