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SpinachXAl-Rec: a multi-stage
explainable Al framework for
spinach freshness classification and
consumer recommendation

Akella S. Narasimha Raju'™, G. Sujatha?, Ranjit Kumar Gatla? & Shilpa Ankalaki***

Leafy vegetables such as spinach are among the most important components in a nutritious diet but
are highly perishable and susceptible to premature spoilage. Traditional practices in determining
freshness have been qualitative and time-consuming and have consistently led to defective
consumption decisions with unintended consequences on human health. To this issue, we introduce
SpinachXAl-Rec, a multistage framework that is enabled by Al and is capable of automating the
classification of spinach freshness and providing consumer recommendations. This framework is
based on understandable deep learning. To guarantee class balance and feature diversity, a dataset
consisting of 4005 original images of three spinach varieties (Malabar, Red, and Water) was expanded
to 12,000 images (2000 per class across six categories: fresh and non-fresh). We trained three CNN
architectures, DenseNet121, ResNet50, and EfficientNetBO, on the Stage 1 augmented dataset.

In performance, we saw DenseNet121 significantly outperform with 96% classification accuracy
compared to ResNet50 (53%) and EfficientNetB0 (17%). Stage 2 improved representation of features
by incorporating DenseNet121 embeddings and ViT-B/16 and Swin Transformer attention mechanisms.
DenseNet121 +ViT-B/16 obtained an F1-score of 0.95, which was further optimised to 0.97 in Stage 3
using a multiclass SVM classifier. GradCAM++ and LIME were employed to incorporate interpretability
during Stage 4. LIME provided transparent explanations of the significance of class-specific features,
while GradCAM++ effectively highlighted disease-affected or spoilt regions. The most effective model
(DenseNet121 +ViT + SVM) also obtained a Dice coefficient of 0.89 and an loU of 0.82, which confirms
the precision of localisation and segmentation. Finally, Stage 5 introduces a clinical recommender
system that is based on rules and relates prediction confidence to real-world categories: Eatable,
Eatable with Caution, or Not Eatable. This Al-driven recommendation assists food purveyors and
consumers in making health-conscious, well-informed decisions. SpinachXAl-Rec is a significant
advancement in the development of safer food systems, as it provides interpretable Al for the purpose
of freshness validation and actionable consumption recommendations, thereby empowering both
consumers and industry stakeholders.

Keywo rds Spinach freshness classification, DenseNet121, Vision transformer (ViT), Explainable AI (XAI),
GradCAM++, LIME, Deep feature embeddings, Rule-based recommender system

Internationally, people recognise green leafy vegetables (GLVs) as essential components of a healthy diet,
offering a wide range of physiological benefits. GLVs play a key role in the prevention of lifestyle disorders like
osteoporosis, diabetes, cardiovascular diseases, and anaemia’. These compounds include a variety of bioactive
substances such as flavonoids, carotenoids, and micronutrients like iron, calcium, folate, magnesium, and fibre>>.
Spinach is a “superfood” with the highest therapeutic effects and nutrient content among the GLVs?. China
was responsible for the production of more than 92% of the world’s spinach in 2022 and produced well over
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30 million tonnes, says the Food and Agriculture Organisation (FAO). Second and third places, respectively,
were held by the United States and Japan. The global significance of this crop product is the growing interest
in spinach among urban communities in particular that are health-conscious in being provided in smoothies,
salads, and organic versions®. However, the perishability owing to the water content and delicately foliated nature
of spinach results in widespread losses and qualitative losses en route and in storage. This loss presents a great
challenge to ensuring the end-consumer with safety and freshness. The quality inspection regimes at present
are still almost completely manual, unscalable, and qualitative and therefore pose a great need for automated,
quantitative, and interpretable AI-powered freshness determination tools.

Spinach is of significant cultural, dietary, and agricultural importance in the Indian context. According to
the Ministry of Agriculture & Farmers’ Welfare (2021-22), India is one of the top five spinach producers, with
an area exceeding 150,000 hectares and a contribution of approximately 1.7 million metric tonnes®. Traditional
Indian cuisine is profoundly influenced by spinach and its indigenous varieties, including Malabar spinach
(Basella alba), red spinach (Amaranthus dubius), and water spinach (Ipomoea aquatica)’. They are essential
components of daily diets, particularly among the vegetarian population, which comprises more than 30% of
Indias population®. Their effects are maximised in Southern India, where the production and consumption
fronts are led by the states of Tamil Nadu, Andhra Pradesh, Karnataka, and Kerala. These states’ favourable agro-
climatic conditions enable year-round plantings. Apart from this, physically fresh and safe-for-consumption
spinach demand has increased with urban market expansion, organic farms, and home delivery of vegetables®.
However, the evaluation of freshness at retail stores remains error-prone and manual, which negatively impacts
supply chain efficiency and end-consumer confidence. Therefore, to have any advantage for growers, retailers,
and health-conscious consumers in all of India, an intelligent, comprehensible, and robust solution has to be
designed to evaluate and suggest the freshness of spinach'.

In both urban and rural channels of distribution, categorization of spinach as eatable or non-eatable remains
a troublesome and unresolved problem in spite of its widespread use and nutrient importance. Deteriorations
caused by moisture loss, microbial spoilage, physical damage, and discolouration of the leaves collectively lead
to a rapid decline in the visible external appeal of spinach!!"'2, However, these deteriorations are often qualitative
and subtle, making traditional manual checks highly inconsistent and prone to errors. Given the potential for
conflict and losses in products and money, something permissible to one vendor is rejected by one quality
checker or consumer due to the risk of conflict and losses in money and products. Moreover, in today’s supply
chain operations, no standardised method or objective tool exists to quantify and decide upon the freshness
limit at which spinach shifts from being safe to being unsafe to eat'>!*. Determinations at retail stores and
open markets and doorstep delivery points remain purely based upon human perception and compound these
inconsistencies while raising questions regarding food safety and trust and assurance regarding quality.

It is important to create intelligent, automated, and understandable classification processes that can categorise
spinach leaves as eatable or non-eatable reliably to address this long-standing problem!. Powerful extraction
of features from high-resolution spinach leaves images is made possible through capitalising on the power
of deep learning and artificial intelligence (AI), foremost among them being convolutional neural networks
(CNNs) and vision transformers (ViTs)!®17. AI models are empowered to learn to recognise small visible cues
regarding quality in the leaves by being trained upon large sets of labelled data demonstrating things like colour
transformations and wilts and number of holes and textural damage!'®-?’. However, grading is not merely
classification; grading must offer interpretability and trust and clinical rationale as well, notably when the result
has repercussions for decision-making in terms of consuming the foods. As a result, embedding confidence-
based suggestion schemes with explainability AI tools like GradCAM++ and LIME aid in the development of a
system like an expert’s judgement in clinical terms®!. The goal is to enable transparent, scalable, and intelligent
freshness determination at the consumer level by regulating quality detection and providing suggestions about
the usability of spinach leaves for consumption.

Motivation and problem statement

The perishable nature of spinach, anutrient-rich and extensively consumed verdant vegetable, presents a significant
challenge in post-harvest quality assessment. The subjective, inconsistent, and inefficient manual classification of
spinach freshness into eatable and non-eatable categories is a problem that persists throughout retail and supply
chains. Manual graders usually overlook or misread fine visible deteriorations like discolouring, withering, and
damaged leaves. This non-standardisation has direct economic and food safety ramifications. Therefore, we very
much need an automated, interpretable and intelligent system to correctly classify and estimate spinach quality
based on visually apparent signals. A possible remedy to this issue is to use Al, particularly deep learning and
interpretable models, to predict freshness in a transparent, scalable, and clinically applicable manner.

Due to their nutrient-dense and health-promoting properties, green leafy vegetables, and in particular
spinach, are constituents of any balanced diet. Nevertheless, their rapid spoilage upon harvest and lack of explicit
means to classify them make it difficult to preserve these products in a fresh and safe condition for consumption.

SpinachNet-XAI Framework Objectives

1. We have expanded the original set of 4005 images to 12,000 images to create an augmented image dataset
of spinach leaves. This dataset encompasses six classes across three spinach types (Malabar, red, and water
spinach) and fresh and non-fresh conditions.

2. To classify spinach freshness and determine the optimal architecture based on accuracy, precision, recall, and
F1-score, various deep learning models (DenseNet121, ResNet50, and EfficientNetB0) are implemented and
evaluated.
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3. To improve performance, this research suggests a hybrid classification pipeline that incorporates deep fea-
tures of DenseNet121 and Vision Transformer (ViT) with an ensemble SVM classifier to further improve
accuracy and provide improved generalisation.

4. To improve the interpretability and trustworthiness of the classification outcomes, it is necessary to incorpo-
rate understandable AT techniques, specifically GradCAM++ and LIME, to visualise the regions that influ-
ence model decisions.

5. To have consistent and dependable explainability in freshness evaluation, segmentation metrics IoU and
Dice coefficient are computed, resulting in an IoU of 0.89 and a Dice coeflicient of 0.93.

6. This research proposes developing a clinical recommender system based on rule-based concepts to cate-
gorise spinach as eatable or non-eatable through prediction confidence, visual explanations, and threshold
logic to help consumers and vendors make better decisions.

Literature survey

Table 1 delineates recent (2022-2025) peer-reviewed publications on deep learning and computer vision to
quantify vegetable and leafy green quality and freshness. Some selected publications include fully reviewed articles
instead of preprints and include explicit measurement of accuracy. They demonstrate excellent performance
with bespoke CNNs and hyperspectral-ML integration but do not fully encapsulate the concurrent necessities
for spinach-orientated training, explainability (XAI) outputs, and end-consumer eatability recommendations.
This points to the innovativeness and contribution of SpinachNet-XAI. Table 1 presents the detailed literature
survey.

