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Age estimation is a crucial step in forensic identification, particularly in scenarios where dental 
structures may be absent. This study aimed to develop and evaluate supervised machine learning 
models to predict chronological age based on mandibular morphometric measurements in children 
and adolescents. A sample of lateral cephalometric radiographs from 401 orthodontic patients aged 
between 6 and 16 years was analysed. Linear and angular mandibular measurements including the 
total mandibular length (Co-Pog), mandibular ramus height (Co-Go), mandibular body length (Go-Gn), 
and the gonial angle (Ar-Go-Me) were analysed. Eight supervised machine learning algorithms were 
trained to predict chronological age based on these measurements and sex. The dataset was split into 
training (80%) and test (20%) sets, with stratified 5-fold cross-validation to prevent overfitting. Model 
performance was evaluated using mean absolute error (MAE), mean squared error (MSE), root mean 
squared error (RMSE), and coefficient of determination (R²), with 95% confidence intervals estimated 
via bootstrapping. The models based on mandibular morphometric features and sex achieved a 
minimum MAE of 1.54 years (95% CI: 1.33–1.76) and RMSE of 1.93 (95% CI: 1.66–2.18) on the test 
set. Cross-validation confirmed model stability, with the Gradient Boosting Regressor achieving the 
best performance, showing a MAE of 1.21 (95% CI: 1.09–1.32) and R² of 0.56 (95% CI: 0.46–0.64). Total 
mandibular length (Co-Pog) and mandibular ramus height (Co-Go) were the most important predictors. 
Pairwise comparisons revealed statistically significant differences favoring ensemble methods 
over linear and simpler tree models. Supervised machine learning models demonstrated promising 
accuracy for age estimation based on mandibular measurements in growing individuals. Gradient 
Boosting emerged as the most effective algorithm. However, the generalizability of the models may be 
influenced by population-specific characteristics and the need for prior knowledge of certain predictor 
variables. Further external validations are recommended to enhance model applicability across diverse 
forensic contexts.
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Forensic identification of unknown human remains fundamentally relies on the accurate estimation of biological 
characteristics, including age and sex. Age estimation, in particular, is critical in forensic medicine for both 
individual identification and mass disaster victim reconciliation1–3. Beyond postmortem applications, age 
estimation contributes to the assessment of legal maturity, supporting decisions on whether an individual should 
be prosecuted as a juvenile or an adult, an important factor that can influence the severity of criminal sentencing4.

The mandible is the most frequently recovered bone in human remains. It is sometimes the only bone available 
for post-mortem investigation5 and it is well suited for age estimation, as the mandible exhibits more pronounced 
development changes than other craniofacial bones6. Mandibular dimensions, particularly mandibular length, 
ramus height, and mandibular angle (gonial angle) have shown strong correlations with age in humans7.
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Recent advancements in Artificial Intelligence (AI) have introduced novel methodologies to address 
limitations inherent in conventional forensic age estimation techniques. Machine learning, a subset of AI, 
offers robust capabilities for nonlinear data analysis8 and has significantly improved forensic age estimation by 
providing faster, more standardized, and objectively quantifiable evaluations. While AI-driven approaches have 
been applied to mandibular analyses for age estimation, existing studies predominantly focus on dental age 
methodologies. Although machine learning methods based on dental age stages demonstrate high accuracy, in 
some crime circumstances, the mandible may be found without teeth due to postmortem tooth loss, intentional 
avulsion, or environmental factors, making forensic identification more challenging.

Thus, in the present study, we investigated the application of mandibular dimensions with machine learning 
algorithms for age estimation in children and adolescents.

Methods
Study design
This cross-sectional observational study examined orthodontic records from children and adolescents enrolled 
in the orthodontic treatment at the Bonn University-Germany. This project was conducted in accordance with 
the Declaration of Helsinki and approved by the Human Ethics Committee (2024-252-BO). Informed consent 
was obtained from patients and their legal guardians.

