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The potential of fractional-order models to faithfully capture memory effects, anomalous diffusion 
and long-term persistence in the dynamics of water pollution has attracted a lot of interest in 
environmental science. A fractional-order water pollution model is presented in this work, along 
with an efficient numerical method known as the predictor-corrector method for the accurate and 
computational analysis of the differential equations. The approach ensures excellent accuracy 
while taking into account the complex and nonlinear systems relationship between environmental 
conditions, microbial degradation, and contaminants in aquatic environments. The asymptotic 
behavior of the solution is shown by a thorough stability study, which offers information on the 
long-term dispersion of pollutants. The existence and uniqueness of the solution are systematically 
verified using fixed-point theorems, which ensure the mathematical operators of the model. Numerical 
simulations demonstrate the accuracy of the suggested approach’s emissions and degradation 
predictions under realistic environmental conditions and further confirm its reliability. The results 
of this study provide a strong computational framework for investigating complex dynamics of 
water pollution and emphasize the importance of fractional-order models in environmental studies. 
In addressing fundamental environmental issues and promoting sustainable aquatic ecosystem 
management, this work highlights the transformative potential of fractional-order modeling by fusing 
theoretical advancements with practical applications.
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Environmental pollution has become a major worldwide concern due to rapid urbanization, industrialization, 
and unsustainable farming methods. Pollutants such as organic chemicals, microbiological contaminants, and 
heavy metals are frequently present in water bodies like lakes1–3, rivers4,5, ponds6 and seas. The existence of these 
pollutants can lead to major ecological imbalances that can have an adverse effect on aquatic life, human health, 
and water quality. There has been a lot of research on mathematical modeling approaches which can explain 
and predict how pollutants will behave in complex ecosystems due to the need for effective ways to degrade 
pollutants7–9.

Mathematical models play a crucial role in understanding propagation, degradation, and interactions of 
pollutants with chemical or biological agents. Traditional models based on integer-order differential equations, 
which have been widely used to represent these processes, often fail to capture the inherent memory effects 
and long-range dependencies observed in real-world environmental conditions. Recent advances in fractional 
calculus (FC) have enabled new modeling tools that provide a more accurate and comprehensive framework for 
understanding pollutant dynamics10.

The concept of differentiation and integration is extended to non-integer orders by FC, which makes it 
possible to represent systems with memory and hereditary properties11. Fractional-order models (FOM) are 
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especially beneficial for modeling systems whose past activity influences future dynamics because they consider 
past states, unlike classical models that assume a pollutant’s rate of change depends only on its current state. The 
application of fractional differential equations (FDEs) in the creation of model simulation techniques is growing 
in significance. The solutions to these FDEs in any order are essential for illustrating the characteristics of 
complex problems related to applied mathematics and technology. Solutions to these DEs are quite challenging 
to find. Integral transformations are one of the most practical and effective approaches in applied mathematics to 
address this problem, and they have been used in a variety of fields, including biology12,13, biotechnology14, fluid 
dynamics15–17, hydrodynamics18, population control19, chaos20, financial models21, human diseases22–25, control 
vectors26, viscoelasticity27,28 and many more29–33.

FC has several benefits when it comes to modeling pollutant degradation. The model is more realistic for 
systems with residual impacts because fractional derivatives (FDs) take historical pollutant concentrations 
into consideration. FOM present an effective mathematical tool for simulating memory and hereditary effects 
retained in environmental systems that cannot be explained by classical integer-order models. In the case of 
water pollution, pollutants generally exists in the status of delayed diffusion, adsorption, and desorption over 
sediments and the water body. Such procedures can indicate that the current concentration of a pollutant 
depends not only on the inputs at that time but also on the past condition. Non-locality of FDs is ideal for 
modelling such memory effects, corresponding to pollutant retention, slow release and anomalous transport 
phenomena. Thus, they offer a more realistic framework for describing pollutant persistence and spread in 
water bodies. Complex degradation behaviours and anomalous diffusion seen in polluted environments can be 
explained by the influence of previous states. A better match to experimental data can be achieved by tuning 
fractional models by varying the fractional order parameter. These models provide better recommendations 
for environmental management by improving the prediction of pollutant dissipation and equilibrium states 
by adding memory effects. Integer-order differential equation modeling of pollutant degradation has been the 
subject of numerous investigations. The models usually assume first-order or second-order reaction kinetics, 
in which the rate at which pollutants break down is proportional to the concentration of the pollutant and the 
activity of the degrading agent. However, there are a number of limitations to classical models, such as their 
inability to describe anomalous diffusion, simplified interaction assumptions and lack of memory effects. FOM 
overcomes these problems by accounting for past pollutant concentrations and for more complex interaction 
dynamics. FD have been shown in recent studies to better fit experimental data on microbial growth, pollutant 
degradation and biochemical oxygen requirement processes.