Research gap
Although various works in the past have investigated the use of deep learning and computer vision for freshness
estimation in fruits and vegetables, most have considered generalised or cross-category data without fine-tuning
the classifier for spinach. CNN ensembles, BiLSTM hybrids, and hyperspectral-based classifiers are advanced
models that have shown accuracy rates over 95%. However, they often face major issues, such as not providing
clear decision support, lacking easy-to-use visual checks for consumers, and not having explainable AT (XAI).
The cost and hardware dependencies of hyperspectral methods render them impractical for field or retail use,
despite their biochemical accuracy. Additionally, there is a scarcity of research that integrates confidence-based
evaluation or recommendation logic, which is crucial for real-world applications such as retail quality assurance
or mobile-based spinach eatability assessment. Most importantly, existing studies rarely focus on combining
a rule-based clinical recommender, methods to explain decisions (like GradCAM++ and LIME), and deep
classification all in one complete system. This gap creates a distinct and substantial void for a deep learning
system that is spinach-centric, interpretable, and actionable—exactly the objective of SpinachNet-XAI
SpinachXAI-Rec explicitly vis-a-vis novel leafy green classification and food quality Al-based approaches.
We have also provided an additional paragraph briefly summing up the high degree of precision of the works.
Authors Sankar Sennan et al. (2022), Yildirim & Yalgin (2024), and Tapia Mendez et al. (2023). But none of those
embodied essential aspects, like spinach specialisation, two-layer interpretability (GradCAM++ and LIME), or a
clinically actionable rule-based recommendation system. SpinachX AI-Rec, however, achieves high performance
(97.2% accuracy) and transparent, confidence-based decision semantics for real-world consumer and vendor
deployments through integrating DenseNet121 and ViT-B/16 embeddings with an SVM classifier. The paper
clarifies our approach’s novelty and positions it as an integrated, interpretable, and spinach-centric upgrade to
state-of-the-art approaches.

Author(s) Year | Publication Methodology Accuracy | Advantages Limitations Research Gap
Computers, . X . . . T
Sanl;zzir Sennan 2022 | Materials o Custom CNN on four leaf types | 97.50% ngh accuracy; compared Small (~400 images); non No XAI, llrplted
etal Conti multiple baselines spinach types generalization
ontinua
Yildirim and ResNet-101-based CNN for Good baseline for food Limited accuracy; no Absence of XAI; no
Yalgin? 2024 | J. Food Nutr. Res spinach freshness 289.4% quality tasks interpretability hybrid ensemble
24 Infrared Physics | Hyperspectral + DL classifiers Non-destructive Expensive instrumentation; | No image-CNN/XAI;
Heet al 2024 : >80% ) . . .
& Technology (spinach + cabbage) biochemical analysis lower accuracy equipment-heavy
. . . . § Not spinach-
Kumar etal?s | 2024 Current Re‘search CNN-BIiLSTM hybrid for 97.76% Models spatial & temporal Computatlonal!y heavy; specific; lacks visual
in Food Science | generic vegetable freshness features generic to veggies .
explanations
Taplza{)-Mendez 2023 | Applied Sciences MoblleNetV% ensemble for fruit 97.86% ngh accuracy across Broa(% domain; no spinach | No splnagh dataset; no
etal & vegetable ripeness ripeness stages focus; no XAI explainability
Deep feature fusion No CNN retraining; . P .
3((:1}1131;2(37( 2024 Cu}r:rertzjt 5 gseurch (GoogLeNet, DenseNet-201, 96.98% efficient feature-based Nothstp l?ﬁfhﬁp ﬁ;lﬁ: 11 m:ge 1\10 e);ipzlatlinanble
€ i1 F004 SCIENCE | ResNeXt-101) + PCA +SVM detection quatity threshold unclear ) visuatizatio
Koyama Color & local feature + SVM/ 84% Non-destructive; validated | Lower accuracy; no deep No image-based DL; no
28 2021 | PLOS ONE : . > . > XAI training on small
etal. ANN for spinach freshness (2-class) | against sensory panel learning
smartphone dataset
Elumalai and J. Robotics & Hybrid, of Orange-embedded High accuracy; variety Limited information on No interpretability;
M 2 | 2024 pre-trained models + ML ~99% . X . no confidence-based
eganathan Control . . classification freshness; tool-specific . .
classifiers on spinach leaves recommendation logic
Table 1. Literature survey.
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Technologies utilized in SpinachNet-XAl framework

The SpinachNet-XAI system takes advantage of a robust set of state-of-the-art technologies from deep learning,
explainable AJ, image processing, and clinical decision support areas. The system incorporates the following key
technologies:

a. Convolutional Neural Networks (CNNs

Baseline image classification applications employ CNN models like DenseNet121, ResNet50, and Efficient-
NetB0. DenseNet121, with its dense connectivity and feature reuse, demonstrated the highest performance
among these models, achieving 96% accuracy in classification.

b. Vision Transformer (ViT):

ViT is applied to learn long-range spatial dependencies and enhance feature representation. It is applied with
features in DenseNet121 to build a hybrid deep model for features, and with the help of SVM achieves 97%
accuracy in freshness classification of spinach.

¢. Support Vector Machine (SVM):

The last classifier in the hybrid model pipeline is a multiclass support vector machine (SVM). This classifier
accepts fused deep features (DenseNet121 + ViT) and fine-tunes decision boundaries for high-dimensional
embedding features.

d. Explainable AT (XAI) Methods:

GradCAM++: Used to produce attention maps visually highlighting salient areas influencing the CNN pre-
dictions. Enabling visual confidence and clinical judgement. LIME (Local Interpretable Model-agnostic Ex-
planations): Utilised to construct feature-importance overlays with instance-wise interpretation. These tech-
niques provide explainability to model decisions with segmentation-level interpretability and IoU and Dice
coefficient scores of 0.89 and 0.93, respectively.

e. Dimension Reduction and Visualisation:

t-SNE and UMAP are used to map high-dimensional deep feature embeddings to 2D space in order to visual-
ise class separability and learning dynamics.
Animated t-SNE/UMAP over training epochs helps visualise the convergence of features among classes.

f. Image Augmentation & Preprocessing:

This initial dataset with 4005 pictures is then expanded to 12,000 pictures with transformations like rotation,
flip, zooming, variation in amount of light, and crop with the aim to improve generalisation and reduce over-
fitting.

g. Clinical Recommender System:

A rules-based decision engine takes model confidence scores, XAl visualisation signals, and threshold logic
and turns them into eat-or-don't-eat recommendations. This bridges AT output to in-the-world decision-mak-
ing among vendors and buyers.

h. Development Environment & Libraries

We trained the model using TensorFlow/Keras and visualised it using Python. These experiments were con-
ducted using Google Colab Pro+ with GPU acceleration (e.g., Tesla T4 or A100) to facilitate efficient training
and inference.

Critical perspectives: regulatory, trust, and deployment challenges

A critical review of recent food-quality vision systems shows that most works prioritise accuracy while giving
limited treatment to the non-technical constraints that determine real-world viability—namely regulatory
compliance, trust, and deployment robustness. Specifically, prior studies rarely map their methods to food-
safety frameworks (e.g., HACCP/Codex/ISO 22000 and country regulators such as FSSAI/USDA/EU), omit
calibration and uncertainty reporting, and provide no auditable trail linking model outputs to end-user
actions—weakening accountability and consumer trust. They also underaddress domain shift (lighting, devices,
backgrounds, handling conditions), do not specify human-in-the-loop overrides for borderline cases, and lack
post-deployment monitoring for drift, latency, or failure modes. In contrast, our framework explicitly integrates
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Sample Images

GradCAM++<——‘

conservative, risk-aware decision thresholds tied to a rule-based policy; dual-layer explainability (GradCAM+++
LIME) to support auditability; confidence calibration and error analysis to mitigate false reassurance vs waste;
and a deployment pathway that includes site-specific validation, device constraints, and operator escalation
for ambiguous predictions. This positions the approach as not only performant in controlled experiments but
also aligned with regulatory expectations, transparent to stakeholders, and resilient to real-world operational
variability.

Methodology

The SpinachXAI-Rec framework is an end-to-end, six-step methodology aimed at automating the evaluation
of the freshness of spinach and giving the end-user interpreted recommendations®. The pipeline begins with
Stage 1, Data Augmentation, as depicted in Fig. 1. Here, the raw images of the spinach are augmented by the
transformation to guarantee the balance of the class and generalise the model successfully. Stage 2: Baseline
Classification entails training several convolutional neural networks (CNNs) to assess the network’s capacity to
classify the non-fresh and fresh spinach classes. For extraction of global and local visual patterns, Stage 3: Hybrid
Feature Extraction combines features by attention from vision transformers and spatial features from the best-
performing CNN?!. The features from augmentation go to Stage 4: Multiclass Classification, where the decision-
making model, i.e., Support Vector Machine, is utilised to maximise the separability of the classes between
the different categories of spinach and stages of ripeness. Stage 5: Explainability integrates explainable AI tools
such as GradCAM++ and LIME to qualitatively validate model predictions and identify the decision-imperative
regions in the images of the spinach qualitatively®2. Lastly, Stage 6: Clinical Recommender System interprets the
model’s output to the end-user advisability by mapping the model’s output to the categories in the real world, for
example, the categories “Eatable”, "Eatable with Caution", and “Not Eatable”. The pipeline is structured and easy
to interpret to ensure the quality assessment of the spinach is dependable, understandable, and easy to use.