Participants
Orthodontic records, including cephalometric radiographs, were screened for this study. Participants included 
were aged between 6 and 16 years old. Inclusion criteria consisted of children and adolescents without underlying 
syndromes or congenital alterations. Individuals presenting one or more teeth missing bilaterally due to agenesis 
or extraction were excluded from the analysis.

Mandibular size assessment
Digital pre-treatment lateral cephalometric radiographs were analyzed to evaluate mandibular dimensions. 
Radiographs were imported into OnyxCeph software (version 3.2.180; Image Instruments GmbH, Chemnitz, 
Germany) as lossless TIF files, calibrated, and digitally assessed. Each cephalogram was oriented using the 
Frankfort horizontal plane and the midsagittal reference line provided by the software, in order to minimize 
distortions caused by head inclination or rotation. The following anatomical landmarks were identified on each 
cephalograms (Fig. 1):

•	 Gnathion (Gn)—The most inferior and anterior point of the mandible at the midline.
•	 Menton (Me)—The lowest midline point of the chin.
•	 Pogonion (Pog)—The most anterior midline point of the chin.
•	 Gonion (Go)—The most posterior and inferior point of the mandibular angle (gonial angle).
•	 Condylion (Co)—The most superior point on the head of the mandibular condyle.
•	 Articulare (Ar)—The intersection point between the posterior border of the mandibular ramus and the base 

of the skull.

Based on the identified landmarks, the following measurements were recorded:

•	 Linear distances (mm):

	– Mandibular Ramus height: Co-Go Distance from Condylion (Co) to Gonion (Go).
	– Mandibular body length: Go-Gn - Distance from Gonion (Go) to Gnathion (Gn).
	– Total mandibular length: Co-Pog - Distance from Condylion (Co) to Pogonion (Pog).

•	 Angular measurement (°):

	– Mandibular angle (gonial angle): Ar-Go-Me—Gonial angle formed by the intersection of lines from Artic-
ulare (Ar) to Gonion (Go) and Gonion (Go) to Menton (Me). This angle was also considered a cephalomet-
ric indicator of vertical skeletal pattern, thereby incorporating potential vertical morphological influences 
into the modelling process.

To assess potential confounding effects of sagittal skeletal pattern on age estimation, the sample was classified 
into skeletal Classes I, II, and III based on the ANB angle, and chronological age was compared among these 
groups using one-way ANOVA.

Sample size and power test
To assess the adequacy of the adopted sample size for each individual predictor, a post-hoc statistical power 
analysis was performed using G*Power software (version 3.1.9.6; Heinrich Heine University Düsseldorf, 
Germany; available at: ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​p​s​y​c​h​o​l​o​g​i​​e​​.​h​​h​u​.​​​d​e​/​a​r​​b​e​i​t​s​g​​r​u​p​​p​e​​n​/​a​l​l​g​​e​m​e​​i​n​​e​-​p​s​y​c​​h​o​l​​o​g​​i​e​​-​u​n​d​-​a​r​b​e​
i​t​s​p​s​y​c​h​o​​l​o​g​i​e​/​g​p​o​w​e​r). For continuous predictors, the analysis was conducted under Exact - Correlation: 
Bivariate normal model, entering the observed Pearson correlation coefficient (r) with chronological age, α 
error probability, and total sample size. For the dichotomous predictor (sex), the analysis was performed under 
t tests—Means: Difference between two independent means [two groups], using the observed group means, 
standard deviations, and sample sizes. Given that this step was intended for exploratory variable selection prior 
to multivariable modelling, a more liberal significance level (α = 0.20) was adopted, as recommended by Hosmer, 

Scientific Reports |        (2025) 15:35021 2| https://doi.org/10.1038/s41598-025-21221-0

www.nature.com/scientificreports/

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
http://www.nature.com/scientificreports


Lemeshow, and Sturdivant (2013)33, to reduce the likelihood of excluding potentially relevant predictors at the 
univariate stage.