The results of this study have important implications for pollution control and environmental management 
plans. The integration of FC into pollutant degradation models provides:

•	 Comprehension of microbial and chemical interactions.
•	 Yields greater precision in pollutant dissipation predictions.
•	 Improving the modeling of memory-dependent degradation processes.
•	 Enhanced methods for creating efficient biological remediation procedures.

Through the application of the Predictor-Corrector (PC) approach and the FD of Caputo-type, our study aspires 
to comprehend the fractional-order water pollution model (FOWPM). The PC technique that has been specified 
has not yet been used to address the suggested framework. Several methods can be used to solve FOM, but each 
has limitations, such as over simplification, assumptions, and discretization. The proposed numerical method 
overcomes the limitations. Recent studies34–36 illustrate the efficiency and flexibility of this technique, which has 
been successfully applied to numerous models. Because this methods can handle nonlinear systems and capture 
the complex dynamics of pollution dispersion, it is a perfect fit for the present study. Its iterative approach 
assures precise results while remaining computationally simple, which is critical when studying complex 
environmental models. This study is novel in that it formulates a FOWPM with Caputo derivatives that capture 
memory effects, rigorously establishes stability and existence results, and employs the PC approach to ensure 
accurate simulations. Unlike existing studies, we rigorously establish stability, existence results, and validate 
numerical simulations for diverse fractional-orders. Consequently, our model illustrates the efficacy of the PC 
method in this situation and offers new insights on the long-term persistence of pollutants.

The study is organized as follows: “Preliminaries” includes essential terms and preliminary information about 
FC. The proposed model formulation and broad derivation of the FOWPM are given in “Model formulation”. 
“Existence and uniqueness analysis” delves into the uniqueness and existence of the model, providing a solid 
foundation for subsequent analysis. To ensure the accuracy and reliability of the model, “Stability analysis” 
expands on this by looking into its stability. “Model solution using PC scheme” presents the solution of the model, 
which is a thorough numerical solution obtained by applying the PC approach. Interpretation of the results and 
insights into practical applications is offered in “Results and discussion”, where the results are examined and their 
relevance is emphasized using graphical representations. Finally, the paper concludes with a summary of key 
findings and potential directions for further study in “Conclusion”.

Preliminaries
To set the stage for future discussion, we give a summary of the key concepts and properties related to FD in 
this section.

Definition 2.1  According to Riemann–Liouville11, the fractional integral of order β ⩾ 0 for a function 
v(t) ∈ Cs

−1 is given as
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Iβv(t) = 1

Γ(β)

ˆ t

0
(t − ξ)β−1v(s)(ξ)dξ, t > 0, β > 0,� (1)

	 I0v(t) = v(t).

Definition 2.2  A function v ∈ Cs
−1 has the following FD described in terms of Caputo11:

	
Dβ

t v(t) =
{

dsv(t)
dts , β = s ∈ N,

1
Γ(s−β)

´ t

0 (t − ξ)s−β−1v(s)(ξ)dξ, s − 1 < β < s, s ∈ N.
� (2)

Linear property of Caputo fractional derivative (CFD) is

	 Dβ
c (γf(t) + µg(t)) = γDβ

c f(t) + µDβ
c g(t),

where γ and µ are some constants.

Definition 2.3  The Mittag–Leffler function using a single operator11 can be described as:

	
Eβ(v) =

∞∑
δ=0

vδ

Γ(βδ + 1) , v ∈ C, β > 0.� (3)

Definition 2.4   Fractional-order stability criteria:

Let us consider the form of linear fractional-order system

	
CDβ

t u(t) = Au(t), 0 < β ≤ 1.

If all of the eigenvalues λi of the matrix A have a negative real part or meet the condition that 
| arg(λi)| > βπ

2 , i = 1, 2, . . . , n., then the equilibrium point of the fractional-order system is asymptotically 
stable. The theoretical foundation for the stability analysis conducted in this study is provided by this criteria, 
which offers the necessary and sufficient condition for assuring the stability of fractional-order systems.

Model formulation
Three important variables interact as described by the set of differential equations provided:

•	 x(t): represents the concentration of a pollutant in a water body.
•	 y(t): indicates the concentration of a microorganism or chemical agent involved in pollutant degradation.
•	 z(t): denotes an additional interacting aspect like dissolved oxygen, a secondary contaminant, or another 

biological component.

	

{
x′(t) = k3z(t) + k1x(t)(a − x(t)) − k2y(t),
y′(t) = k4x(t)(a − x(t)) + k6z(t) + k5y(t)(b − y(t)),
z′(t) = k7x(t) − k8y(t).