Dataset

The spinach leaf dataset used in this study was meticulously curated and obtained from Mendeley Data. The dataset
is divided into six distinct sections, each of which is categorised by the grade and sort of spinach leaves:Fresh
Malabar Spinach, Non-Fresh Malabar Spinach, Fresh Water Spinach, and Non-Fresh Water Spinach®’. The
dataset comprises visually separable samples of leaves in these categories, as shown in Fig. 2, herein clearly
indicating the variation in shape, texture, and colour characteristic of decomposition and freshness. To achieve
class balance for the purpose of deep learning, the dataset was first created out of 4005 high-resolution images,
all of which were standardised at 256 x 256 pixels. The dataset was later extended by means of data augmentation
methods. Table 2 presents the detailed class distribution in full, ensuring each type and state of spinach is
represented adequately in the learning procedure. The uniform image dimensions in the dataset are illustrated
by the associated visual analysis as its complements, while the luminance and RGB intensity distributions hint at
tremendous colour variation from one class to the next, indicating discolouration due to spoilage in non-fresh
specimens. For example, Malabar non-fresh samples typically exhibit lower green and blue channel intensities
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Fig. 1. Architectural pipeline of the SpinachXAI-Rec framework.
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Malabar Spinach Fresh

Red Spinach Fresh Water Spinach Fresh

Malabar Spinach Non fresh Red Spinach Non Fresh ‘Water Spinach Non fresh

Fig. 2. Sample dataset images for each class.

Class Image count | AvgR | Avg G | Avg B
Red Spinach Non Fresh 720 200 198 195
Red Spinach Fresh 850 195 190 188
Malabar Spinach Non Fresh | 620 175 190 160
Malabar Spinach Fresh 400 182 195 175
Water Spinach Non Fresh 770 220 218 200
Water Spinach Fresh 650 195 196 178

Table 2. Dataset distribution and average RGB color intensity per class.

than their fresh counterparts. The multi-stage SpinachXAI-Rec framework is trained and evaluated on the basis
of this structured dataset, which includes a balanced class set and verified visual patterns.

Under controlled daylight illumination within an indoor environment, 4,005 original images of spinach
leaves were taken with a DSLR camera (Canon EOS 90D, 32.5 MP) with fixed focus and aperture to achieve
stable colour description and sharpness. Images contain Malabar, red, and water spinach in fresh and non-
fresh conditions. The morphological intactness of leaves was realised through taking photos within 4-6 h after
harvesting and setting them up against a non-reflective matte background to prevent shadows and reflections. In
an attempt to preserve typical retail storage conditions, ambient temperatures and humidities were controlled.
Albumentations-based data augmentation methods like rotation, horizontal and vertical rotation, brightness/
contrast change, hue/saturation modification, elastic distortion, additive Gaussian noise, and motion blur were
applied in an attempt to enhance model generalisation and add dataset variability. To provide an opportunity
for reproducing and conducting further research within this domain, we will share this cleaned dataset upon
reasonable non-commercial research requests.

Augmentation and preprocessing of the images with train test split

The raw dataset of spinach leaves was preprocessed before the model’s training by employing intensive
preprocessing and augmentation techniques to obtain deep learning generalisation, robustness, and even
class balance. Albumentations was utilised in crafting a meticulous process of changing the images, such as
flipping, rotating the images, changing the intensity and the colour, and introducing various forms of noise®.
The technique greatly expanded the variability of the samples, thereby enhancing the model’s ability to cope
with visual disturbances in the natural environment. The images were downsized to 224 x 224 pixels for all
images following the transformation operations, the typical input size for the majority of the architectures of
CNN. The preprocessing phase also called for conversion to the RGB colour space from BGR using OpenCV to
ensure uniform colour depiction and normalising the luminosity to balance the conditions of illumination, as
well as denoising to correct for the noise from the camera or environment®. The dataset was split into 70% for
training purposes (8,400 images) and 30% for testing purposes (3,600 images) to ensure each of the six classes
(Malabar, Red, and Water spinach, both fresh and non-fresh) was represented in equal measure. Normalised
pixel intensities guaranteed consistent learning across models, while RGB colour statistics and image luminance
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Process stage

Description

Augmentation Techniques

RandomRotate90, HorizontalFlip, VerticalFlip, BrightnessContrast,
GaussNoise, MotionBlur, HueSaturationValue, RandomGamma,
ElasticTransform

Preprocessing Pipeline

Resizing, RGB conversion, denoising, contrast & color normalization,
histogram scaling

Image Resize

224 %224 pixels (resized from original size)

Color Space Conversion

Converted from BGR to RGB using OpenCV for color fidelity

Brightness Normalization

Standardized to a consistent mean-brightness histogram per image

Noise Handling

Gaussian and motion noise reduced; synthetic noise applied for generalization

Train-Test Split

Split into 70% train (8400 images) and 30% test (3600 images), stratified across
all 6 classes

Training Sample Size

8400 images (1400 per class x 6 classes)

Testing Sample Size

3600 images (600 per class x 6 classes)

Train Class Balance

Even class distribution (Malabar, Red, Water x Fresh/Non-Fresh)

Test Class Balance

Preserved balance across six classes in unseen data

Train RGB Statistics

R: 180-210, G: 175-205, B: 160-200 (mean + 10); normalized between 0-1

Test RGB Statistics

R: 175-205, G: 170-200, B: 160-195 (mean + 10); normalized between 0-1

Table 3. Data preparation and splitting.

Malabar Spinach Fresh Red Spinach Fresh

Water Spinach Fresh

Malabar Spinach Non fresh Red Spinach Non Fresh Water Spinach Non fresh

i

Fig. 3. Sample images after the data preparation.

were preserved post-split. The expected differences per class were also confirmed by the colour histograms®’.

As an example, the G and B channel intensities of non-fresh leaves were lower, whereas the total brightness of
fresh leaves was higher.By keeping the classes’ visual coherence high, the whole preparation process improved
trainability and made AI models interpretable. The comprehensive augmentation, preprocessing, and train-and-
test division of the entire data preparation for the model training were presented in Table 3. Following the data
preparation, Fig. 3 presents the sample images.

Model training with individual CNNs

Three popular convolutional neural network (CNN) architectures, ResNet50, EfficientNetB0, and DenseNet121,
were individually evaluated at the outset of model training to determine the optimum point of initiation for
spinach ripeness classification. The weights of the individual models were pre-trained using ImageNet and
were then fine-tuned on the augmented dataset of spinach, which was reduced to 224 x224 pixels in size.
ResNet50%%%, with its skip connections, was created to overcome vanishing gradients in deep networks. It was,
however, hindered in its performance by underfitting and the inability to capture sufficient spatial features in
foliage textures. EfficientNetB0*, created to achieve maximum efficiency by compound scaling of depth, width,
and resolution, displayed suboptimal learning for this domain-specific task due to its insufficient capacity for
representation. Conversely, DenseNet121442, which benefits from the use of dense connectivity and feature
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reuse from one layer to the next, overwhelmingly outperformed the other architectures by discerning fine-
grained features, including variations in moisture, damage to edges, and yellowing of leaves—all of these
being important measures of quality. The Adam optimiser, categorical cross-entropy loss, and early stopping
by validation accuracy were used to train all the architectures. Accuracy/loss convergence contours were
implemented to supervise training. The comparison results, training graphs, and performance for each class of
the models are shown in Fig. 4a for ResNet50, Fig. 4b for EfficientNetB0, and Fig. 4c for DenseNet121. These
figures clearly demonstrate that DenseNet121 is the most suitable feature extractor for the additional stages of
the SpinachXAI-Rec framework.

Hybrid feature modelling using DenseNet121 embeddings with XGBoost, ViT-B/16, and swin
transformer

DenseNet121 was selected as the backbone model for deep feature embedding following the assessment of
individual CNNs. The reason behind its selection was due to its superior ability to learn fine-grained patterns
of leaves, such as chlorosis, curling of the edges, and breakdown of structures. In the following step, three
powerful models, namely XGBoost***, Vision Transformer (ViT-B/16)*>*, and Swin Transformer’*%, were
fed the deep feature embeddings from the DenseNet121 bottleneck layer. The models are shown in Fig. 5a, b,
and ¢, respectively. The first hybrid model, DenseNet121 +XGBoost, was created in order to take advantage of
gradient-boosting decision trees for high-dimensional deep features*. Though it was effective in discriminating
data and fine-tuning decisions, it was unable to keep track of the relationships and context in various regions of
the leaves. A hierarchical attention mechanism was implemented by the second ensemble, DenseNet121 + Swin
Transformer, to encapsulate localised attention in patches through the use of relocated windows. Nevertheless,
the windowed structure of the system limited the ability to integrate global context, resulting in a slightly
reduced ability to identify subtle degradations in intricate leaf textures. The best hybrid configuration was the
DenseNet121 + ViT-B/16 model in terms of overall classification accuracy. The ViT-B/16 model breaks down
the image into fixed-size regions and looks at the full layout at once, allowing it to perceive high-scale structures
along with fine-grain details of spinach leaves’ texture. The model captured many times-overlooked fine-quality
variations by combining the high-level spatial embeddings of the DenseNet121 with the global attentions of
the ViT. The generalisability of the ensemble over the six spinach classes was made possible by the smooth
interaction between transformer-based attention and convolutional inductive bias. Not only did this superior
architecture yield a higher F1 score and classification accuracy, but it also generated more discriminative and
stable attention maps for interpretability. Consequently, the DenseNet121 + ViT-B/16 hybrid was chosen as the
most effective model for integration into the final phases of the SpinachXAI-Rec framework.
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Fig. 4. (a—c): Three individual CNN architectures: (a) ResNet50 (b) EfficientNetB0 (c) DenseNet121.
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Final multiclass classification using DenseNet121 +ViT-B/16 + SVM ensemble

