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Computed Tomography Coronary Angiography is a non-invasive imaging technique widely used to 
assess structural abnormalities, blockages, or narrowing (stenosis) of coronary arteries, thereby aiding 
in the diagnosis and management of coronary heart disease. To assist clinicians in the assessment 
process, various AI-based methods have been proposed, both for 2D and 3D data, to accurately 
extract / segment the coronary arterial tree. This work aims to develop a novel two-stage hybrid 
segmentation method, Seg2RefineNet, to enhance coronary artery segmentation. The first stage 
employs a 2D spatio-frequency attention UNet, which results in the initial segmentation providing 
precise vessel boundary identification with high resolution. The second stage refines the segmentation 
using a 3D Attention-GAN, incorporating the inter-slice relationships within the 3D volume. As a 
proof-of-concept, this novel DL-based framework is evaluated on the largest publicly available dataset 
ImageCAS, outperforming the existing state-of-the-art methods by achieving a mean Dice score of 
0.8313 and a Hausdorff distance of 12.95 mm. This hybrid approach effectively combines the strengths 
of both 2D and 3D models, setting a new benchmark for coronary artery segmentation.

Cardiovascular Disease (CVD) represents one of the most pressing global health challenges, with the World 
Heart Federation reporting approximately 20.5 million deaths worldwide in 2021, accounting for one-third of 
all deaths1. Coronary Heart Disease (CHD) is responsible for coronary vessel narrowing due to calcium and fatty 
deposits within the arterial walls2, leading to potentially blood flow-limiting stenosis, which causes decreased 
myocardial perfusion and ultimately, myocardial infarction. Accurate quantification of coronary artery stenosis 
is therefore essential for CHD patient risk assessment and treatment planning.

Coronary Computed Tomography Angiography (CCTA) is the gold standard non-invasive imaging 
technique, providing high-resolution 3D visualization of the coronary arterial tree for diagnosis and treatment 
planning. Typically, radiologists have to manually locate the coronary arteries, isolate their boundaries, and 
quantitatively analyze regions of stenosis. This is an inherently time-consuming process, which is prone to inter-
observer variability, and increasingly challenging, given the growing volume and complexity of medical imaging 
data. To address these limitations, a number of deep learning  (DL)-based automated segmentation methods 
have been proposed, broadly categorized into three approaches, i.e., 2D slice-based methods, which leverage 
high-resolution spatial information, 3D volumetric techniques that capture global contextual relationships, and 
hybrid frameworks that combine the advantages of both of the aforementioned approaches.

Jia et al. provided a systematic review of automated coronary segmentation research, highlighting that they 
show significant promise in addressing the scalability and accuracy challenges of manual segmentation3. 2D 
slice-based segmentation techniques are capable of providing high-resolution results with enhanced boundary 
precision. In this regard, Cheung et al. proposed an encoder-decoder architecture using transpose convolutions 
to restore spatial information during decoding4. Hong et al. introduced dual attention coordination mechanisms 
utilizing multi-level spatial attention to highlight vessel-related spatial features5. To address the annotation 
challenge in large-scale datasets, Chen et al. utilized positive unlabeled learning, demonstrating significant 
improvements over fully-supervised approaches6. Fu et al. showed that 2D methods can achieve superior 
boundary delineation, however, they struggle in integrating inter-slice contextual information7.

Moving to volumetric approaches, fully 3D methods leverage complete spatial context to capture complex 
vessel relationships. Lei et al. proposed a 3D fully convolutional network with attention gates for end-to-end 
binary segmentation8. Shen et al. improved the approach by incorporating level set-based optimization for 
segmentation refinement9.Wang et al. proposed attention-guided mechanisms for joint coronary artery and 
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vein segmentation with topological consistency10, while Liu et al. developed the Attention Guided and Feature 
Aggregated Network (AGFA-Net), which included multi-level feature enhancement through channel and spatial 
attention, combined with dilated convolutions11. A key coronary segmentation challenge is the preservation of 
topological structure, and ensuring anatomical connectivity in the entire vascular tree. Qiu et al. tackled this by 
a three-stage topology preservation framework aimed at fully connected coronary artery extraction and focused 
on centerline connectivity and branch topology preservation12. Zhang et al. proposed the use of topology-
aware loss functions, which supported structural consistency during segmentation13. Kong et al. targeted 
topological modeling by using tree-structured convolutional gated recurrent units (ConvGRU) to capture the 
coronary anatomy, integrating voxel-based features with topological relationships from the ConvGRU14. 3D 
approaches suffer from inherent computational complexity, which led to the development of novel processing 
strategies. Chen et al. applied patch-based approaches, selecting 32 × 32 × 32 volumes of interest as input to 
3D UNet, combined with Frangi vessel enhancement for multi-channel processing15. Huang et al. demonstrated 
that larger patch sizes yield superior performance compared to smaller alternatives16. Zeng et al. proposed a 
hybrid framework based on whole-image and patch-based segmentation, based on 3D-UNet and 3D-UNet++ 
to leverage the benefits of both approaches, while maintaining computational efficiency17. An alternative view 
to the problem of coronary vessel representation comes from graph-based approaches. For instance, Van Herten 
et al. proposed state-of-the-art unstructured mesh generation methods specifically for patient-specific coronary 
models18, while Jia et al. developed a structured mesh generation framework, which supports accurate geometric 
representation for computational fluid dynamics applications19. Hybrid approaches aimed at capitalizing on 
both the superior boundary precision properties of 2D methods and the contextual integration capabilities of 
3D techniques. Beyond the use of ensemble approaches which rely on simple voting mechanisms (e.g., Gan et 
al.20), there is a clear need for systematic integration frameworks, which leverage the complementary advantages 
of 2D and 3D methods. In light of this, in this research, we propose Seg2RefineNet, a novel two-stage hybrid 
framework that integrates local spatial information through spatio-frequency attention-based 2D segmentation 
with global contextual refinement via 3D Attention-GAN processing, achieving both precise vessel boundary 
extraction and topological consistency preservation.