� (4)

The initial conditions for the proposed model are given below

	 x(0) = x0, y(0) = y0, z(0) = z0.� (5)

Where k1, k2, k3, k4, k5, k6, k7 and k8 are rate constants that govern different processes in the system. a and b 
are parameters that regulate the nonlinear interaction terms.

x(t) simulates the pollutant’s movement through the water, degradation brought on by chemical or biological 
reactions and interactions with other environmental elements. k3z(t) term suggests that the secondary factor 
z(t) contributes to the accumulation of the pollutant. The logistic growth term k1x(t)(a − x(t)) indicates that 
the pollutant self-regulates as a result of limiting pollutant generation or natural dilution. k2y(t) denotes the 
pollutant’s elimination as a result of chemical reactions, microbiological breakdown, or sediment adsorption.

y(t) captures how microbial or chemical agents responsible for pollutant degradation evolve over time, 
influenced by pollutant levels and additional environmental factors. k4x(t)(a − x(t)) denotes a logistic-type 
interaction where microbial growth is dependent on pollutant availability. k6z(t) implies that microbiological or 
chemical activity is also influenced by the secondary component z(t). k5y(t)(b − y(t)) is another logistic term 
ensuring that microbial growth is limited by environmental constraints such as nutrient availability.

An external environmental component that depends on microbial activity and the presence of pollutants is 
simulated by z(t). k7x(t) suggests that the pollutant concentration either produces or influences the secondary 
factor. Microbial activity causes the secondary component to be consumed or diminished, as indicated by k8y(t).

The application of CFD to water pollution models is a significant advancement in environmental modeling, 
particularly for understanding and predicting pollutant behavior in aquatic ecosystems. In contrast to integer-
order derivatives, the CFD captures the memory-dependent and non-local properties of systems, which are 
critical for accurately modeling complex environmental phenomena including persistence, degradation, and 
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pollution transport. Since initial conditions may be described in terms of integer-order derivatives, which are 
frequently more understandable and simpler to test experimentally, the Caputo derivative is favored in real-
world applications. This attribute is particularly significant in environmental modeling since initial contaminant 
concentrations and change rates are typically determined from actual data.

Now consider the FOWPM, which is nonlinear having parameter values (Table 1) and initial conditions10

	




CDβ
t [x(t)] = 0.4z(t) + 0.2x(t)(10 − x(t)) − 0.3y(t),

CDβ
t [y(t)] = 0.2x(t)(10 − x(t)) + 0.3z(t) + 0.3y(t)(5 − y(t)), 0 < β ⩽ 1

CDβ
t [z(t)] = 0.4x(t) − 0.3y(t),

� (6)

with initial settings

	 x(0) = 2, y(0) = 4, z(0) = 3.� (7)

Where CDβ
t  denotes the FD of order β, typically defined in the Caputo sense.

Existence and uniqueness analysis
The theorem employs fixed-point theorem and FDEs based on Caputo derivatives to verify that the model’s 
solutions are well-defined and mathematically valid under certain conditions.

In order to prove this, we rephrase model Eq. 4 as follows in a simple way for easy understanding

	




CDβ
ℓ [x(ℓ)] = X1(ℓ, x),

CDβ
ℓ [y(ℓ)] = X2(ℓ, y),

CDβ
ℓ [z(ℓ)] = X3(ℓ, z),

� (8)

with the initial conditions Eq. 5. The CFD of order β is represented here by CDβ
ℓ . Based on the findings of fixed 

point theory, we demonstrate that there is a unique solution to the FOWPM. We demonstrate the analysis for 
x(ℓ); the other equations in the system Eq. 8 will follow suit. Consider

	
CDβ

ℓ [x(ℓ)] = X1(ℓ, x), ℓ ∈ [0, T] , 0 < β ⩽ 1,� (9)

with the initial setting

	 x(0) = x0,� (10)

where x ∈ ℜn, T > 0 and X1 : [0, T] × ℜn × ℜn → ℜn is continuous.
Using the norm ∥.∥, the Euclidean space with n dimensions is denoted as ℜn.

Lemma 4.1  37 Let x ∈ C([0, T] ; ℜ), the space of continuous functions x : [0, T] → ℜ equipped with the sub 
norm ∥.∥∞. Then, x is a solution to the initial value problems (IVPs) given by Eqs. 9 and 10 on the interval [0, T] 
if and only if it satisfies the corresponding Volterra integral equation (VIE).