The system proceeds to its final classification step by implementing the Multiclass Support Vector Machine
(SVM) on the features it was able to extract once determining the optimum individual model to use as the merged
feature extractor to be the DenseNet121 + ViT-B/16. The global attention features of ViT-B/16, along with the
layer features of DenseNet121, are used to create intricate descriptions of individual images of spinach™. These
combined features are simplified into a standard vector format and used as input for the Multiclass SVM®12,
which is a type of classifier that can effectively separate classes that are not arranged in a straight line in a high-
dimensional space SVM is particularly well-suited for fine-grained distinctions, notably between visually similar
classes, such as Red Spinach Fresh and Red Spinach Non-Fresh, due to its capacity to maximise the margin
between class boundaries. The ensemble model, therefore, capitalises on the global contextual awareness of
transformers, the optimal surface learning of SVMs, and the profound spatial understanding of CNNs. This final
architecture accomplishes superior multiclass classification by bridging three powerful paradigms: transformer-
based attention modelling, dense feature learning, and kernel-based class separation, as illustrated in Fig. 6. The
model not only enhances accuracy and class-wise recall but also minimises overfitting and misclassification,
in particular in extreme circumstances defined by mild discolouration or partial decomposition. The blend
also greatly enhances the result comprehension in the subsequent step in the sense that the SVM output is
directly mapped with confidence scores correspondingly aligned to the areas of visual attention yielded by the
blended model®*. The end-resultant ensemble model is composed of the leading components from these three
modules, DenseNet121, ViT-B/16, and SVM, that provide a malleable, easy-to-interpret, and very accurate way
of classifying spinach’s freshness for the entire six categories®.

Visual explanation using XAl: GradCAM++ and LIME for final ensemble interpretation

The final assessment step in the framework of the SpinachXAI-Rec employs Explainable AI (XAI) techniques,
namely GradCAM++ and LIME, to make the classification inferences made by the last model understandable,
clear, and reliable for clinical implementation®~>’. DenseNetl21, ViT-B/16, and a multiclass SVM are
combined in their optimal setting to visually confirm the model’s output and recognize the important image
regions contributing to classification. These methods are very efficient. Figure 7a presents the application of
Grad-CAM++ to generate heatmaps that highlight unique classes using the convolutional blocks of DenseNet
121. This technique allows the model’s output optically and determines the important regions in the images
influencing the result of classification. These techniques come in handy in the strongest configuration, where the
configuration combines the use of the application of the DenseNet121, the ViT-B/16, and the application of the
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Multiclass SVM. GradCAM++ is utilised for the production of the heatmaps uncovering important regions in

the images used by the application of the DenseNet121 for processing, as illustrated in the Fig. 7a.

This technique allows the system to identify which areas of the image of the spinach contribute the most to
the prediction. The method is particularly beneficial in the identification of decomposition markers, such as
leaf edge degradation, central discolouration, fungal patches, and dehydration, which are visually apparent in
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Fig. 7. (a,b): Explainable AI techniques: (a) GradCAM++ (b) LIME.
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non-fresh categories. The heatmaps confirm the model’s ability to localise decision-critical features consistently
with human visual reasoning. Additionally, Fig. 7b shows the results of LIME (Local Interpretable Model-
agnostic Explanations) when applied to the same final model. LIME operates by perturbing the input image
and monitoring the resulting changes in predictions, thereby identifying the most influential superpixels that
contribute to the decision. LIME empbhasises fine-grained texture zones and locally discoloured regions in the
context of spinach leaf classification, offering a pixel-level rationale for each prediction®. LIME operates model-
agnostically, as opposed to GradCAM++, whose connections persist to the CNN layers. Therefore, it interprets
the collated behaviour of the CNN, ViT, and SVM ensemble’s layers. The prioritising by the model of salient
biological features is corroborated by the evidence from the two techniques that it doesn’t indulge in spurious
relations or irrelevant background noise. The interpretability methods provide visual evidence of where the
model is focused in addition to corroborating the validity of the final ensemble, hence making them suitable
to implement in high-stakes areas like human health and product safety. The two-layer XAl integration assures
customer confidence, regulatory approval, and clinical-grade decision support in assessing the freshness of
spinach®.

Rule-based clinical recommender system for spinach eatability

A rule-based clinical recommender system is incorporated into the final stage of the SpinachX AI-Rec framework
to convert interpretability insights, particularly those derived from LIME visualizations— to user-friendly
consumptiondecisions®®. Thesystemutilisesthepredictedclasslabel fromthe DenseNet121 + ViT-B/16 + Multiclass
SVM ensemble model and its corresponding softmax confidence score as input, as illustrated in Fig. 8. The
system assigns the spinach sample to one of three recommendation levels: not eatable, eatable with caution, or
eatable, based on extremely defined logic. The classification is carried out on empirical thresholds, resulting in an
actionable recommendation whenever the confidence score crosses over 0.85 and where there is the prediction
of a fresh class. The model provides recommendations of 'Eatable with Caution’ whenever the confidence score
is in the range of 0.60 to 0.85, where there might be quality degradation indicators. The output is tagged as “Not
Eatable” for confidence scores lower than/equal to 0.60 or for all non-new class predictions. The recommender
makes decision-making transparent, clinically applicable, and compliant with the standards for safe food by
utilising the interpretability maps by LIME, uncovering the discriminative visual features for the classification,
in addition to the confidence yielded from the softmax®!. The Al pipeline becomes trustworthy and useful to
everyone involved, like vendors, producers, nutritionists, and consumers, by connecting machine intelligence
with how easy it is to use for the consumer.

Three user-facing judgments are derived from a clear, threshold-based mapping of the final classifier’s softmax
confidence and predicted freshness label: Eatable (fresh class with confidence > 0.85), Eatable with Caution (fresh
class with 0.60-0.85 confidence or borderline visual evidence), and Not Eatable (any non-fresh classification
or confidence<0.60). In balancing optimal food-safety risk and unnecessary waste, these thresholds were set
through analysis on validation sets. The 0.60 and 0.85 cutoffs were motivated by seen precision-recall inflection
points. Inclusion of XAI insights serves to minimize misclassification risk. For example, if a low-confidence
“fresh” prediction from GradCAM++ or LIME emphasises non-fresh indicators (e.g., chlorosis, edge fraying,
necrotic patches), the category is downgraded to Eatable with Caution. Conversely, moderate-confidence cases
that demonstrate a strong emphasis on healthy lamina are not over-penalised. Each error type’s effect is tackled:
high confidence threshold reduces false ‘Eatable’ judgments, moderate caution level lowers false ‘Not Eatable’
results, and ambiguous instances need to be physically investigated through manual inspection aided by the
saliency maps furnished. In this complete methodology, guarantees are that the proposals are both safe and
possible in real-world inspection scenarios.

Algorithm

To deploy the full workflow of the system for SpinachX AI-Rec, an end-to-end algorithm is outlined to streamline
all of the steps from dataset acquisition and augmentation to explainability and clinical recommendation.
The algorithm integrates the system’s six stages in modules and has clear guidelines for implementation. By
decomposing the complete pipeline in terms of formal steps, the algorithm provides for reproducibility, system
interpretability, and deployment readiness. The following is the extensive workflow embodied in the expected
Al-based spinach freshness classification and suggestion system defined in the following Table 4 and Fig. 9.

Non-Fresh
S
OR=0.6
» Not Eatable
i ™ B —
LIME Spinch Class | | (Eatable with)
- resh or Non-Fres| >
Explanation Confidence Score | Caution
», Eatable

> 0.85

Fig. 8. Recommender system for SpinachXAI-Rec framework.

Scientific Reports|  (2025) 15:35853 | https://doi.org/10.1038/s41598-025-19804-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Experimental setup and Hyperparameters

The SpinachX AI-Rec framework was coded and tested in a dual-platform experimental setup to achieve flexibility,
computational scalability, and optimisation for efficient performance. Initial preprocessing steps, e.g., resizing
images, augmenting, and initial training of the CNN, were being performed on a local HP laptop running on
an Intel Core i3 (11th Gen) processor with 16 GB RAM. This was sufficient for lightweight processes like image
handling and initial network testing. The complete model pipeline, nevertheless, was being executed on Google
Colab Pro+, where one had access to the NVIDIA A100 GPU high-RAM setup. The environment supported
rapid training cycles, parallel executions for the CNN-Transformer combinations, and smooth deployment for
the explainable AI (XAI) modules. Complete system configuration summary, framework versions, and model
deployment allocation for both environments are shown in Table 5.

For the individual deep learning and machine learning modules of the system we introduce, they were
optimised with hand-curated hyperparameters to obtain the best possible performance and generalisation. The
architectures of the CNNs DenseNet121, ResNet50, and EfficientNetB0 were trained at a 32 batch size, with the
Adam optimiser and 0.0005-0.001 learning rates for 50-60 epochs. The hybrid architectures were formed by
combining the embeddings of the DenseNet121 with the ViT-B/16 and Swin Transformer, respectively, at reduced
batch sizes (16), reduced learning rates (0.0001-0.0002), and AdamW optimisation for 40 epochs for stability
and global attentiveness reasons. XGBoost was trained from features at 0.1 as the learning rate and 200 boosting
rounds. The classification output was computed by using a multiclass SVM with an RBF kernel optimised by the
grid search. For interpretability reasons, GradCAM++ was utilised over the CNN layers by means of backprop-
based gradient visualisation, and LIME was used to generate local, model-agnostic explanations by segment-
wise perturbation with ridge regression. The complete hyperparameter specification for all modules is shown
in the following Table 6, and the comparative snapshot is shown in the following Fig. 10 in the form of a 3D bar
chart, mapping the learning rates, batch sizes, and stages of training in all the models.