The core contributions of this research are as follows:

•	 A spatio-frequency attention-based model is proposed for accurate segmentation of coronary arteries and 
precise boundary extraction in 2D slices of CCTA images.

•	 A 3D Attention-GAN-based model is introduced for refinement of coronary artery segmentation, leveraging 
the principles of image-to-image translation.

•	 We perform an in-depth analysis of performance contributions made by the architectural components in the 
proposed framework.

•	 A thorough comparative performance analysis of Seg2RefineNet w.r.t. state-of-the-art methods, on the largest 
publicly available dataset, is presented. Moreover, we investigate cases where the proposed model leads to 
segmentation inaccuracies and identify possible sources of errors.

The remainder of the manuscript is organized as follows. The proposed techniques and strategies are presented in 
the Methods section. The experimental settings and results are provided in the Experimental Setup and Results 
sections, respectively. The Discussion section comprehensively analyzes key findings, identifies limitations, and 
draws conclusions based on experimental results.

Methods
In this study, we propose Seg2RefineNet, a novel framework for coronary artery segmentation using 2D slices 
of CCTA images followed by 3D volumetric refinement, illustrated in Fig. 1. It consists of two networks, i.e., a 
spatio-frequency attention-based network (SFANet) for 2D segmentation of coronary arteries and a 3D-Attention 
GAN-based network for refinement of the 2D coronary artery segmentation. SFANet segments the coronary 
arteries in a 2D slice-by-slice manner and combines the predicted vessel segmentations in their corresponding 
3D volume. Next, the 3D Attention-GAN serves as a volumetric refinement module that processes both the initial 
segmentation volume, assembled from the slice-wise predictions, and the original CCTA volume to improve 
segmentation accuracy. The Attention-GAN aims at addressing the inherent limitations of 2D processing by 
correcting false positives (erroneously segmented non-vessel regions), recovering false negatives (missed vessel 
segments), enforcing spatial continuity across adjacent slices, and preserving the topological consistency of the 
coronary arterial tree structure.

In the following subsections, we explain in detail the proposed networks. However, to ensure clarity and 
consistency throughout the paper, we adopt the following terminology: (i) Seg2RefineNet denotes the overall 
proposed framework; (ii) SFANet refers to the spatio-frequency attention-based network used for 2D slice-wise 
segmentation; (iii) 3D Attention-GAN refers to the volumetric refinement module that improves the initial 2D 
predictions. We denote the input 3D CCTA image as X having spatial dimensions of H × W × D with C number 
of channels. The preprocessed image is represented as X ′. The corresponding ground truth label is denoted as 
T, where each voxel in T holds binary values of 0 and 1, for background (non-vessel) and foreground (vessel), 
respectively. The initial segmentation map for the CCTA image X is represented as S, while its 3D-refined version 
is represented as Y.

Spatio-frequency attention-based 2D vessel segmentation
SFANet aims at the task of binary segmentation of coronary arteries in CCTA images at the 2D slice level. For this 
purpose, it follows a 2D encoder-decoder architecture, as shown in Fig.1 (Top). Given the enhanced 3D CCTA 
volume X ′ (obtained as described in data preparation section) with spatial dimensions H × W × D, we extract 
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individual 2D slices for processing. Let X ′
i  ∈ R(H×W ) represent the i-th axial slice of the enhanced 3D volume 

X ′, where i ∈ 1, 2,..., D denotes the slice index along the depth dimension. The encoder takes each pre-processed 
2D CCTA slice X ′

i  as input and outputs the corresponding binary segmentation mask Si ∈ {0, 1}(H×W ) from 
the decoder, where Si represents the vessel segmentation for the i-th slice. The complete initial 3D segmentation 
volume S is formed by stacking all slice-wise predictions, i.e., S = {S1, S2, . . . , SD}.

Fig. 1.  Illustration of the Seg2RefineNet framework. (Top) Architecture of the spatio-frequency attention-
based network (SFANet) for 2D coronary artery segmentation. The input shows the CCTA slices X ′

i , obtained 
from the enhanced 3D CCTA volume X ′ and the output shows the initial 2D segmentation masks Si, which 
are concatenated together to produce the initial 3D segmentation volume S. (Center) 3D refinement pipeline 
using Attention-GAN. From left to right: The inputs to the generator are the enhanced CCTA volume X ′ 
and the initial segmentation volume S, while the discriminator is trained using X ′, S, Y and Ground Truth 
annotations T. After GAN processing, the refined 3D segmentation volume Y is produced. (Bottom) Detailed 
generator (G) and discriminator (D) architectures of the 3D Attention-GAN showing downsampling/
upsampling blocks, residual connections, and attention mechanisms.