	

x(ℓ) = x(0) + 1
Γ(β)

ℓˆ

0

(ℓ − ϑ)β−1X1(ϑ, x)dϑ, ∀ ℓ ∈ [0, T ] .� (11)

Theorem 4.2  (Existence theorem)35 Let T∗ > 0, P > 0, x0 ∈ ℜ, and 0 < β ⩽ 1. Assuming that 
the mapping X1 : X → ℜ is continuous, we derive X := {(ℓ, x) : ℓ ∈ [0, T∗] , |x − x0| ⩽ P }. 
Q := sup(ℓ,x,y,z)∈G |X1(ℓ, x)| is also defined and

Parameters  Descriptions Values

k1 Self-purification 0.2

k2 Microbial/chemical breakdown 0.3

k3 Accumulation rates 0.4

k4 Microbial growth rates 0.2

k5 Natural degradation 0.3

k6 Ecological absorption 0.3

k7 Recycling of secondary pollutants 0.3

k8 Consequences of secondary pollutants 0.4

Table 1.  A description of the parameters symbolized in the proposed system Eq. 4 and their values10.
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T =

{
T∗, if Q = 0,

min
{

T∗,
( PΓ(β+1)

Q

) 1
β

}
, otherwise.

� (12)

The function x ∈ C [0, T ] may then be used to solve the IVP Eqs. 9 and 10.

Proof  If Q = 0 then X1(ℓ, x) = 0 ∀ (ℓ, x) ∈ X. In this scenario, it is straightforward to verify through direct 
substitution that the constant function x : [0, T ] → ℜ, defined by x(ℓ) = x0, satisfies the problem under con-
sideration. Hence, a solution exists in this case.

The set S := {x ∈ C[0, T ] : ∥x − x0∥ ⩽ P } is defined accordingly. It is evident that S is a closed and convex 
subset of the space of continuous functions on [0, T], which constitutes a Banach space, given the Chebyshev 
norm. We show that Eqs. 9 and 10 map to Eq. 11, a VIE, for Q ̸= 0. As a result, S is a Banach space subset. This 
means that the set S is not empty because x0 ∈ S. We define the operator E on this set S.

	

(Ex)(ℓ) := x(0) + 1
Γ(β)

ℓˆ

0

(ℓ − ϑ)β−1X1(ϑ, x)dϑ, ∀ℓ ∈ [0, T ] .� (13)

Thus, the Eq. 11 may be written using x = Ex and as a result, we need to proof that the operator E contains a fixed 
point. This can be achieved using Schauders Second Fixed Point Theorem (SSFPT). We begin by demonstrating 
that S has closure, which implies that Ex ∈ S is equivalent to x ∈ S. In the case of 0 ⩽ ℓ1 ⩽ ℓ2 ⩽ T , we notice 
this

	

|(Ex)(ℓ1) − (Ex)(ℓ2)| = 1
Γ(β) |

ℓ1ˆ

0

(ℓ1 − ϑ)β−1X1(ϑ, x)dϑ −
ℓ2ˆ

0

(ℓ2 − ϑ)β−1X1(ϑ, x)dϑ|

	

= 1
Γ(β) |

ℓ1ˆ

0

[(ℓ1 − ϑ)β−1 − (ℓ2 − ϑ)β−1]X1(ϑ, x)dϑ +
ℓ2ˆ

ℓ1

(ℓ2 − ϑ)β−1X1(ϑ, x)dϑ|

	

⩽ Q

Γ(β)




ℓ1ˆ

0

|(ℓ1 − ϑ)β−1 − (ℓ2 − ϑ)β−1|dϑ +
ℓ2ˆ

ℓ1

(ℓ2 − ϑ)β−1dϑ


 .

On the right side of the previous inequality, the value of the second integral portion is (ℓ2 − ϑ)β . For the part of 
first integral, we have to consider the two cases β < 1, β = 1, separately. When β = 1, the integral equals zero. 
For β < 1, implies (ℓ1 − ϑ)β−1 ⩾ (ℓ2 − ϑ)β−1.

Thus,

	

ℓ1́

0
|(ℓ1 − ϑ)β−1 − (ℓ2 − ϑ)β−1|dϑ =

τ1́

0
[(ℓ1 − ϑ)β−1 − (ℓ2 − ϑ)β−1]dϑ

= (ℓ1β − ℓ2β) + (ℓ2 − ℓ1)β

⩽ (ℓ2 − ℓ1)β .

When these results are combined, we get

	
|(Ex)(ℓ1) − (Ex)(ℓ2)| ⩽ 2Q

Γ(β + 1)(ℓ2 − ℓ1)β .� (14)

The expression at the right side of Eq. 14 convergence occurs to zero in either case when ℓ2 → ℓ1. Consequently, 
Ex is a continuous function since x(0) is continuous. It is equally valid for x ∈ S and ℓ ∈ [0, T ].

	
|(Ex)(ℓ1) − x(0)| = 1

Γ(β) |
ℓˆ

(ℓ − ϑ)β−1X1(ϑ, x)dϑ|

	
⩽ Q

Γ(β + 1) ℓβ ⩽ Q

Γ(β + 1)T β

	
⩽ Q

Γ(β + 1) · P Γ(β + 1)
Q

= P.� (15)

Thus, we have Ex ∈ S if x ∈ S. In particular, the set S is mapped onto itself. Next, we must demonstrate 
the relative compactness of E(S) := {Es : s ∈ S}. In order to accomplish this, the Arzel’a-Ascoli Theorem 
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(AAT) is used. To establish that E(S) is a uniformly bounded set, let’s look at f ∈ E(S). This is evident for each 
ℓ ∈ [0, T ].