Feature selection
Predictor variables were selected based on their predictive ability concerning the dependent variable, 
chronological age. Initially, an exploratory analysis using Pearson correlation test was conducted to examine 
associations between each independent variable and chronological age. A significance level of 5% (α = 0.05) was 
adopted, and variables demonstrating statistically significant correlations (p < 0.05) were considered relevant 
and selected for inclusion in predictive models. This approach aimed to identify and retain only those variables 
that effectively contribute to the explanatory power of the models, thus reducing complexity and enhancing 
predictive efficiency.

Model development
A predictive model was developed to estimate chronological age based on mandibular size and sex. To ensure 
a comprehensive evaluation of the relationships present in the dataset—from simple linear associations to 
more complex, nonlinear patterns—algorithms from four major categories of machine learning were carefully 
selected: linear models, tree-based models, instance-based methods, and artificial neural networks.

Specifically, eight algorithms were chosen:

•	 Linear Regression (LR), for its simplicity and interpretability.
•	 Gradient Boosting Regressor (GB), Random Forest Regressor (RF), Decision Tree Regressor (DT), and Ad-

aBoost Regressor (ADA), representing tree-based models known for robustness and strong predictive capa-
bilities.

•	 Support Vector Regression (SVR) and K-Nearest Neighbors Regressor (KNN), as instance-based methods 
effective in capturing complex nonlinear relationships.

Fig. 1.  Lateral cephalometric radiograph showing anatomical landmarks. Linear measurements: Co-Pog, 
Co-Go, Go-Gn. Angular measurement: Ar-Go-Me. GN = Gnathion, ME = Menton (Me), Pog = Pogonion, 
Go = Gonion; Co = Condylion Ar = Articulare.
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•	 Multilayer Perceptron Regressor (MLP), an artificial neural network capable of identifying highly complex 
data patterns through multiple hidden layers.

This selection aimed to balance model interpretability, predictive performance, and adaptability to diverse data 
structures, allowing rigorous comparisons among the different methodological approaches9–12.

Training, cross-validation, test and overfitting control
Prior to training the predictive models, the dataset was normalized to enhance numerical stability and improve 
algorithm learning efficiency. This procedure aims to reduce the influence of varying scales among variables, 
allowing each feature to contribute equally to model development.

The dataset was randomly split into training (80%) and testing (20%) sets. This approach ensured that model 
training was conducted on a substantial portion of the data, while an independent subset was reserved to evaluate 
the model’s ability to estimate chronological age in unseen individuals—simulating a real-world application.

To ensure greater generalization capability and minimize the risk of overfitting, stratified five-fold cross-
validation was employed. This method involved splitting the data into five subsets, ensuring each subset 
maintained a representative distribution of the studied variables13. Each model was trained and validated 
repeatedly across these subsets, increasing robustness and reliability of performance metrics obtained.

Hyperparameter optimization
Detailed hyperparameter optimization was performed using the Grid Search method, a systematic and exhaustive 
search for optimal parameter combinations. Hyperparameters define critical aspects of the algorithms’ learning 
process, directly impacting their capacity to detect patterns within the data14. Thus, this optimization aimed to 
identify parameter configurations that maximize the predictive performance of the models.

Model evaluation metrics and feature importance
The accuracy and reliability of predictions made by the developed machine learning models were assessed using 
the following performance metrics:

•	 Mean squared error (MSE): Measures the average of the squared differences between predicted and actual 
chronological ages, giving more weight to larger errors.

•	 Root mean squared error (RMSE): Calculated as the square root of the MSE, RMSE expresses prediction er-
rors in the same unit (years) as chronological age, making model accuracy easier to interpret.

•	 Mean absolute error (MAE): Represents the average absolute magnitude of prediction errors, regardless of 
their direction. This metric provides a straightforward and objective measure of overall predictive accuracy.