 

Scientific Reports |        (2025) 15:41096 3| https://doi.org/10.1038/s41598-025-24953-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The encoder is a 5-layered convolution neural network (CNN). Each layer consists of two convolution layers 
and a max-pooling layer. Features are extracted using a 2D convolution operation (kernel size 3x3), followed 
by a batch normalization layer (BN) and a nonlinear activation unit, i.e., ReLU. Considering Cj  as the number 
of feature channels of the jth encoding layer, where j ∈ {1,2...5}, Hj  × Wj  represents the dimensions of the 
extracted feature map. The input to the model is a single-channel grayscale image of size 1 × H1 × W1, where 
H1 and W1 = 512. C1 to C5 represent the number of feature channels from the most shallow to the deepest 
layer, with the number of channels following the sequence from 64, 128, 256, 512, and 1024. We use a maximum 
pooling layer with a kernel size of 2 x 2 and a step size of 2 for down-sampling the spatial dimensions of the 
feature map after each subsequent layer.

The decoder focuses on restoring the encoded image features, however, the feature transformation may lead 
to information loss. This loss may be compensated by fusing the original encoded features into the decoder to 
restore the target boundaries through skip connections. Coronary arteries, in the 2D slices of a CCTA image, 
are represented as small foreground segments on a large background of soft tissue, with very little contextual 
information. As a result, segmentation performance depends on the task-relevant information in the original 
features. To this end, we take advantage of edges formed due to intensity variations between the coronaries and 
surrounding soft tissues. For this purpose, we use frequency filtering combined with attention mechanisms to 
improve the flow of feature information from encoder to decoder, as discussed in the following section.

The decoder network consists of four layers with each layer comprising of two convolutional layers and an 
upsampling layer. Bilinear interpolation is used in this regard to reduce the number of feature channels and 
increase the size of the feature map by 2. The upsampled feature map is concatenated with the corresponding 
features from the encoder. Lastly, a convolution layer (kernel size of 1 x 1) is used to obtain the segmented image 
of size 1 x H1 x W1.

Spatio-frequency Attention Module (SFAM)
Frequency domain analysis has shown significant promise in computer vision tasks. High-frequency components 
typically correspond to sharp edges and fine details, while low-frequency ones capture global structural 
information and smooth variations. Recent works demonstrated the advantages of integrating frequency-
domain processing with spatial attention mechanisms. Mathai et al. first proposed the use of frequency-based 
approaches for vessel segmentation in ultrasound imaging21. They demonstrated the benefits of preserving 
high-frequency boundary information, while effectively managing noise artifacts. An interesting development 
is FcaNet, introduced by Qin et al.22, which formulates channel attention as a frequency decomposition process 
using the discrete cosine transform. They proved that conventional global average pooling is a special case 
of frequency domain feature compression. Rao et al. proposed Global Filter Networks, which learn spatial 
dependencies in the frequency domain using the discrete Fourier transform and learnable global filters, achieving 
log-linear computational complexity23. Recently, Zhou et al. introduced XNet, a wavelet-based architecture to 
decompose biomedical images into low and high-frequency components, demonstrating superior segmentation 
performance through multi-scale frequency feature fusion24. Inspired by previous research, the proposed SFAM 
module utilizes frequency domain decomposition for improved vessel boundary detection in CCTA images. 
In this context, high-frequency components capture vessel cross-sectional boundaries and intensity variations, 
while low-frequency components aim at encoding the overall shape of the vessels and contextual information. 
By focusing the model’s attention on task-relevant frequency components and integrating them through channel 
and spatial attention mechanisms, SFAM achieves improved feature representation for precise coronary artery 
segmentation, as shown in Fig. 2.

Given the input feature map from the encoder Fe of size Cj  × Hj  × Wj , Cj  represents the number of 
channels of jth encoding layer and Hj  × Wj  are the spatial dimensions of that layer. We apply the 2D discrete 
Fourier transform independently to each channel along its spatial dimensions. Following concatenation, 
we denote the resulting feature map in the frequency domain by fe of size Cj  × Hj  × Wj , and proceed by 
decomposing it into complementary high and low frequency components, fhigh and flow , respectively. The 
decomposition is performed channel-wise using two complementary binary masks, Mhigh and Mlow , of the 
same size as the spatial dimensions of the feature map (i.e., Hj  × Wj). The masks are designed to be mutually 
exclusive and collectively exhaustive, ensuring that each frequency component is captured by exactly one mask, 
as follows:

	 Mhigh = 1 − Mlow, Mlow ∪ Mhigh = 1, Mlow ∩ Mhigh = 0.� (1)

To generate Mlow , a square of size (Hj/K) × (Wj/K) is centered in the mask, where K determines the size 
of the window relative to the spatial dimensions of the feature map. The mask coefficients are assigned a value 
of 1 within the central region and 0 elsewhere. For instance, when K = 4, Mlow  has a window of size (Hj/4) 
× (Wj/4) centered within it, where all values inside the window are set to 1, and all values outside the square 
are set to 0. Mlow  captures the global structural information, since low frequencies are concentrated toward 
the center of the frequency-transformed image. Conversely, Mhigh captures the high-frequency components 
located toward the borders of the 2D frequency spectrum, representing edges and fine details. Channel-wise 
frequency decomposition is performed as follows:

	 flow = fe ⊙ Mlow, � (2)

	 fhigh = fe ⊙ Mhigh. � (3)
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A learnable filter L is applied to flow  to selectively enhance vessel-relevant frequencies from the low-frequency 
components. The enhanced frequency representation f ′ is then constructed by combining the original high-
frequency components with the filtered low-frequency components as

	 f ′ = fhigh ⊕ (flow ⊙ L) ,� (4)

where ⊕ and ⊙ represent element-wise addition and multiplication, respectively. By using the two-dimensional 
inverse discrete Fourier transform (2D-IDFT), the associated spatial domain representation, F ′, is obtained. 
This results in the frequency enhanced representation of the vessel regions within the feature map.