	

|f(ℓ)| = |(Ex)(ℓ)|

⩽ ∥x(0)∥∞ + 1
Γ(β)

ℓ́

0
(ℓ − ϑ)β−1|X1(ϑ, x)|dϑ

⩽ ∥x(0)∥∞ + 1
Γ(β+1) QT β ⩽ ∥x(0)∥∞ + P.

This is the boundedness attribute that is required. The property of equicontinuity can be easily derived from Eq. 
14. In the situation β ⩽ 1, we demonstrated 0 ⩽ ℓ1 ⩽ ℓ2 ⩽ T  that

	
|(Ex)(ℓ1 − ℓ2)| ⩽ 2Q

Γ(β + 1)(ℓ2 − ℓ1)β .

When the Triangular Inequality and Mean Value Theorem are applied, we get

	

|(Ex)(ℓ1) − (Ex)(ℓ2)| ⩽ 2Q
Γ(β+1) (ℓ2 − ℓ1)β

= 2Q
Γ(β+1) (ℓ2 − ℓ1)β .

Therefore, if |ℓ1 − ℓ2| < ζ , we get

	
|(Ex)(ℓ1) − (Ex)(ℓ2)| ⩽ Q′ζ + 2Q

Γ(β + 1)ζβT β .

x(0) is consistently continuous in the interval [0, T]. The equicountinous set E(S) can be observed since the 
right-hand assertion is independent of ℓ1, ℓ2, and x. Since the preceding theorem, known as the AAT, indicates 
that E(S) is compact relatively, the SSFPT asserts that there is a fixed point that occurs in E in either case. The 
necessary solution for Eqs. 9 and 10 is the fixed point.

We now discuss the uniqueness findings. We start by noting that operator E possesses the following property. 
Consequently, let x1, x2 ∈ C[0, T ] ⊂ [0, ℓ] while there is a constant λ > 0 that is independent of ℓ, x1, and x2 
such that |X1(ℓ, x1) − X1(ℓ, x2)| ⩽ λ|x1 − x2| for all |X1(ℓ, x1) − X1(ℓ, x2)| ⩽ λ|x1 − x2|. Then, we get

	

∥Ex1 − Ex2∥L∞[0,ℓ] = 1
Γ(β) sup

0⩽α⩽ℓ

|
ά

0
(α − ϑ)β−1 [X1(ϑ, x1) − X1(ϑ, x2)] dϑ|

⩽ λ
Γ(β) sup

0⩽α⩽ℓ

|
ά

0
(α − ϑ)β−1|x1(ϑ) − x2(ϑ)|dϑ|

⩽ λ
Γ(β) ∥x1 − x2∥L∞[0,ℓ] sup

0⩽α⩽t

|
ά

0
(α − ϑ)β−1dϑ|

⩽ λ
Γ(β) ∥x1 − x2∥L∞[0,ℓ] sup

0⩽α⩽ℓ

|(α − ϑ)β |α0 |

= λ
Γ(β+1) ∥x1 − x2∥L∞[0,ℓ] .

� □

Theorem 4.3  (Uniqueness theorem)35 Assume that x(0) ∈ ℜ, P > 0, and T∗ > 0. Additionally, consider 
q = ⌈β⌉ and 0 < β ⩽ 1. For the second variable, let X1 : X → ℜ be a continuous mapping that meets the Lip-
schitz conditions, which are as follows:

	 |X1(ℓ, x1) − X1(ℓ, x2)| ⩽ λ |x1 − x2| ,� (16)

for certain constants λ > 0, x1 and x2 are independent of ℓ. Then, there is a unique solution x ∈ C [0, T] for the 
IVPs.

Proof  According to above theorem, the IVPs under consideration admit a solution. Now, we proceed to estab-
lish uniqueness. To do so, We utilize the operator E as defined in Eq. 13 and note that it binds the nonempty, 
convex and closed set S =

{
x ∈ C[0, T ] : ∥x − x0∥∞ ⩽ P

}
 to itself.

To demonstrate that E has a unique fixed point, we apply Weissingers Fixed Point Theorem. Let 
j ∈ N0 , t ∈ [0, T ] and x1, x2 ∈ S. Using the Chebyshev norms on the closed interval [0, T], we find that

	

∥∥Ejx − Ejx′∥∥
∞

⩽
∥∥x − x′∥∥

∞

[
λj

Γ(βj + 1)

]
.
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Put αj = λj/Γ(βj + 1) in the definition. The convergence of the series 
∞∑

j=0
αj  is sufficient to apply the theorem. 