•	 Coefficient of determination (R2): Indicates the percentage of total variability in chronological age that is 
explained by each predictive model. Higher values suggest greater explanatory power and more reliable pre-
dictions.

To accurately quantify the uncertainty surrounding each performance metric and assess prediction consistency, 
95% confidence intervals (CI95%) were calculated using the bootstrap method with 1000 resampling iterations. 
This approach yielded robust variability estimates and reliable confidence intervals that reflect the models’ true 
performance. For cross-validation results, confidence intervals were derived from the distribution of metrics 
across different data folds, enabling a comprehensive evaluation of model stability and generalizability.

Visual representations of prediction errors were created using scatter plots, highlighting discrepancies 
between predicted and actual chronological ages. The prediction error plots were generated by overlaying scatter 
points on a semi-transparent bivariate kernel density heatmap, graded from navy blue to deep red to indicate the 
concentration of observations, with higher densities represented by colors closer to red.

Statistical comparisons of MAE values across models were also performed using bootstrap analysis. A 
statistically significant difference was identified when the computed confidence interval did not include zero, 
thereby confirming meaningful differences in predictive performance.

To evaluate the relative contribution of each input variable to the model’s predictions, feature importance 
scores were calculated using tools available in the scikit-learn library. These scores provide an estimate of the 
predictive weight of each variable and are typically derived from models that inherently support this type of 
analysis. For algorithms that do not natively offer this functionality—specifically K-Nearest Neighbors (KNN), 
Support Vector Regression (SVR), and Multilayer Perceptron (MLP)—feature importance analysis was not 
performed15–19.

All statistical analyses and visualizations were performed using the Python programming language in the 
Google Colaboratory environment. The entire workflow—comprising model construction, training, validation, 
hyperparameter optimization, and performance evaluation—is illustrated in Fig. 2. To ensure transparency and 
reproducibility, all scripts developed for the analysis are openly available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​5​2​
6​4​8​4​7​​​​​.​​

Results
Sample characterization
A total of 401 individuals were included, with an age ranging from 6.3 to 16.8 years old, and a mean age of 
11.7 ± 2.3 years old; 200 (49.8%) were males and 201 (50.2%) were females (11.4 ± 2.38 years and 11.8 ± 2.37 
years respectively). Post-hoc statistical power analysis demonstrated that all predictors assessed in the univariate 
stage achieved statistical power ≥ 80% for the observed associations, confirming both the adequacy of the sample 
size and sufficient predictive capacity to support their inclusion in the multivariable modelling. Sagittal skeletal 
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classification (based on ANB) comprised 177 Class I, 150 Class II, and 74 Class III subjects. A one-way ANOVA 
comparing chronological age among these groups showed no statistically significant difference (p = 0.488), 
indicating a balanced age distribution across sagittal patterns.

Model performance
The predictive models based on mandibular morphometric features and sex demonstrated mean absolute errors 
(MAE) closer to 1.5 years when compared to actual chronological age. Among the evaluated algorithms, the 
Gradient Boosting model achieved the lowest MAE on the test set (1.54; 95% CI: 1.33–1.76), followed by the 
Random Forest, SVM (Support Vector Machine), and KNN (K-Nearest Neighbors) models (Fig.  3). Cross-
validation supported this finding, with Gradient Boosting maintaining the lowest MAE (1.21; 95% CI 1.09–1.32) 
and the highest coefficient of determination (R2 = 0.56; 95% CI 0.46–0.64). However, R2 values in the test set 
indicated that only a moderate portion of the variability in chronological age was explained by the included 
predictors (R2 = 0.38; 95% CI 0.21–0.53) (Table 1).

Pairwise model comparison
Pairwise comparisons of the mean absolute errors revealed distinct patterns of statistical significance among the 
evaluated models (Fig. 4). The decision tree model showed the poorest performance, with statistically significant 
differences when compared to the Gradient Boosting and Random Forest models. In contrast, the Gradient 
Boosting model achieved the best performance, with statistically significant differences compared to the Logistic 
Regression, AdaBoost, and Decision Tree models.