To further enhance feature representation, channel and spatial attention mechanisms are incorporated into 
the framework25. These attention modules allow the model to focus on the most informative regions in the 
feature map, dynamically emphasizing important channels and spatial locations within those channels.

Spatial information of a feature map is aggregated across channels using both average- and max-pooling 
operations, generating two spatial context descriptors, i.e., F c

avg  and F c
max, denoting the average-pooled and 

max-pooled feature maps, respectively. Both descriptors are then passed on to a shared network to produce the 
channel attention map, Mc. The shared network is a multi-layer perceptron (MLP) with one hidden layer. After 
the shared network processes each descriptor, the output feature vectors are concatenated using element-wise 
summation. Channel attention is computed, resulting in F ′

c  as

	

F ′
c = Mc(F ′) = σ(MLP (AvgPool(F ′)) + MLP (MaxPool(F ′)),

= σ
(
W1

(
W0

(
F c

avg

))
+ W1 (W0 (F c

max))
)

,
� (5)

where W0 and W1 are the weights of the MLP shared for both the input descriptors, and σ denotes the sigmoid 
operation. After the significant channels within the feature map are highlighted, F ′

c  undergoes spatial attention. 
Average and max-pooling layers are applied to the input, generating feature maps, Favg  ∈ R1×H×W  and Fmax 
∈ R1×H×W , respectively. These feature maps are processed through a convolution layer to generate the resulting 
spatial attention map Ms(F ) as

	

Ms(F ) = σ
(
f7×7([Avg Pool(F ); MaxPool(F )])

)
,

= σ
(
f7×7 ([Favg; Fmax])

)
,

� (6)

where f7×7 denotes the convolution operation with kernel size of 7 × 7.

Fig. 2.  Block-based representation of Spatio-Frequency Attention Module (SFAM).
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This refinement of feature information facilitates improved segmentation performance by enabling the 
network to learn contextually relevant and edge-preserving features, thereby effectively capturing both high-
frequency (edge-related) and low-frequency (contextual) components of the image.

Attention-GAN-based volumetric vessel refinement
Generative Adversarial Networks (GANs) demonstrated significant potential in vessel segmentation and 
refinement tasks. In the context of retinal vessel segmentation, Huang et al. proposed X-GAN, which integrates 
GANs with vascular biostatistics to achieve near-perfect segmentation accuracy without requiring labeled data26. 
Deng et al. applied cycle Wasserstein GANs with gradient penalty (WGAN-GP) for motion artifact correction in 
CCTA images, reporting significant improvements in PSNR and clinical quantitative scores27. In 3D volumetric 
vessel segmentation, Sweeney et al. introduced VAN-GAN for 3D vascular network segmentation without the 
requirement of annotated ground truth data28. Gonzales et al. presented a validation study of GAN-based data 
augmentation approaches for cardiac MRI late gadolinium enhancement segmentation, demonstrating that 
using GAN-generated synthetic data consistently improves segmentation performance29. In a departure from 
previous GAN-based vessel segmentation approaches that primarily focus on 2D refinement and motion artifact 
correction, the proposed 3D Attention-GAN specifically addresses the unique challenges of volumetric coronary 
artery segmentation by incorporating topological consistency constraints and inter-slice relationship modeling. 
Existing GAN-based methods, e.g., VAN-GAN, directly target 3D vessel segmentation, however, they neither 
specifically optimize for the refinement of initial 2D segmentations nor incorporate attention mechanisms 
tailored to coronary vessel characteristics.

The second stage of Seg2RefineNet employs a three-dimensional Attention-GAN designed to refine the 
initial 3D segmentation map from SFANet. The generator network G follows an encoder–bottleneck–decoder 
structure inspired by the Attention U-Net, extended to volumetric inputs. The input to the generator is the 
concatenation of the enhanced CCTA volume X ′ and its corresponding initial segmentation mask S, forming 
a two-channel 3D volume X̃ . The encoder of G comprises four successive downsampling blocks. Each block 
contains a 3D convolution layer with a kernel size of 4 × 4 × 4 and stride 2 × 2 × 2, followed by instance 
normalization and LeakyReLU activation. To enhance representational capacity and to suppress irrelevant 
background information, attention gates are integrated between the encoder and decoder stages, allowing skip 
connections to selectively propagate spatially relevant features. The bottleneck of the generator consists of four 
residual blocks. Each residual block includes a 3D convolutional layer of kernel size 4 × 4 × 4 and stride 1 × 
1 × 1, instance normalization, and LeakyReLU activation, with the block output concatenated with its input to 
promote gradient flow and stabilize training. The decoder mirrors the encoder with three upsampling stages. 
Each stage applies a 3D transposed convolution with kernel size 4 × 4 × 4and stride 2 × 2 × 2, followed by 
instance normalization and ReLU activation. Skip connections from the encoder, modulated by the attention 
gates, are concatenated with the upsampled feature maps at each stage, ensuring preservation of fine vessel 
details alongside global context. The final output layer applies a 3D transposed convolution with kernel size 4 
× 4 × 4, stride 1 × 1 × 1, and voxel-wise softmax activation, producing refined binary segmentation masks 
distinguishing vessel and background.