Results
The framework of SpinachX AI-Rec is accessed via a six-step assessment process in order to receive the outcomes,
with the objective of ensuring accuracy, transparency, and usability in the task of predicting how fresh the spinach
is. The initial task was individual training and comparison of three convolutional neural network structures to
determine the optimum baseline model. One of the models was found to be the best at recognising spatial
variation between the six spinach classes based on a visual examination of the feature maps and contrasting
learning behaviours. The best-performing CNN model was used in the second phase to learn deep embeddings,
which were incorporated with three structures, where each of the structures was based on decision trees or
employed the use of attention mechanisms. The goal was to see if combining spatial convolutional features with
global attention mechanisms could improve how consistently classes are classified. The clustering behaviour of
the various composites was elucidated through embedded visualisations using t-SNE and UMAP. The results
showed that a certain combination of CNN and transformer created the clearest and most separate class
boundaries, making it the best option for the final group of models.

In the third stage, a multiclass classifier was trained to improve decision boundary learning by utilising the
fused features from the selected hybrid model. This greatly increased the model’s ability to discern categories

Stage Algorithmic logic

Load raw image dataset D with 4005 images labeled across 6 spinach classes

Input Acquisition (Fresh/Non-Fresh x Malabar, Red, and Water Spinach)

Apply augmentation techniques: RandomRotate90, Flip, BrightnessContrast,

Data Augmentation GaussNoise, HueSaturation, ElasticTransform to produce dataset D’

Resize all images to 224 x 224 pixels; convert color space from BGR to RGB;

normalize intensity values; split D" into D, . _and D, in a 70:30 ratio
Train ResNet50, EfficientNetB0, and DenseNet121 using D
performance on D, using accuracy and loss metrics

Select DenseNet121 as base CNN model M,
accuracy and convergence stability

Preprocessing & Splitting

rain 3 evaluate

CNN Model Training

Best CNN Selection o Dased on superior classification

Extract feature embeddings F from the bottleneck layer of M, for all

Feature Extraction .
samples in D

Train three models—XGBoost, Swin Transformer, and ViT-B/16—on features
F; evaluate their performance for fine-grained spinach classification

Select DenseNet121 + ViT-B/16 as final hybrid model Mg based on
comparative performance metrics

Transformer Fusion

Best Hybrid Model Selection

Train a Multiclass SVM classifier using the output embeddings of -

Multiclass Classification for final class prediction across six spinach categories

Apply GradCAM++ to visualize important regions from DenseNet121 layers;
use LIME to generate local explanation maps for final predictions

Define rule: IF class is ‘Non-Fresh’ or confidence <0.60-> Not Eatable; ELIF
0.60 < confidence < 0.85 - Eatable with Caution; ELSE - Eatable

Return predicted class label, confidence score, GradCAM + +and LIME
visualizations, and final eatability decision

Explainability Integration

Clinical Recommender System

Final Output

Table 4. Algorithm for SpinachXAI-Rec: Al-based spinach freshness classification and recommendation.
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* Mendeley Data spinach dataset

* 3 classes - Malabar, Red, Water (Fresh and Non-Fresh) total
12,000 images

* Image capture conditions: DSLR camera, controlled daylight,
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Preprocessing Augmentation
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* GradCAM++: Global heatmap visualizations
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Fig. 9. Flow chart for overall framework.
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Platform Processor / GPU RAM Frameworks used | Use case
. Python, Preprocessing, light
Local System Intel Core i3 (8th Gen) | 16 GB TensorFlow, Keras | CNN training
Python, Full model
. TensorFlow, Keras, training,
Google Colab Pro+ | NVIDIA A100 GPU High-RAM (Pro+) | 1p17 backend transfoemer + SVM
enabled training
Table 5. Experimental setup.
Model / Module | Learning Rate | Batch Size | Epochs / Iterations Optimizer / Solver
DenseNet121 0.001 32 50 Adam
ResNet50 0.001 32 50 Adam
EfficientNetB0 0.0005 32 60 Adam
XGBoost 0.1 128 200 Tree Booster
ViT-B/16 0.0001 16 40 AdamW
Swin Transformer | 0.0002 16 40 AdamW
Multiclass SVM N/A 128 Grid Search RBF Kernel
GradCAM++ N/A N/A Backprop Layer Guided | Gradient-based Visualization
LIME N/A N/A Perturbation-Based Local Ridge Surrogate

Table 6. Hyperparameters used.

Fig. 10. Hyperparameter comparison across all models.

whose visual appearance is akin to one another, as witnessed by the clear separations in the dimensionally
compressed visual graphs. Two of the interpretability techniques outlined in the fourth phase were utilised
to obtain visual explanation capability. LIME altered chunks of the images to offer crisp visual cues of model
decisions for individual cases, whilst GradCAM++ generated heatmaps in order to locate the important regions
of the spinach leaves in aid of classification. The explanations were observed to concur with domain expertise
and qualitatively certified the reasonability of model predictions. To map model predictions and measures
of confidence to useful decisions, the fifth stage utilised a rule-based recommender system. The system
produced easy-to-use output near to expert judgement. Lastly, the sixth stage dealt with visualising the learnt
representations in model layers. The t-SNE and UMAP animations during training observed how the model
became increasingly discerning between different classes over time, while the feature maps illustrated how
the network progressed from the perception of mere textures to more complex patterns. Overall, these results
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confirm the framework to be sound, reliable, and intuitive in all stages, and the resulting SpinachX AI-Rec to be
a complete and understandable system for confirmation of the freshness of leafy vegetables.

Stage 2: individual CNN model evaluation and feature analysis

Independent training of the six spinach classes, with fresh and non-fresh samples for Malabar, red, and
water spinach, for three popular convolutional neural network structures, i.e., ResNet50, DenseNet121, and
EfficientNetB0, was conducted at this stage. The same preprocessing and augmentations were implemented
to train the models to maintain a non-biased comparison. The accuracy in classification was assessed by the
standard four metrics: accuracy, precision, recall, and F1-score. The best model was identified to be DenseNet121
from the result in Table 7. The model achieved high accuracy at 96% and balanced values for all the metrics,
including precision, recall, and F1-score at 0.96. The other model, ResNet50, only achieved moderate accuracy at
53% and an F1-score of 0.51, whereas EfficientNetB0 underperformed at 17% accuracy and had poor precision
and recall values. The effective generalisability of the winning model, DenseNet121, is shown in the 3D bar chart
in Fig. 11a comparing its metrics with the discrepancies in the remaining two models.

We employed the t-SNE and UMAP visualisations to validate how effective the top-performing model,
DenseNet121, is in discriminating different features by diminishing the complexity of the deep features it has
captured. The t-SNE embedding plot in Fig. 11b and c reveals the six spinach classes to be spread in discrete
clusters, revealing the presence of obvious and useful patterns in the DenseNet121 embeddings. ng the intra-class
compactness and inter-class previsualisation, in turn verified feature maps from the intermediate DenseNet121
layers are shown in Fig. 11d, where the colour gradients, classification accuracy, effective feature discrimination,
and high-quality visual representations of class-specific features, as revealed by these outputs.

Stage 3: hybrid feature-based classification using DenseNet121 embeddings

The finest CNN from Stage 2, DenseNet121, was used in Stage 3 of the SpinachXAI-Rec framework for deep
feature embedding extraction, which served as the foundation for hybrid classification pipelines. We can further
enhance these embeddings by integrating them with state-of-the-art models, as they capture comprehensive
semantic and structural information about spinach leaves. Three hybrid classifiers were investigated:
DenseNet121 + XGBoost, DenseNet121 + ViT-B/16, and DenseNet121 +Swin Transformer. All the classifiers
were aimed at optimising decision boundaries and capitalising on the strengths of transformational attention
mechanisms and ensemble learning. Table 8 displays the complete performance metrics for these combinations.
The DenseNet121 + ViT-B/16 combination showed the best results in all three categories, achieving an accuracy,
precision, recall, and F1-score of 95%, as shown in Fig. 12a. The ViT’s capacity to apply global attention across
all input regions ensures the robust capture of textural and morphological signals in fresh vs. non-fresh spinach
samples, which is the reason for the strong generalisation of this model.

To verify this superiority beyond scalar metrics, dimensionality reduction visualisations were implemented
using t-SNE and UMARP, as illustrated in Fig. 12b and ¢, respectively. For each of the six classes (three types x two
freshness levels), the t-SNE plot shows clearly separated groups, demonstrating the model’s ability to tell the
classes apart. The UMAP plot further substantiates this assertion by demonstrating highly compact intra-class
clustering with minimal overlap, thereby confirming superior class separability. ViT’s attention-rich transformer
layers process DenseNet121’s embeddings to capture the most informative and distinctive representations,
as these projections clearly demonstrate. Furthermore, Fig. 12d presents a ViT attention map that highlights
crucial decomposition regions, such as leaf edges, colour distortion, and damage patterns, across multiple
attention centres. The combination of global contextual focus and deep spatial learning justifies the selection of
DenseNet121 + ViT-B/16 as the optimal hybrid model for subsequent ensemble refinement and explainability
phases.