Feature importance
Among the linear distances evaluated, total mandibular length (Co-Pog) demonstrated the highest predictive 
importance, followed by mandibular ramus height (Co-Go). The feature importance ranking is presented in 
Fig. 5.

Discussion
The mandible plays a crucial role in forensic investigations, as its unique anatomical features, dental records, 
and bone structure can help identify individuals, determine age, and provide insights into cause of death. In age 
estimation, the mandible can play a crucial role in children and adolescents, not only due to its predictable growth 
patterns but also because of the sequential development of teeth. The current literature has repeatedly shown 
the importance of mandibular teeth to estimate age through dental age methods that assess the mineralization 
stages of developing permanent teeth using radiographic analysis. However, in certain forensic contexts, teeth 
may be absent from the mandible—whether due to ante-mortem loss, post-mortem damage, or developmental 
stage—limiting the applicability of traditional dental methods. In such cases, evaluating the use of mandibular 
dimensions for age estimation in growing individuals becomes particularly relevant. By exploring mandibular 
measurements and validating their accuracy across diverse populations, researchers and clinicians can enhance 
forensic identification methods and contribute to more precise age estimation in both living individuals and 
skeletal remains. Therefore, this study explores the application of mandibular morphometry combined with 
machine learning algorithms for age estimation.

In recent years, the application of AI in forensic medicine and odontology has grown substantially. A 
recent systematic review conducted by Singh et al. (2024) compiled studies that employed AI tools for age and 

Fig. 2.  Flowchart of the main steps of the study.
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sex estimation based on maxillofacial radiographs, including panoramic and lateral cephalometric images20. 
Although the review highlighted promising results, most of the analysed studies focused predominantly on sex 
determination or broad age group classification, with few studies aiming to precisely estimate chronological age. 
Furthermore, the majority of the reviewed studies relied on panoramic radiographs, which, despite providing a 
broad two-dimensional view of the maxillofacial region, present limitations for detailed morphometric analysis 
when compared to lateral cephalometric radiographs. Another important distinction concerns the age range of 
the studied populations: whereas previous studies primarily included teenagers and adults, our study focused 
exclusively on children and adolescents aged between 6 and 16 years, a developmental period characterized by 
intense skeletal changes. Additionally, while previous studies often incorporated dental parameters—such as 
the number of teeth or the presence of implants—we based our analysis solely on mandibular morphometric 
measurements, seeking greater applicability in forensic contexts where dental structures may be absent. It is also 
noteworthy that the predictive models developed in our study achieved a mean absolute error close to 1.5 years 
(18 months), which was lower than the 21 months reported by Back et al. using deep learning approaches21. 
Therefore, the use of mandibular morphometric measurements demonstrated the ability to produce more 
accurate age estimates in children and teenagers, expanding the applicability of forensic identification in 
challenging scenarios.

In forensic practice, a prediction error of approximately 1.5 years is often deemed clinically acceptable, 
particularly when age estimation relies on the assessment of a single skeletal indicator. The results obtained in 
this study is within this range, supporting their potential applicability in real-world forensic scenarios. Liversidge 
and Marsden (2010), in a study using third molars, reported mean absolute errors ranging from 1.45 to 1.97 
years across six evaluated methods22. Previous studies have reported errors of 1.3 and 1.5 years for males and 
females, respectively, and 1.13 years using a polynomial and Bayesian approach23,24.