The discriminator D is implemented as a 3D PatchGAN, which classifies local volumetric patches as real or 
fake rather than evaluating the entire volume. Its architecture consists of four downsampling blocks, structurally 
identical to those in the generator encoder, i.e., 3D convolution with kernel size 4 × 4 × 4, stride 2 × 2 × 2, 
instance normalization, and LeakyReLU. This design ensures sensitivity to high-frequency structural details 
critical for vessel boundary accuracy. The final output layer is a 3D convolution with kernel size 4 × 4 × 4 and 
stride 1 × 1 × 1, followed by sigmoid activation to produce voxel-wise patch-level discrimination scores.

Network training
SFANet is trained using the Adam optimizer with a learning rate of 1e − 4 and a weight decay of 1e − 5. The 
loss is computed using the sum of the weighted binary cross entropy loss Lwbce and Dice loss Ldice. To address 
the inherent class imbalance in vessel segmentation where background pixels vastly outnumber vessel pixels, we 
employ Lwbce as

	
Lwbce = − 1

N

N∑
i=1

[wpos · yi log (pi) + wneg · (1 − yi) log (1 − pi)] ,� (7)

Where yi ∈ {0, 1} represents the ground truth label for pixel i, pi is the predicted probability, N is the total 
number of pixels, and wpos and wneg  are the positive and negative class weights, respectively, calculated based 
on the vessel-to-background pixel ratio to ensure balanced learning.

Inverse frequency weighting is used with the weights computed as follows: 

	
wpos = N

2 × Nvessel
, � (8a)

	
wneg = N

2 × Nbackground
, � (8b)

where Nvessel and Nbackground represent the number of vessel and background pixels, respectively.
The SFANet loss function combines the weighted binary cross-entropy loss with Dice loss to handle both 

class imbalance and boundary precision as follows:
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	 LSFANet = αLwbce + (1 − α)Ldice,� (9)

where α = 0.5 provides equal contribution from both loss terms, as previously employed in5,30. The weighted 
binary cross-entropy Lwbce (Eq. 7) ensures that vessel pixels receive appropriate attention during training 
despite their scarcity. To improve SFANet’s generalization capability and avoid overfitting, geometric 2D data 
augmentation techniques such as random horizontal and vertical flipping, and random rotation up to 15 degrees 
are used.

Training of the 3D Attention-GAN involves alternating updates of the G and D networks. G is trained to 
produce the refined segmented image Y by reducing the Lbce as the adversarial loss combined with dice loss 
Ldice to deceive D in distinguishing it from T. Differently to the Lwbce in SFANet which assigns higher weight 
to the vessel pixels and lower to the background, the standard binary cross-entropy (BCE) loss Lbce is applied 
uniformly across all pixels, when training the 3D Attention-GAN. To ensure that the segmentation results have 
same topological characteristics as the ground truth, an additional term of the difference in the Betti Number 
(i.e., number of connected components (CC)), referred as the topological consistency loss term and denoted by 
∆ B0 is also added to the generator loss as

	 Gloss = Lbce + λ · Ldice + ∆B0, � (10)

	
∆B0 =

∣∣BY
0 − BT

0
∣∣

BY
0

, � (11)

where BY
0  and BT

0  are, respectively, the Betti numbers of the model prediction Y and ground truth segmentation 
T.

∆ B0 serves as a geometric constraint within the loss function, ensuring that the refined segmentation 
maintains the same number of connected components as the reference annotation, thereby encouraging the 
generator to preserve the correct arterial tree connectivity. Unlike traditional regularization terms that depend 
solely on model parameters or predictions to enforce intrinsic properties, ∆ B0 is a supervised loss component 
that explicitly compares topological features against the ground truth. λ is a scalar weight coefficient, originally 
used in31, that adjusts the tradeoff between the generator’s ability to produce accurate segmentation masks versus 
the discriminator’s ability to guide the generation process.

The loss function of D is also made up of two components. The first part is the real discriminator loss 
(Drloss), which helps D to classify real images correctly. The second term is the fake discriminator loss (Dfloss), 
which allows D to classify the fake/generated images. Both the losses, i.e., Drloss and Dfloss, are computed by 
comparing patchsize number of true and generated image patches with the corresponding labels (real and fake), 
respectively. The total discriminator loss (Dloss) is then computed as the average of the Dfloss and Drloss terms 
as

	 Dloss = (Drloss + Dfloss)/2.� (12)

The generator and discriminator models are trained simultaneously by updating their weights based on their 
respective losses to improve the overall performance of the 3D-Attention GAN. Algorithmic representation of 
the training process is presented in the Algorithm 1. Before the training process, data augmentation techniques 
such as random rotation up to 15 degrees, random masking and addition of gaussian noise were used.

All models were trained on NVIDIA GeForce RTX-4090 GPU.

Experimental setup
This section provides details on the utilized data, evaluation procedure and performance metrics.

Data
To evaluate the performance of the proposed framework, the publicly available ImageCAS dataset was used, 
comprising of 1000 3D CCTA volumes, each from a unique patient. The data was acquired by a Siemens 128-slice 
dual-source scanner17. All acquisitions were made using high-dose CCTA. The acquired data have sizes of 512 
x 512 x (206 - 275) voxels, with a planar resolution of 0.29–0.43 mm2, and spacing of 0.25–0.45 mm. The data 
were collected from clinical cases at the Guangdong Provincial People’s Hospital during the time period of April 
2012 to December 2018. Only patients older than 18 years and with a documented medical history of ischemic 
stroke, transient ischemic attack and/or peripheral artery disease were eligible for inclusion. For each of the 
CCTAs, the left and right coronary arteries were independently labeled by two radiologists according to the 
AHA naming convention32, and their results were cross-validated. In case of any discrepancy, a third radiologist 
would perform a further annotation and the final annotation would be determined by consensus.