It is clear that a power series is used to define the Mittag-Leffler function E∗
β , and that the series convergence 

ensures the outcome.
To possess global convergence of order O

(
hmin{2, 1+β})

, where h is the time step size and β is the fractional 
order. Specifically, for β ∈ (0, 1), the error bound satisfies

	 ∥u(tn) − un∥ ≤ Ch1+β , tn = nh,

with C  being a constant depending on the Lipschitz constant of the governing system. Thus, the proof is 
complete. � □

The proof of existence and uniqueness theorems for the FOWPM are crucial to the proposed framework’s 
mathematical reliability and constancy. According to the uniqueness characteristic, the system generates a single, 
deterministic solution for a specific set of initial conditions. The model is reliable for environmental planning 
and decision-making because of this feature, which enables constant estimations of pollution transmission and 
degradation. The existence of the solution verifies that the model may be applied to real-world problems by 
demonstrating that it can be resolved in practical situations. This suggests that the fractional-order formulation 
is capable of accurately representing and assessing complex pollution processes in aquatic environments in 
addition to being theoretical.

Stability analysis
In order to understand the long-term behavior of dynamic systems, stability analysis is essential. In contrast 
to integer-order systems, FDs lead to distinct stability conditions in fractional-order systems. A three-variable 
fractional-order system with nonlinear interactions between the state variables is examined for stability in this 
paper.

We can get the equilibrium points of water pollution model by setting the right-hand side of Eq. 4 to zero.

	 x′(t) = y′(t) = z′(t) = 0.

The obtained equilibrium points are {x → 0, y → 0, z → 0} and

	

x → k8(ak8(k3k4 − k1k6) + bk3k5k7 + k2k6k7)
−k1k6k82 + k3k4k82 + k3k5k72 , y → k7(ak8(k3k4 − k1k6) + bk3k5k7 + k2k6k7)

−k1k6k82 + k3k4k82 + k3k5k72 ,

z →
k7

(
k1k5k8(bk8 − ak7) + k2

(
k4k8

2 + k5k7
2))

(ak8(k3k4 − k1k6) + bk3k5k7 + k2k6k7)
(−k1k6k82 + k3k4k82 + k3k5k72)2 .

The Jacobian matrix J ′ for the model Eq. 4 can be found as

	
J =

[
k1a − 2k1x(t) −k2 k3
k4a − 2k4x(t) k5b − 2k5y(t) k6

k7 −k8 0

]
.

 Now, we can get the equilibrium points of FOWPM by setting the right-hand side of Eq. 6 to zero.

	
CDβ

t x(t) = CDβ
t y(t) = CDβ

t z(t) = 0.� (17)

To determine the equilibrium points for the system of Eq. 6, we set x∗, y∗, z∗ such that:

	

0 = 0.4z∗(t) + 0.2x∗(t)(10 − x∗(t)) − 0.3y∗(t),
0 = 0.2x∗(t)(10 − x∗(t)) + 0.3z∗(t) + 0.3y∗(t)(5 − y∗(t)),
0 = 0.4x∗(t) − 0.3y∗(t).

The equilibrium points are obtained by solving these equations. There is always a solution to the trivial 
equilibrium at (0, 0, 0). Another equilibrium point is (x∗ = 4.8, y∗ = 6.4, z∗ = −7.68).

The Jacobian matrix J is computed for the model in consideration as

	
J =

[
2 − 0.4x(t) −0.3 0.4
2 − 0.4x(t) 1.5 − 0.6y(t) 0.3

0.4 −0.3 0

]
.

Evaluating at (0, 0, 0):

	
J =

[
2 −0.3 0.4
2 1.5 0.3

0.4 −0.3 0

]

The Jacobian matrix at (0, 0, 0) has the following eigenvalues:
ω1 = 1.79371 + 0.791336i, ω2 = 1.79371 − 0.791336i, ω3 = −0.0874179.
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Evaluating at (x∗ = 4.8, y∗ = 6.4, z∗ = −7.68):

	
J∗ =

[
0.08 −0.3 0.4
0.08 −2.34 0.3
0.4 −0.3 0

]

The following are the eigenvalues that correspond to the matrix J∗:
γ1 = −2.29785, γ2 = −0.401786, γ3 = −0.363934.
At the equilibrium point, the system in discussion is locally asymptotically stable since all of the eigenvalues 

are negative. This suggests that through minimal perturbations associated with the equilibrium, the system will 
ultimately return to its steady state. Therefore, in these circumstances, the provided fractional-order model 
shows local stability..

