Table 4 Parameter grids and selected optimal hyperparameters obtained from grid search.
Algorithm | Parameter Grid | Output |
---|---|---|
DT | param_grid = {‘criterion’: [‘gini’, ‘entropy’], ‘max_depth’: [None, 5, 10, 20], ‘min_samples_leaf’: [1, 2, 4], ‘min_samples_split’: [2, 5, 10]} | {‘criterion’: ‘gini’, ‘max_depth’: 10, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2} |
RF | param_grid = {‘n_estimators’: [50, 100, 200], ‘criterion’: [‘gini’, ‘entropy’], ‘max_depth’: [None, 5, 10], ‘min_samples_leaf’: [1, 2], ‘min_samples_split’: [2, 5]} | {‘n_estimators’: 100, ‘criterion’: ‘gini’, ‘max_depth’: ‘None’, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2} |
GBM | param_grid = {‘n_estimators’: [50, 100, 200], ‘criterion’: [‘friedman_mse’, ‘squared_error’], ‘learning_rate’: [0.01, 0.1, 0.2], ‘max_depth’: [3, 5], ‘min_samples_leaf’: [1, 2], ‘min_samples_split’: [2, 5]} | {‘n_estimators’: 100, ‘criterion’: ‘friedman_mse’, ‘learning_rate’: 0.01, ‘max_depth’: 3, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2} |
SVM | param_grid = {‘C’: [1, 10, 20, 30], ‘kernel’: [‘rbf’, ‘poly’], ‘gamma’: [‘scale’, ‘auto’]} | {‘C’: 30, ‘kernel’: ‘rbf’, ‘gamma’: ‘scale’} |
LR | param_grid = {‘C’: [0.01, 0.1, 1, 10], ‘penalty’: ‘l1’, ‘l2’, ‘elasticnet’, ‘solver’: [‘lbfgs’, ‘liblinear’]} | {‘C’: 0.01, ‘penalty’: ‘l2’, ‘solver’: ‘lbfgs’} |
MLP | param_grid = {‘hidden_layer_sizes’: [(200, 100, 50), (100, 50, 10)], ‘activation’: [‘relu’, ‘tanh’], ‘alpha’: [0.0001, 0.001, 0.01] ‘max_iter’: [200, 500, 1000]} | {‘hidden_layer_sizes’: (100, 50, 10), ‘activation’: ‘relu’, ‘alpha’: 0.01 ‘max_iter’: 1000} |