To assess the generalizability of the proposed framework, we employed the Automated Segmentation of 
Coronary Arteries (ASOCA) dataset33, a publicly available benchmark specifically designed for validating 
coronary artery segmentation algorithms (https://asoca.grand-challenge.org/). ASOCA comprises 40 Cardiac 
Computed Tomography Angiography (CCTA) scans from 40 unique patients, with a balanced distribution of 20 
healthy subjects and 20 patients with confirmed coronary artery disease. This balance ensures robust evaluation 
across diverse pathological conditions, including both normal vessel morphology and various degrees of coronary 
stenosis. All CCTA images were acquired using contrast agent administration to enhance vessel-background 
contrast, following standard clinical protocols for coronary imaging. The dataset includes both proximal 
and distal coronary segments, encompassing the full spectrum of vessel diameters and anatomical variations 
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encountered in clinical practice. Ground-truth segmentations were produced by three expert annotators 
working independently, ensuring high-quality and reliable reference standards. The annotation process focused 
on segmenting the coronary artery lumen, specifically excluding calcified regions, plaque deposits, and other 
pathological manifestations to maintain consistency with clinical segmentation objectives.

Algorithm 1.  Training of 3D Attention GAN for Volumetric Refinement

Data preparation
CT images represent the acquired information in Hounsfield Units (HU), which typically range from −1000 to 
300034. To visualize specific anatomical structures (in our case, coronary arteries) with their respective densities, 
a window center of 200 and a window size of 600 is used10.

To further enhance the cross-sectional representation of the vessel structures in 2D slices, unsharp masking 
is employed as a pre-processing step. This is an image sharpening technique that employs a Gaussian filter to 
produce a blurred version of the original image35. The smooth version of the image is then subtracted from 
the original image. The difference is then added to the original image, highlighting edges and high-frequency 
components. This results in an enhanced version of the original CCTA image, represented as X ′.

Evaluation procedure
To train the models in Seg2RefineNet, we used the train-validation-test split, as was proposed in the study that 
were the first to present and use the ImageCAS dataset17. Based on this, the 3D CCTA dataset was split into 700 
volumes for training, 50 for validation, and 250 for testing purposes. SFANet was trained on the 2D slices of the 
corresponding CCTA volumes resulting in the initial 2D segmentations. To avoid any data leakage, during the 
refinement stage of the initial segmentations, the 3D-Attention GAN was trained on the 50 CCTA volumes of 
the validation set in the original ImageCAS data split. To ensure a thorough evaluation, this process was repeated 
using 4-fold cross validation, as originally performed in17.

Evaluation metrics
To measure the segmentation performance of the proposed models and provide a fair comparison with existing 
approaches, a common set of metrics is needed. In this regard, based on the metrics used in the state-of-the-
art, the dice similarity coefficient (DSC) (or simply, dice score) and Hausdorff distance (HD) are used. The dice 
score is a measure of similarity between two sets. In the context of image segmentation, it measures the similarity 
between the predicted segmentation map S or Y and the ground truth T. The mathematical representation of the 
dice score is given as

	
DSC = 2|Y ∩ T |

|Y | + |T | .� (13)

The Hausdorff distance, on the other hand, only considers the pixels at the boundary belonging to the same 
class. It measures the similarity between the boundaries of the segmented regions compared to those of the 
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ground truth. It calculates the distance between each voxel in the boundaries of model predictions and the 
corresponding voxels in the ground truth segmentation as follows:

	
HD (Y, T ) = max

(
max
t∈T

min
y∈Y

d(t, y), max
y∈Y

min
t∈T

d(y, t)
)

,� (14)

where y and t represent the predicted and ground truth voxels, respectively.

Results
In this section, we provide an analysis of model performance for the SFANet, followed by an ablation study, 
evaluating the impact of each of the SFANet components on the model output. Next, we present and discuss 
the performance of Seg2RefineNet, which processes the outputs of SFANet through the 3D-Attention GAN. 
We proceed with a comparison with competitive 3D and hybrid 2D/3D models in the state-of-the-art, before 
presenting an analysis of the computational complexity of the proposed model.

2D-based coronary artery segmentation results
Once the slice-by-slice segmentation mask for each input CCTA volume is obtained, it is compared with 
their corresponding ground truth annotations. Results showed that the SFANet obtained a mean dice score 
of 0.8024 ± 0.03 as the initial 2D-based segmentation performance. Integration of frequency domain 
processing in the SFAM module addresses a critical gap in existing 2D approaches. While traditional methods 
struggle with the uneven contrast distribution characteristics of CCTA images, frequency decomposition 
enables selective enhancement of vessel-relevant spectral components, yielding improvements in boundary 
precision, particularly beneficial for detecting small caliber vessels (diameter < 2mm) that are often missed 
by conventional 2D methods. This choice is further supported in recent research by Alirr et al.36, which 
demonstrates that incorporating Hessian-based vesselness preprocessing can improve small vessel detection 
by up to 1.76%. The proposed frequency domain processing achieves similar benefits through learnable filters 
that adaptively enhance tubular structures, providing a more flexible alternative to fixed vesselness operators. 
Another challenge in 2D coronary segmentation is the extreme class imbalance (e.g., vessel pixels < 3% of total 
pixel count). The weighted binary cross-entropy formulation specifically addresses this through dynamic weight 
adjustment based on vessel-to-background ratios. Upon detailed analysis of the performance across different 
volumes, it was found that SFANet segmented 97.1% of the CCTA volumes with a dice score greater than 0.7. 
Out of which, 58.8% of the volumes were predicted with a dice score ranging from 0.8 to 0.9. These results 
show that the SFANet effectively segmented the majority of the volumes in the ImageCAS dataset with a high 
segmentation performance.