At the conclusion of the stability study, the FOWPM’s resistance is confirmed, and its potential as an effective 
tool for environmental research is highlighted. Further advances in modeling, monitoring, and controlling 
pollution in aquatic ecosystems will be facilitated by this study’s improved comprehension of the conditions 
necessary for system stability.

Model solution using PC scheme
We now discuss the PC approach, which is a generalization of the classical trapezoidal rule. The PC technique 
operates using a two-step iterative process. The predictor phase creates a computationally efficient estimate 
by applying an explicit formula to obtain an initial approximation of the solution. This approximation is 
subsequently improved by the corrector phase using an implicit formula, increasing the solution’s accuracy. 
For handling nonlinear and memory-dependent systems, like those seen in the model of water pollution, this 
iterative combination implies that the approach is precise and computationally realistic. This approach is very 
versatile and suitable for complicated and dynamic environmental settings since it can handle different orders of 
FDs and system nonlinearities. Here, we employ the PC approach to determine the predicted model’s solution34.

Let us examine the FDE of preferred model

	
CDβ

t [x(t)] = X1(t, x), t ∈ [0, T], 0 < β ⩽ 1,� (18)

	 x(t) = x0.� (19)

Let us consider a uniform grid {ts = sh : s = −r, −r + 1, −r + 2, ..., −1, 0, 1, ... N} and Nh = T , where 
m are integers and N is the set of natural number.

	 xh(tm) = x0, m = −r, −r + 1, −r + 2..., −1, 0.� (20)

Let us assume that the approximations have already been computed,
xh(tm) ≈ x(tm), (m = −r, −r + 1, −r + 2..., −1, 0, 1, ..., s) and we wish to compute xh(ts+1) using 

the VIE, which is equal to Eq. 18 and Eq. 19.

	
x(ts+1) = x(0) + 1

Γ(β)

ˆ ts+1

0
(ts+1 − ϑ)β−1X1(ϑ, x(ϑ))dϑ.� (21)

For x(ts) in Eq. 21, we make use of approximations xh(ts). Moreover, Eq. 21 uses the product trapezoidal 
quadrature formula to evaluate the integral. Therefore, the corrector formula is

	
xh(ts+1) = x(0) + hβ

Γ(β + 2) X1(ts+1, xh(ts+1)) + hβ

Γ(β + 2)

s∑
m=0

um,s+1 X1(tm, xh(tm)),� (22)

where

	
um,s+1 =

{
s1+β − (s + 1)β(r − β), m = 0
(s − m)1+β + (s + 2 − m)1+β − 2 s + 1 − m)1+β , 1 ⩽ m ⩽ s
1, m = s + 1.

� (23)

The term xh(ts+1) which is unknown appears on both sides of Eq. 22. Because of the nonlinearity of X1, it is 
not possible to solve Eq. 22 explicitly for xh(ts+1). Therefore, we substitute an estimate xp

h(ts+1), known as the 
predictor, for the term xh(ts+1) on the right-hand side. Eq. 22 evaluates the predictor term using the product 
rectangle rule.

	
xp

h(ts+1) = x(0) + 1
Γ(β)

s∑
m=0

vm,r+1X1(tm, xh(tm)),� (24)

where
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vm,s+1 = hβ

β
((s + 1 − m)β − (s − m)β).� (25)

Accordingly, the corrector formulas for every system of equations Eq. 6 derived from the computations above are

	

xh(ts+1) = x(0) + hβ

Γ(β+2) X1(ts+1, xh(ts+1)) + hβ

Γ(β+2)

s∑
m=0

um,s+1 X1(tm, xh(tm)),

yh(ts+1) = y(0) + hβ

Γ(β+2) X2(ts+1, yh(ts+1)) + hβ

Γ(β+2)

s∑
m=0

um,s+1 X2(tm, yh(tm)),

zh(ts+1) = z(0) + hβ

Γ(β+2) X3(ts+1, zh(ts+1)) + hβ

Γ(β+2)

s∑
m=0

um,s+1 X3(tm, zh(tm)).

� (26)

Likewise, the predictor terms are

	

xp
h(ts+1) = x(0) + 1

Γ(β)

s∑
m=0

vm,s+1X1(tm, xh(tm)),

yp
h(ts+1) = y(0) + 1

Γ(β)

s∑
m=0

vm,s+1X2(tm, yh(tm)),

zp
h(ts+1) = z(0) + 1

Γ(β)

s∑
m=0

vm,s+1X3(tm, zh(tm)).