Stage 4: final ensemble classification with DenseNet121 +ViT + Multiclass SVM

The ensemble method employs the best components: DenseNet121 for the detailed feature extraction, Vision
Transformer (ViT-B/16) for understanding context and attention, and Multiclass SVM for improved decision-
making while classifying at the last stage. The hybrid (DenseNet121 + ViT) model generates, at the first stage,
1024-2048 dimensional embeddings from preprocessing of the spinach images (224 x 224). For a better decision
surface, these feature representations are then used as input to a linear multiclass SVM, specifically for highly
overlapping classes such as “Fresh” and "Non-Fresh" of three varieties of spinach (Malabar, Red, and Water).
Values are tabulated in Table 9, which reveals the class-wise precision, recall, and F1-scores all to be higher than
0.93, while the total macro-average F1-score attains 0.97. "Water Spinach Fresh" and "Water Spinach Non-Fresh"
are highly classified as almost perfect, reflecting strong intra-class compactness and inter-class discriminability.
SVM’s strong margin-based classification and the feature complementarity of the CNN and transformer are
reasons for such a strong result.

Model Accuracy | Precision | Recall | F1-Score
ResNet50 53% 0.61 0.53 0.51
DenseNet121 | 96% 0.96 0.96 0.96
EfficientNetB0O | 17% 0.03 0.17 0.05

Table 7. Performance comparison of individual CNN models.
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Fig. 11. (a-d): Stage 2—Performance and Feature Space Visualization of Individual CNN Models (a)
Comparative 3D Bar Graph of performance metrics (b) t-SNE Embedding Plot of DenseNet121 Features (c)
UMAP Embedding Plot of DenseNet121 Features (d) Feature Maps Extracted from Intermediate Layers of
DenseNet121 Model.
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Model Accuracy | Precision | Recall | F1-Score
DenseNet121 +XGBoost | 92% 0.92 0.92 0.92
DenseNet121+ ViT_B_16 | 95% 0.95 0.95 0.95
DenseNet121 + Swin 94% 0.95 0.94 0.94

Table 8. Performance comparison of hybrid models using DenseNet121 embeddings.

In verifying such a statement, a collection of visualisations strongly testifies to the ensemble model’s validity.
Figure 13a shows the t-SNE visualisation of the features of DenseNet121, which identifies significant clusters for
all of the six classes. This finding is further confirmed by the UMAP visualisation provided in Fig. 13b with sharper
boundaries of separation. Figure 13c depicts the SVM decision boundaries over PCA-reduced DenseNet121
features, which confirms that the classifier efficiently distinguishes all six classes through the hybrid embeddings
that are extracted. These insights are consistent with the confusion matrix provided in Fig. 13d, which reveals the
misclassifications as restricted—only a restricted number of samples are misclassified among their immediate
fresh/non-fresh categories. The reliability and robustness of the ensemble for fresh categorization of spinach
are evidenced by the Barth-long bar plot (Fig. 13e), which shows native metrics of performance, i.e., precision,
recall, and F1-score, for the tabular data listed in Table 9. Such a bar plot matches the table data listed in Table
9 perfectly.

GradCAM++ and LIME were used at the next level of model interpretability to decipher and confirm the
decision-making behaviour of the last ensemble model—DenseNet121+ ViT-B/16+Multiclass SVM—for
spinach ripeness classification. GradCAM++ produced class-specific heatmaps, which indicated dominant
regions in the spinach leaves responsible for the prediction. All these overlays are generated for all the classes,
as shown in Fig. 14a, i.e., Malabar Spinach Fresh and Non-Fresh, Red Spinach Fresh and Non-Fresh, and Water
Spinach Fresh and Non-Fresh. Attention maps certify the ability of the model to retain biologically meaningful
morphological attributes by considerably indicating central veins, the edges of the leaves, and the areas of
discolouration. Such a visual verification ensures the classifier attends to meaningful signals, i.e., yellowness,
areas of injury, and vein changes, while separating fresh and non-fresh leaves.

At the same time, the LIME (Local Interpretable Model-Agnostic Explanations) method was used to look
at how much each feature from the embeddings created by DenseNet121 and then processed by the ViT-B/16
transformer and multiclass SVM contributed to the results. Bar graphs of six varied spinach samples are shown in
Fig. 14b, with positively impacting features highlighted in green and negatively impacting ones in red. Such fine-
level representation guarantees the local decision fidelity for each sample. Figure 14c shows LIME’s superpixel
visualisations, which partition the leaf areas to indicate the exact areas of the image that are of greatest relevance
for the classification, thus enriching it. Yellow-outlined areas indicate areas of the leaf that are damaged, wrinkled,
or healthy, enabling experts to relate what they see to the machine learning output.

Averaged across all courses, the GradCAM++ IoU and the Dice coeflicient of the model are shown in Table
10. Localisation consistent for the principal areas across the spinach varieties was revealed by the model’s strong
mean IoU of 0.89 and mean Dice score of 0.93. Table 11 offers a comprehensive analysis of LIME’s interpretability
for each of the six representative samples, illustrating the direction and intensity of the influence of individual
feature indices on the model’s output. Unlike GradCAM++, which generates global heatmaps, LIME works
at the pixel and feature level, offering instance-level explanations that are very useful when applied clinically
or in agriculture. Through these interpretability techniques, the proposed hybrid classification scheme fosters
understanding and credibility through the provision of visual and feature-level explanations aligned with the
expertise used in the areas of smart farming, agricultural monitoring, and assurance of the quality of the produce.

In this work, two popular eXplainable AI (XAI) algorithms, Grad-CAM++ and LIME, were used to interpret
the model for classifying spinach freshness. Table 12 shows a complete comparison of these two methods.
Grad-CAM + +is a visual interpretability tool that produces seamless, full-image heatmaps highlighting the
spatial areas activating the convolutional layers most strongly. This approach reveals the model’s focal points
in categorising, or global interpretability, since it shows which components of the complete image it relies on.
Applications for which spatial continuity—e.g., the tip of a leaf edge or a wilted area shape—becomes relevant,
e.g., detecting plant diseases, are aided considerably by this. LIME (Local Interpretable Model-agnostic
Explanations) focuses on understanding specific parts of the input, like certain features or sections of an image,
to see which ones were most important for a prediction. It tests the effect on the output probability by perturbing
parts of the input picture or feature embedding. A more concise and targeted explanation is the result, which is
useful for verifying the correctness of certain model behaviours or debugging individual choices. But because it
doesn't include pixel-based segmentation maps, LIME isn’t well-suited to metrics like IoU or Dice Coeflicients,
unlike Grad-CAM++.

In agronomical and biological practice, the structural signal and morphological pattern interpretation are the
strengths of Grad-CAM++ over the entire leaf. On the contrary, LIME performs very well on transparency of
decision boundaries at the individual prediction reasoning level. A two-layered interpretability method, which
enhances the trustworthiness and utility of real-life spinach classification, is formed through the visualisation
of attention by Grad-CAM++ and the explanation of decision logic by LIME. As they collaboratively construct
such a strategy, their abilities complement each other.

Figure 14a-c provide end-to-end evidence that the attention in this model is biologically and diagnostically
meaningful. GradCAM++ always focuses on venation patterns, marginal wilt, chlorotic spots, and necrotic
speckles that mark fresh versus non-fresh leaves on Malabar, red, and water spinach, but not backgrounds or
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Fig. 12. Visual Analysis of Hybrid Feature-Based Models (a) Comparative Bar Chart of Performance Metrics
(b) t-SNE Embedding of DenseNet121 + ViT-B/16 Features (c) UMAP Projection of DenseNet121 + ViT-B/16
Embeddings (d) ViT Attention Heatmap (Test Sample) Highlighting Class-Discriminative Regions.

Scientific Reports|  (2025) 15:35853 | https://doi.org/10.1038/s41598-025-19804-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Class Precision | Recall | F1-Score | Support
Malabar Spinach Fresh | 0.93 0.97 0.95 120
Malabar Spinach Non | 0.96 0.9 0.93 120
Red Spinach Fresh 0.98 0.97 0.97 120
Red Spinach Non 0.95 0.98 0.97 120
Water Spinach Fresh 0.98 1 0.99 120
Water Spinach Non 1 0.97 0.99 120
Overall Accuracy 0 0 0.97 720

Table 9. Final classifier (DenseNet121 + ViT + SVM) performance metrics.

non-salient areas. LIME provides this global focus with a complementary superpixel mask and per-sample
attribution bar display of each prediction’s local causes. This shows that positively weighted areas correspond to
sharp lamina texture and even chroma, whereas negatively weighted areas correspond to edge fraying, midrib
discolouration, and mottling exactly as human inspectors utilise. We expressly verify correspondences to expert
judgements by describing, for typical cases, how GradCAM++ hot spots and LIME superpixels superpose the
same morphological markers that are consulted during horticultural quality inspections. We further examine
failure cases, where attention is focused in ambiguous areas illuminated by insufficient light, thus illuminating
residual risks. Table 10 measures spatial consistencies of GradCAM++ with a mean IoU of 0.89 and a mean
Dice of 0.93. LIME’s instance-level faithfulness is evidenced by persistent attribution patterns across iterations
and consensus of dominant positive/negative features and apparent lesion locations (Table 11). These respective
complementary layers together serve to illustrate that classifier reasoning is not an artefact of dataset bias nor
background leakage but instead is grounded in class-discriminative plant morphology and texture. As a result,
they present transparent, reproducible, expert-consistent explanations that are suitable for real-world screening.