The complexity of the task of segmenting the cross-sectional representations of coronary arteries is not 
the same throughout the CCTA volume. Results showed that it is dependent on the position of the coronary 
vessel within the volume. Indeed, variations in vessel thickness and complex branching patterns in the arterial 
tree, pose challenges in the accuracy of segmentation methods. To this extent, we expanded the analysis of the 
proposed 2D-segmentation model’s performance w.r.t the position of coronary arteries in a CCTA image as 

Fig. 3.  Average Dice Score achieved using SFANet with respect to the location of the coronary vessel segment 
within the CCTA volume. Slice numbers represent the axial position from the coronary ostium to the distal 
vessel terminus (slice 1). The color coding represents Dice score ranges: green (Dice > 0.85, highest accuracy 
at proximal arterial root), salmon pink (Dice 0.7–0.85, high accuracy at mid segments), yellow (Dice 0.55–0.7, 
moderate accuracy at distal segments), and grey (Dice < 0.55, lowest accuracy at challenging thin vessel 
regions). Performance generally decreases from proximal to distal locations due to decreasing vessel diameter 
and increasing anatomical complexity.
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shown in Fig. 3. To assess segmentation performance relative to anatomical position within the CCTA volume, 
each axial slice of the 3D CCTA scan is assigned a slice number, starting from the slice containing the distal end 
of the artery (slice 1) to coronary artery ostium. Average Dice scores are computed per slice across all patient 
volumes in the test set. This yields a slice-wise average metric indicating segmentation quality at that anatomical 
location. Slices are grouped into anatomical segments, such as proximal (root), mid, and distal segments, based 
on known coronary artery branching. The resulting mean Dice scores per slice are then visualized as bars per 
position to capture spatial performance trends along the arterial tree. This analysis enables identification of 
challenging anatomical regions where segmentation accuracy decreases due to vessel thinning, branching 
complexity, or reduced contrast. Results showed that on average, SFANet achieved a high dice score (0.9 to 1.0) 
when segmenting CT slices closer to the root of the arterial tree. This, on average, amounts to the top 50 to 70 
CT slices. Since vessels have a higher diameter and contrast in those slices, a higher segmentation performance 
is achieved (see Fig. 3). A sample slice is shown in Fig. 4(a) showing the root of the arterial tree as the ground 
truth. As we can see, with its relatively thick structure and a single point of origin, it is perfectly segmented by 
the proposed model. On the other hand, as the coronary artery starts to branch out, vessels tend to become 
thinner and can appear in multiple spatial locations. As a result, the model may struggle to differentiate between 
the vessel and the surrounding tissue. As a result, a dice score (0.8 to 0.9) is achieved, while segmenting the next 
50 to 60 CT slices. In these slices, vessels are still distinctively visible and therefore the majority of the vessel 
structure is correctly segmented. As can be seen in Fig. 4(b), the model is able to correctly segment the majority 
of the regions of interest (RoI), with some false positives. Going down a further 50 slices, vessels start to become 
narrower and appear as small blob-like structures, compared to the surrounding soft tissues. Furthermore, since 
they appear in multiple spatial locations within each slice, they tend to lose contextual relationships. This results 
to an increase in the number of false positives and false negatives, which become apparent in the segmentation 
map. Fig. 4(c-e) show the sparse distribution of the vessel structures with a relatively higher number of false 
positives and false negatives.

Ablation study
In the previous subsection, we presented the overall 2D-based segmentation performance of the proposed 
SFANet. Here, we present the ablation study, which illustrates the impact to the model performance of the 
various architectural components, when added to a baseline U-Net architecture, resulting in the construction 
of SFANet.

As shown in Table 1 (row 1), we started with the 5-layered vanilla U-Net as a baseline architecture to test 
model performance. A mean dice score of 0.7643 ± 0.05 was achieved, indicating a promising segmentation 
performance, leaving room for potential improvement. Sample segmentation maps of  2D-slices are shown in the 
Fig.5(b) and (g). Compared to the vanilla U-Net, attention gate U-Net (AG-UNet) introduces a single attention 
mechanism in the form of attention gate at the skip connection between encoder to decoder. This allowed 
the selective screening of class-relevant information, further improving the dice score to 0.7814 ± 0.04, see 

Model Att AG FFE DSC ↑

UNet 0.7643 ± 0.05

AG-UNet ✓ 0.7814 ± 0.04

AG-Att-UNet ✓ ✓ 0.7930 ± 0.04
SFANet ✓ ✓ ✓ 0.8024 ± 0.03

Table 1.  Comparison of 2D segmentation models with a vanilla U-Net as baseline along with various 
architectural components on the ImageCAS dataset. Att represents the use of both channel and spatial 
attention mechanisms, AG represents the use of Attention Gate, and FFE represents frequency feature 
enhancement. Dice score is used as the metric for comparison purposes.