The dimensions of the mandible, particularly the height of the mandibular ramus and the gonial angle, 
have been extensively evaluated in the context of age estimation7. Specifically, the height of the mandibular 
ramus has been previously pointed as having a strong correlation with chronological age25,26. In our study, total 
mandibular length (Co-Pog) demonstrated the highest predictive importance, followed by the height of the 
mandibular ramus (Co-Go). This finding is particularly relevant, as the mandibular ramus typically remains 
intact even in extensively damaged skeletal remains, reinforcing its forensic applicability27. Furthermore, it is well 

Fig. 3.  Scatter plots: Random Forest, Support Vector Machine (SVM), and K-Nearest Neighbors (KNN).
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established that the gonial angle undergoes morphological changes throughout life: it is initially obtuse during 
early developmental stages and gradually becomes more acute as the individual matures28. This transformation 
reflects the dynamics of skeletal growth, as the mandibular ramus tends to increase more in height than the 
mandibular body in length during growth, resulting in a reduction of the gonial angle29. These biological patterns 
highlight the potential of mandibular measurements for chronological age estimation, particularly in forensic 
cases where teeth may be absent or damaged. Thus, the investigation of mandibular morphometry combined 
with machine learning algorithms may represent a promising alternative for forensic age estimation in children 
and adolescents.

The application of AI for age prediction based on skeletal features offers significant advantages. AI-based 
models have demonstrated superior predictive performance and optimize analysis time compared to manual 
assessments by trained specialists. Integrating these tools into the assessment of bone structures can enhance 
accuracy, and support clinical decision-making, particularly in contexts with limited availability of specialized 
professionals30. Given that the mandible often remains intact even in severely compromised bodies31, mandibular 
dimensions analysed using machine learning algorithms can contribute to more precise age estimations in 
children and adolescents. In forensic practice, specific mandibular measurements can be directly extracted from 
radiographic images and applied to previously trained models, enabling rapid and standardized chronological 
age estimates. This approach enhances the speed and consistency of forensic examinations, especially in complex 
scenarios such as mass disasters or cases involving advanced skeletonization, thereby reducing the subjectivity 
associated with traditional assessments.

Model Optimal hyperparameters Test data results [CI95%] Cross-validation results [CI95%]

Gradient boosting

learning_rate: 0.1 MSE = 3.74 [2.73–4.81] MSE = 2.37 [1.96–2.84]

max_depth: 4 RMSE = 1.93 [1.65–2.19] RMSE = 1.54 [1.40–1.69]

min_samples_split: 2 R2 = 0.38 [0.21–0.53] R2 = 0.56 [0.46–0.64]

n_estimators: 100 MAE = 1.54 [1.33–1.76] MAE = 1.21 [1.09–1.32]

Linear regression

fit_intercept: True MSE = 4.12 [3.24–5.02] MSE = 4.28 [2.64–6.07]

copy_X: True RMSE = 2.03 [1.80–2.24] RMSE = 2.06 [1.62–2.46]

n_jobs: -1 R2 = 0.31 [0.21–0.41] R2 = 0.20 [-0.13–0.51]

positive: True MAE = 1.71 [1.49–1.91] MAE = 1.56 [1.31–1.78]

Support vector machine

C: 1 MSE = 4.06 [3.09–5.16] MSE = 2.84 [2.38–3.34]

kernel: rbf RMSE = 2.01 [1.76–2.27] RMSE = 1.68 [1.54–1.83]

degree: 2 R2 = 0.32 [0.14–0.49] R2 = 0.47 [0.37–0.55]

MAE = 1.62 [1.40–1.83] MAE = 1.33 [1.20–1.47]

K-nearest neighbors

n_neighbors: 9 MSE = 3.94 [3.02–4.98] MSE = 2.97 [2.45–3.55]

p: 1 RMSE = 1.98 [1.74–2.23] RMSE = 1.72 [1.57–1.88]

weights: uniform R2 = 0.34 [0.17–0.49] R2 = 0.45 [0.34–0.54]

MAE = 1.62 [1.42–1.83] MAE = 1.37 [1.23–1.51]