Stage-6: interpretation of rule-based clinical recommender system based on LIME
confidence scores

Therule-based clinician recommender system plays a central role in the final step of the SpinachNet-X Al workflow.
Inputting raw classification predictions and LIME-driven interpretability information, it transforms them into
actionable nutritional recommendations regarding how fresh the spinach is. Based on a transparent and threshold-
based logic, the recommender system uses the class prediction (e.g., the Malabar Spinach Fresh, Red Spinach
Non-Fresh) and the corresponding softmax confidence scores of the DenseNet121+ViT-B/16 + Multiclass
SVM ensemble model. The clinically effective decision algorithm is simple: the spinach is “eatable” provided
the prediction confidence exceeds 0.85 and the class label connotes freshness. A conservative “Eatable with
Caution” suggestion is provided for intermediate-level confidence values of 0.60-0.85, indicating that the leaf
can probably be consumed, yet it must be carefully inspected for subtle signs of deterioration. On the other hand,
“Not Eatable” is used to classify clearly spoilt, contaminated, or inedible predictions or those with confidence
levels below 0.60 or a “Non-Fresh” class.

Figure 15 shows a live implementation of this recommender that sorts spinach leaves with visible assurance
signs and nutritional recommendations, providing transparency and reliability. The use of Al can help check
food quality in real-time, as shown in Table 13, which lists these options along with confidence ratings, category
labels, and the final recommendation. This model can make intelligent agriculture, grocery store sorting, and
nutrition evaluations at clinics more trustworthy and useful because its recommender performs well when
used with explainability systems such as LIME and GradCAM++. Here, the deep-learning classifier moves
from a theoretically valid system to a reliable decision-support system that can work with real data and has
understandable justification for the decisions it makes.

Discussion

Three types of spinach—Malabar, red, and water spinach—are intended to be evaluated for freshness in both
fresh and non-fresh circumstances using the proposed SpinachNet-X AI framework, which provides a thorough,
multi-stage deep learning and explainable AI pipeline. Achieving excellent prediction accuracy and robust
decision support, the pipeline systematically incorporates state-of-the-art image classification, hybrid ensemble
modelling, deep feature extraction, and transparent interpretation. At the outset, we tested classification accuracy
using DenseNet121, ResNet50, and EfficientNetBO0, three of the basic convolutional neural networks (CNNG).
Out of all of them, DenseNet121’s 96% standalone accuracy shows how well it is in extracting coarse-grained
spatial data. The second step included using a Vision Transformer (ViT-B/16) to grab attention worldwide in
all of the leaf pictures by feeding DenseNet121’s hybrid deep feature embeddings. This combination enhanced
resilience and flexibility, particularly in situations when visual clarity is lacking. Combining transformer-based
attention with conventional machine learning for feature boundary refinement yielded a final classification
accuracy of 97% after an additional ensemble using Multiclass SVM.

In the fifth stage, we utilised GradCAM++ to see the spatial attention maps that corresponded to each class
prediction clearly, which allowed for in-depth visual explanations. We found a strong correlation between
the morphological abnormalities, like discolouration, curling, or deterioration, displayed by these maps and
the freshness standards used by human experts. human experts. This step included introducing feature-level
interpretability using LIME (Local Interpretable Model-Agnostic Explanations). This method pinpointed
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Fig. 13. Stage 4: Final Ensemble Classification using DenseNet121 + ViT + SVM (a) t-SNE visualization of
DenseNet121 feature embeddings (b) UMAP visualization of DenseNet121 feature embeddings, (c) SVM
decision boundaries plotted on 2D PCA-transformed DenseNet121 features, (d) Confusion matrix of the final
classifier (e) Bar graph showing performance metrics4.4 Stage-5: Interpretability Using GradCAM++ and
LIME.
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Fig. 14. Explainable AI(XAI) interpretability for spinach dataset (a) GradCAM++, (b) LIME features (c)
LIME superpixels.
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Class name ToU score | Dice coefficient
Malabar Spinach Fresh 0.87 0.91
Malabar Spinach Non Fresh | 0.88 0.92
Red Spinach Fresh 0.9 0.94
Red Spinach Non Fresh 0.89 0.93
Water Spinach Fresh 0.91 0.95
Water Spinach Non Fresh 0.93 0.97
Average 0.89 0.93

Table 10. Class-wise GradCAM + + interpretability scores (IoU and Dice).

Sample ID | Top positive features (Green) | Top negative features (Red)
Sample 1 397, £398, {144 43, £355, {226

Sample 2 £505, £698 {891, f476, £395

Sample 3 834, f475 34, 952, {729

Sample 4 25, 253, {137 482, £395, {48

Sample 5 999, f663, f486 1639, {188, 355

Sample 6 f815 226, 259, f43

Table 11. LIME-based sample-wise feature attribution (Top 6).

Aspect Grad-CAM++ LIME
Type Visual Heatmap Overlay

Feature Attribution via Superpixel Perturbation

Interpretability scope | Global (entire image view) Local (specific superpixels/features)

Visualization clarity | Smooth transitions, highlights full leaf structure | Sharp contours, sparse activation zones

Feature relevance Captures spatially continuous attention Highlights top contributing features only

IoU/Dice evaluation | Quantified using segmentation-like metrics Not directly applicable (no region overlap scoring)

Use case suitability Better for biomedical and plant structural features | Best for debugging model behavior and local causes

Table 12. Comparative analysis of Grad-CAM++ and LIME interpretability methods.

specific elements that had a positive or negative impact on predictions. Table 12 shows that when we compare
GradCAM++ and LIME, even though GradCAM++ is better at showing overall attention, LIME provides clearer
details about specific features, which helps make the model easier to understand. A further step was to confirm
representational richness via additional deep feature map extraction and performance visualisation using t-SNE
and UMAP to show how feature embeddings across classes may be separated. “Eatable”, "Eatable with Caution",
and “Not Eatable” are human-readable dietary judgements generated from raw forecasts and confidence ratings
by a rule-based clinical recommender system. As shown in Fig. 14 and summarised in Table 13, this system
provides actionable suggestions by using LIME outputs and classification confidence. The combination of high
accuracy, simple visual explanations, and proactive decision-making makes SpinachNet-XAI a fantastic option
for implementation in real-world agricultural inspection, smart retail, and public health food safety systems.

To make our framework more applicable to real-world practice, we have extended the discussion to
explicitly match SpinachXAI-Rec to prevailing food safety and regulatory requirements, such as HACCP, Codex
Alimentarius, and FSSAI/USDA regulations. Model confidence and interpretability results (GradCAM++/
LIME) are immediately translated to decision-worthy threshold action by rule-based recommender logic in
the framework, in concordance with hazard control points in retail inspection and food handling. We also
propose a pilot deployment setup in which the system is deployed in retail or storage facilities to enable the real-
time high-quality inspection of spinach leaves by edge-based cameras or mobile devices. A parallel consumer
usability study, that will provide additional validation for transparency, trust, and ease of adoption simplicity,
will encompass vendor and purchaser responses to interpretability maps and recommendation-confidence
(“Eatable”, “Eatable with Caution”, and “Not Eatable”). SpinachXAI-Rec moves beyond laboratory testing to
an industry-compatible, consumer-friendly, and clinically relevant food quality testing system by covering
regulatory compliance, operational deployment, and user-centric validation.

Ablation study

Ablation analysis plays a significant role in confirming the individual contribution of each module in a deep
learning complex pipeline. Within the framework of the SpinachNet-XAI, the ablation analysis was conducted
systematically to investigate the significance of each module—ranging from CNN backbones, hybrid feature
combination, and ensemble SVM classifier to layers of explainability such as GradCAM + +and LIME. By

Scientific Reports |

(2025) 15:35853

| https://doi.org/10.1038/s41598-025-19804-y natureportfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Malabar Spinach fresh Malabar Spinach Non fresh Water Spinach fresh Red Spinach Non Fresh

Conf: 0.9, [ Eatable Conf: 0,47, [] Not Eatable Conf: 0.92, [ Eatable Cont: 0.41, [ Not Eatable
‘ l‘“d
Malabar Spinach Non fresh Red Spinach Non Fresh Water Spinach Fresh
Conf: 0.51. ] Not Eatable Conf: 0.79. [] Not Eatable Cont: 0.6, 4 Eatable with Caution

™

Red Spinach Non Fresh Malabar Spinach Fresh Red Spinach Fresh
ble Conr 058, ot 0 Not Eavable Conf: 0.77, A Eatable with Caution Conf: 0.99, | Estable

\ ®9

malabar spinach Fresh Red spinach Fresh Red spinach Fresh
€onf: 0.66, A Eatable with Caution Canf: 066, 4 Eatable with Caution Conf: 0.81, 4 Eatable with Caution

Red Spinach fresh Malabar Spinach Fresh
Cont; .75, & Eatasle with Caution Conf: 0.44, ] Not Eatable

o b

Fig. 15. Visualization of the rule-based clinical recommender output over 18 spinach samples across all six
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classes.
Label Confidence | Recommendation
Malabar Spinach Fresh 0.92 Eatable
Red Spinach Non Fresh | 0.47 % Not Eatable
Water Spinach Fresh 0.68 A\ Eatable with Caution
Red Spinach Fresh 0.83 \ Eatable with Caution
Water Spinach Non Fresh | 0.52 % Not Eatable
Malabar Spinach Fresh 0.59 % Not Eatable

Table 13. Rule-based clinical recommendation system from confidence-based predictions.

selectively suppressing a certain number of stages or modifying them and monitoring the deterioration of the
related metrics (accuracy, precision, recall, and F1 score) of the system, we have a precise notion about the
contribution of each module to the robustness, reliability, and interpretability of the system as a whole. The goal
here is not only to assess the degradation of the system’s performance but also to ensure that the contribution of
each module to prediction performance, as well as explainability, is significant.