� (27)

Results and discussion
We used the PC approach to solve fractional-order DEs in order analyse the behaviour of the system. The 
fractional-order derivatives in the range 0 < β ⩽ 1 to observe the impact of memory effects on pollutant 
concentration were used in the system parameters, which were selected based on standard environmental 
degradation models. We got the solutions Eqs. 26 and 27 of the considered model using mathematica code and 
having the stepsize value h=0.01. Figures 1, 2 and 3 show the time evolution of pollutant concentration x(t), 
degrading agent y(t) and the interaction factor z(t) under various fractional-orders β. As shown in Fig. 1, x(t) is 
gradually increases as a result of chemical or microbial degradation, which is impacted by k2y(t) and nonlinear 
interactions with available capacity a − x(t). As it reacts to pollutant levels, Fig. 2 shows an initial growth phase of 
y(t), after which it either stabilizes or oscillates based on system characteristics. z(t) exhibits memory-dependent 
behaviour in fractional situations, as shown in Fig. 3, and varies according to the equilibrium between pollutant 
availability and degrading effects. The system exhibits standard degradation dynamics and rapidly approaches 
equilibrium for β = 1 (classical case). The system shows prolonged memory effects for β < 1, which might lead 
to slower convergence and possibly oscillatory behaviour before stabilization. Pollutant dissipation is strongly 
influenced by past conditions, as evidenced by the more apparent nonlocal effects for lower levels of β. The 
slower convergence shown at lower fractional-order β suggests that contaminants are more persistent in the 
environment, which is indicative of aquatic systems memory and inherited impacts. This suggests that in actual 
pollution situations, pollutants would not leave water bodies as rapidly but instead stay there because of intricate 
relationships like slow diffusion, delayed biodegradation, or sediment absorption. Accordingly, fractional-
order modeling, as opposed to classical models, offers a more accurate depiction of pollutant persistence. This 
emphasizes how crucial it is to take fractional dynamics into account when evaluating pollution control plans 
and long-term environmental hazards.

By including memory-dependent effects, the fractional model expands on traditional integer-order solutions, 
improving the predictive power for slow-reacting pollutants, non-exponential decay behaviours that are consistent 
with experimental observations, and a more accurate depiction of real-world pollutant degradation processes. 

Fig. 1.  PC solution of x(t) for different fractional-order β.
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The ability of the fractional-order model to properly represent the complex linkages in pollutant degradation 
shows that FDs offer a more realistic and extended framework than integer-order models. The simulation results 
highlight the need for enhanced supervision and prompt responses by demonstrating how fractional dynamics 
capture long-term pollution persistence. In order to effectively reduce pollution risks and protect ecosystems and 
public health, these insights assist policymakers in developing sustainable water management measures, such as 
enhanced wastewater treatment, more stringent industrial rules, and early-warning systems. Fractional-order 
has an important role in transient reactions, equilibrium behavior, and system stability. In order to improve 
environmental management methodologies, future studies can include experimental validation and degradation 
parameter adjustment.

Conclusion
In aquatic ecosystems, this FOWPM provides a more realistic framework for understanding the dynamic 
interactions of pollutants, microbial degradation, and environmental factors. Since integer-order models fail to 
account for memory effects, anomalous diffusion, and long-term persistence of pollutants, FDs are introduced 
to the model to assist in it do so. This problem was solved using the PC Method, a numerical technique 
designed specifically for FDEs. The approach is a helpful tool for researching environmental models since it can 
effectively handle fractional-order nonlinear systems. It offers a method for solving FDEs that is computationally 
effective without being excessively complex. Applications for this concept are numerous, and it offers insightful 
information for pollution control, policymaking, and environmental monitoring. It offers researchers and 
decision-makers with a potent tool to more accurately anticipate pollutant behavior and formulate efficient 
remediation strategies. Future research could expand the model to incorporate stochastic implications, multi-
pollutant systems, or the effects of climate change to gain a deeper understanding of aquatic ecosystems under 
human activity.

This is particularly important in actual pollution instances where contaminants build up in sediments, 
degrade gradually, or decline non-exponentially:

•	 Predicting the permanence of contaminants and creating more effective treatment methods are two aspects 
of managing water quality.

Fig. 3.  PC solution of z(t) with a distinct fractional-order β.

 

Fig. 2.  y(t) PC solution for a different fractional-order β.
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•	 Implementing chemical or microbiological techniques to enhance the breakdown of pollutants is part of 
optimizing wastewater treatment.

•	 The objective of climatic and environmental impact studies is to comprehend the behavior of pollutants over 
the long term under changing environmental conditions.

The proposed model offers significant advancement in the modeling of aquatic pollution and there are a number 
of encouraging directions for further research. A more thorough grasp of real-world situations will result from 
expanding the model to include multi-pollutant systems, especially those affected by seasonal and temperature 
variations. To verify the model’s applicability and dependability in real-world scenarios, experimental validation 
utilizing actual water quality data is crucial. Additionally, examining the best control methods for pollution 
reduction will assist in converting these discoveries into workable plans, allowing for improved aquatic 
ecosystem management.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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