Random forest

max_depth: None MSE = 3.81 [2.81–4.92] MSE = 2.29 [1.91–2.71]

max_features: sqrt RMSE = 1.95 [1.68–2.22] RMSE = 1.51 [1.38–1.65]

min_samples_leaf: 4 R2 = 0.36 [0.19–0.52] R2 = 0.57 [0.48–0.65]

min_samples_split: 10 MAE = 1.55 [1.33–1.77] MAE = 1.18 [1.06–1.29]

n_estimators: 200

AdaBoost

learning_rate: 0.1 MSE = 4.01 [3.00–5.14] MSE = 2.58 [2.17–3.02]

loss: linear RMSE = 2.00 [1.73–2.27] RMSE = 1.60 [1.47–1.74]

n_estimators: 100 R2 = 0.33 [0.16–0.49] R2 = 0.52 [0.42–0.60]

MAE = 1.61 [1.39–1.82] MAE = 1.30 [1.19–1.42]

Decision tree

max_depth: 10 MSE = 4.83 [3.65–6.12] MSE = 2.94 [2.31–3.65]

max_features: sqrt RMSE = 2.19 [1.91–2.47] RMSE = 1.71 [1.52–1.91]

min_samples_leaf: 4 R2 = 0.19 [-0.02–0.40] R2 = 0.45 [0.31–0.57]

min_samples_split: 10 MAE = 1.74 [1.50–1.99] MAE = 1.29 [1.14–1.45]

MLP regressor

activation: relu MSE = 4.11 [3.18–5.12] MSE = 3.02 [2.52–3.65]

alpha: 0.001 RMSE = 2.02 [1.78–2.26] RMSE = 1.73 [1.59–1.91]

hidden_layer_sizes: (100,) R2 = 0.31 [0.14–0.47] Rv = 0.44 [0.31–0.53]

learning_rate: constant MAE = 1.65 [1.44–1.87] MAE = 1.40 [1.27–1.53]

solver: adam

Table 1.  Summary of the metrics obtained during the cross-validation and testing phases of the regression 
models used to predict chronological age based on mandibular size and sex, along with their optimal 
hyperparameters.
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Fig. 5.  Feature importance ranking across different machine learning models.

 

Fig. 4.  Difference in mean absolute error (MAE) between model pairs with 95% confidence intervals.
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Finally, it is important to acknowledge some limitations of the present study. First, the sample consisted 
exclusively of German individuals with different skeletal malocclusions, which may limit the generalizability of 
the results to populations of different ethnic or geographic backgrounds. Additionally, one of the predictors used 
in the models was the sex of the individuals, which was included due to the distinct growth patterns observed 
between males and females. However, for practical application in real forensic contexts, the sex must be previously 
known or determined. Although sex can be reliably identified through methods such as DNA analysis, this 
additional step involves greater operational complexity and processing time, particularly in emergency forensic 
scenarios or situations with limited resources. Therefore, it is recommended that future studies validate these 
models in different populations and also explore alternative strategies for using or predicting the sex variable, 
aiming to broaden their applicability in forensic practice.

Conclusions
The findings of the present study demonstrated that mandibular dimensions analysed by machine learning 
algorithms enable precise age estimation in children and adolescents, presenting mean absolute errors close 
to 1.5 years. Among the evaluated models, Gradient Boosting achieved the best predictive performance, 
demonstrating robustness and reliability for forensic applications. Additionally, total mandibular length (Co-
Pog) and mandibular ramus height (Co-Go) were identified as the most significant predictors, reinforcing the 
forensic relevance of these anatomical measures. Nevertheless, the generalizability and practical applicability 
of the proposed predictive models may be influenced by population-specific characteristics and the availability 
of certain predictor variables in forensic contexts. Therefore, further studies are encouraged to validate these 
findings in diverse populations and explore alternative predictors to enhance applicability in various forensic 
scenarios.

Data availability
To ensure transparency and reproducibility, all scripts developed for the analysis are openly available at ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​5​2​6​4​8​4​7​​​​​.​​
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