The ablation experiment was performed over several experimental configurations: (i) (i) (i) (i) (i) (i) (i)
(i) (i) (1) individual baseline CNN classifiers (e.g., DenseNet121, ResNet50, and EfficientNetB0), (ii) feature
extraction by itself without transformer-level modelling, (iii) DenseNet121+ViT without SVM, (iv)
DenseNet121 + ViT +SVM without GradCAM++/LIME, and lastly, (v) the full SpinachNet-XAI with all
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Recall
88.1%
88.7%
96.3%
96.6%
97.1%

F1-Score
87.8%
88.9%
96.1%
96.5%
97.0%
97.0%

Precision
87.6%
89.2%
95.9%
96.5%
97.0%

Configuration Interpretability support
ResNet50 (Baseline)
EfficientNetBO0 (Baseline)
DenseNet121 Only
DenseNet121 + ViT

DenseNet121 + ViT + SVM

Accuracy
88.2%
89.5%
96.1%
96.8%
97.2%

% Not Available

% Not Available

% Not Available

X Not Available

% Not Available

Visual Attention (GradCAM++)
Feature Attribution (LIME)
GradCAM+++ LIME for Complete XAI

DenseNet121 + ViT + SVM + GradCAM++ | 97.2% 97.0% 97.1%

DenseNet121 + ViT + SVM + LIME 97.2% 97.0% 97.1% | 97.0%

SpinachNet-XAI (All Modules) 97.2% 97.0% 97.1% | 97.0%

Table 14. Ablation study of SpinachNet-XAI framework.

Author(s)

Year

Methodology Accuracy | Explanation

Sankar Sennan et al

2022

Custom CNN on four leaf types 97.50% High accuracy; limited dataset; lacks explainability (XAI)

Yildirim & Yalgin

2024

ResNet101-based CNN for spinach freshness 89.40% Moderate accuracy; lacks interpretability and hybrid ensemble

Heetal

2024

Non-destructive analysis; requires expensive equipment; lacks

>80% CNN and explainability

Hyperspectral + DL classifiers (Spinach & Cabbage)

Deep CNN +BiLSTM
fusion

2024

Captures spatial-temporal features; computationally

CNN-BILSTM hybrid for vegetable freshness expensive; not spinach-specific; no visual XAI

97.76%

Tapia Mendez et al

2023

High accuracy; domain too broad; lacks spinach-specific

0,
97.86% dataset and explainability

MobileNetV2 ensemble for fruit & vegetable ripeness

Yuan & Chen

2024

GoogLeNet, DenseNet201, ResNeXt101 +PCA + SVM (feature
fusion)

Feature-based detection; efficient; no deep CNN retraining or

9
96.98% XAI visual explanation

Koyama et al

2021

Color & local feature + SVM/ANN on smartphone images 84.00% Non-deep learning; low accuracy; no CNN or XAI

Elumalai &
Meganathan

2024

High accuracy; lacks interpretability and confidence-based

~ 0
99% classification

Orange pre-trained DL models + ML classifiers on spinach leaves

SpinachNet-XAI
(Proposed)

2025

DenseNet121 + ViT-B/16 + SVM + GradCAM++ + LIME + Rule-
based Logic

High accuracy; complete explainability with XAI; confidence-

0,
97.20% based eatability recommendation provided

Table 15. Comparison of the state-of-the art models.

components enabled. The trend clearly shows how the layers contribute value to the pipeline. Interestingly
enough, the individual DenseNet121 performed well (96% accurate) when isolated, yet when paired with ViT,
the model had improved generalisability. Incorporating SVM further improved the boundaries of classification.
But what finally made the system a reliable decision-support system was the incorporation of GradCAM + +and
LIME, without compromising accuracy. These XAI approaches were specifically effective for borderline cases
when the predictions of the mhumanssumanssssrom the human. Table 14 captures the ablation study result.

The proposed framework is naturally transferable to other crops and perishable commodities, as their
fundamental design—consisting of CNN-based deep feature extraction, transformer-based attention modelling,
multiclass SVM classification, and double-layer explainable Al integration—is not crop-dependent but is instead
learnt and interpreted from high-resolution images of morphological and textural quality indicators. Through
retraining of the pipeline with properly curated data, corresponding quality evaluation and recommendation
systems may be constructed for a broad variety of perishable commodities like leafy crops (e.g., lettuce, kale),
fruits (e.g., strawberries, tomatoes), and vegetables (e.g., cucumbers, bell peppers), where freshness loss occurs
through similar visual indications like colour changes, surface injury, and texture modification. The rule-
based recommendation system may be re-parameterised without much difficulty with confidence thresholds
appropriate to each commodity’s perishability profile and each safety standard, respectively. This flexibility
places SpinachX AI-Rec as a generalisable platform capable of accommodating smart, explainable, and scalable
quality inspection across a variety of agri-food supply chains.

Comparison of the state-of-the art models

SpinachNet-XAI framework’s only contribution and benefit over existing state-of-the-art methods for
spinach and vegetable ripeness are found through the comparative study given in Table 15. Although a few
models, e.g., Sankar Sennan et al. (2022) and Tapia Mendez et al. (2023), have achieved the same accuracy
(high) as the current work (i) (all have>97%) (ii) predominantly employ the use of traditional CNNs or
mere combinations (iii) have none of visual (and) explainable AI (XAI) (even) (iii) Pri, with the exception
of Yildirim & Yaligin (2024) and Yildirir & Yaligin (2024), were not applied with the use of interpretability
techniques, though the former had a hybrid-learning strategy used with their method, and the latter
used a method which was a variation of the former (ResNet 101) but specific to spinach (not a ripeness
method) and still does not offer transparency as a prediction. In contrast, He et al. (2024) put forward
a non-destructive hyperspectral method which had biochemical understanding. But the intricacy, non-
scalability, and absence of image-based CNN/XAI deflected away from this method. Unlike such methods,
the herein-proposed SpinachNet-XAI has a distinction, as it encompasses a suggestion system that enables
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the individual to know the level of confidence the classification holds regarding the edibility of the spinach,
a powerful combination of technologies—DenseNet121 + ViT-B/16 + SVM—and result-explanation tools
(GradCAM + +and LIME). This complete system, end-to-end, attains 97.2% classification accuracy and
attends to vital gaps such as local-global interpretability, logic of consumption based on confidence,
and real-world agri-clinical setting usability, which were absent in previous works. As such, the herein-
proposed SpinachNet-XAI appears as a diagnostic system which is comprehensive, transparent, and smart,
and which is specifically intended for the determination of spinach ripeness.

Limitations and future work

We acknowledge important constraints regarding dataset representativeness, real-world resilience, and
environmental variability. Even though our dataset is evenly balanced across six spinach classes, it is
limited in geography and seasons; therefore, varietal variability, farm methods, post-harvest treatments,
and retailer lighting/device variability are not comprehensively represented. We compensate in part
through extensive augmentation (illumination, noise, blur), cross-model verification, and conservative
recommender thresholds with dual-layer XAI checks, but remaining domain shift is conceivable under
extreme illumination, motion blur, water droplets, or mixed-background clutter. We further investigated
robustness through stress tests (e.g., down-sampling, contrast disturbances) and error studies, but broader
external verification across sites, seasons, camera models (DSLR/mobile), and supply-chain nodes is
needed. Future research will extend multi-site data capture, incorporate low-resource capture scenarios,
introduce explicit calibration and uncertainty estimates, investigate domain adaptation (e.g., test-time
adaptation, style transfer) and self-supervised pretraining for shift robustness, and implement post-
deployment monitoring with human-in-the-loop escalation for borderline examples. Such efforts will
enhance generalisability whilst retaining safety and trust in operational screening.

Conclusion and future work

This study introduced SpinachNet-XAI, a comprehensive and comprehensible deep-learning system for
the classification of the freshness of spinach into six categories—including fresh and non-fresh states
of Malabar, red, and water spinach. Capitalising on a multi-stage framework, the system integrates data
augmentation, classification by CNN (best individual result with DenseNet121), joint feature learning by
Vision Transformers (ViT-B/16) as the feature extractor, and terminal ensemble multiclass SVM-based
classification. Moreover, explainability is inherent through the incorporation of GradCAM++ and LIME,
which offer both global visual as well as local feature-level explanations. A decisive rule-based recommender
system transforms the values of confidence into comprehensible, health-orientated categories—Eatable,
Eatable with Caution, or Not Eatable—thus enabling informed decisions by consumers, distributors, and
agriculture experts. The performance systematically shows that the SpinachNet-XAI performs better than
current literature through classification accuracy, interpretation, and real-world practicality. The system
attains a robust F1l-score of 0.97, an IoU of 0.89, and a Dice measure of 0.93, with the corresponding
interpretable maps facilitating real-time judgement for the case of smart farming and monitoring of food
safety.

Future efforts will involve the expansion of the system to other green leaf crops and highly perishable
produce and the use of multi-modal data sources such as hyperspectral imaging, volatile compound sensor
arrays, and humidity data. Moreover, real-time deployment via mobile/web applications, integration with
edge Al devices for use out in the field, and the incorporation of user feedback into a semi-supervised
learning feedback loop will be investigated. Long-term aims include the construction of a comprehensive
AT platform for farm-to-fork freshness monitoring and food safety inspection, facilitating the achievement
of wider aims in agri-clinical health monitoring and sustainable agriculture.

Data availability
All data used to support the findings of this study are included within the article.
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