 

Fig. 4.  Segmentation performance w.r.t the coronary artery position represented by slice number. From 
(a-e) are slices segmented by SFANet; the colored coded annotations are red for false negatives, blue for false 
positives, and magenta for correct segmentations.
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Table. 1 (row 2). Fig.5(c) and (h) show visual improvements in the segmentation performance, where AG-UNet 
accurately segmented the vessel structure, which was left as false negative by the UNet. To further strengthen 
feature selection, channel and spatial attention are progressively incorporated, resulting in AG-Att-UNet. By 
applying channel attention, the model is able to select channels with significant information, limiting the impact 
of less informative channels. Afterwards, a layer of spatial attention is added to exploit the spatial relationships 
within channels, thus allowing the model to localize important regions within the feature maps. The attention 
gates then selectively allow relevant features from channel and spatially attentive feature maps to pass through 
to the decoder, enhancing the representation of important areas and suppressing irrelevant information. This 
addition led to a further increase in the segmentation performance with a mean dice of 0.7930 ± 0.04, see 
Table.1 (row 3). Fig. 1(d) and (i) show an increase in the model’s capability to capture almost all of the vessel 
structures.

Although attention mechanisms effectively filtered and enhanced the quality of encoded features, a further 
enhancement to the feature maps as input to the attention blocks was proposed in this research. Specifically, 
spatial frequencies may represent various anatomical features. By enhancing relevant frequency components, 
it is possible to effectively provide useful information before it is processed by the channel and spatial attention 
blocks. The application of the attention blocks to the frequency-enhanced feature maps leads to SFANet, resulting 
to the highest mean dice score of 0.8024 ± 0.03, compared to the previous architectures (see Fig.5(e) and (i)).

3D-based coronary artery segmentation results
With the input CCTA X ′, the initial segmentation masks from SFANet resulted to a mean dice score of 0.8024. 
Sample 3D representations of the initial segmentation (S), are shown in Fig.6(b) and (f). Compared to the ground 
truth (T) shown in the Fig.6(a) and (e), we can see that the initial segmentation was able to capture the overall 
topological structure of coronary arteries. However, as we saw in the 2D segmentation results, false positives in 
the slices capturing the branching of the arterial tree are profoundly represented in 3D. This is likely due to the 
lack of contextual information across different slices, particularly, in the later part of the volume. Alongside the 
false positives, parts of the vessel structure were not included in the initial 2D-based segmentation, representing 
false negatives. Therefore, the initial 2D segmentation results show potential room for improvement towards a 
finer segmentation of coronary arteries.

To provide the 3D-Attention GAN a more guided approach towards refining the initial segmentation mask, 
alongside the 2D-based vessel segmentation volume, the original CCTA volume is provided. This allows the model 
to capture contextual information across the entire CCTA volume, thus, learning to reduce the occurence of false 
positives and predict the missing false negatives, due to topological inconsistency. Indeed, the 3D-Attention 
GAN improved the initial 2D-based segmentation results from a mean dice score of 0.8024 to 0.8313. Sample 
evidence for this improvement is shown in Fig.6(c) and (f), where the model not only successfully removed false 
positives but also retrieved missing information in the initial segmentation.

Comparative analysis with the state-of-the-art
To draw a fair comparison with the state-of-the-art methods, in this sub-section, we considered those evaluated 
on the ImageCAS dataset. In this regard, we include both single step-based methods such as 3D-FCN9 and 
3D-UNet15, and multi-step methods of 3D-UNet and 3D-UNet++17, ensemble of 2D and 3D-UNets20, and 
CFNet37 as baseline models.

Fig. 5.  Segmentation performance comparison for the ablation experiments in two 2D CCTA slices. From left 
to right are ground truth, UNet, AG-UNet, AG-Att-UNet, and SFANet (proposed model), respectively; The 
colored annotations are orange for ground truth, blue for model prediction, and magenta for the overlap of 
ground truth and prediction.
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The classification results of the baseline models reported on the ImageCAS dataset are shown in Table 3, 
rows 1–10. 3D-FCN9 achieved a mean dice score of 0.8058 with HD of 28.66 mm. These results are achieved 
by directly processing 3D CCTA volumes. When processed using a 3D-UNet based architecture15, a lower 
performance is reported with a dice score of 0.7201 and HD of 40.96 mm.

Aiming to boost segmentation performance, one of the multi-step approaches combines the coarse 
segmentation results from the 3D-UNet model and fine patch-based segmentation results using 3D-UNet++17. 
Next, a variety of patch sizes were used to train the 3D-UNet++, with the results combined in an ensemble 
setting. This approach achieved a mean dice score of 0.8296 with HD of 27.21 mm. CFNet followed a similar 
approach by performing coarse segmentation using a 3D-UNet, followed with fine segmentation using a 3D 
transformer-based architecture37. The model achieved a mean dice score of 0.8267 with HD of 18.83 mm. To 
leverage local and global contextual information from 2D- and 3D-based methods, an ensemble based approach 
was proposed, which combines predictions following a voting-based approach20. Although the method did not 
outperform17 in terms of dice score, it achieved a lower HD, indicating improved segmentation of the vessel 
boundaries. DiffCAS38, a diffusion-based multi-attention network, reported a DSC score of 84.59% with HD 
of 11.92 mm on ImageCAS dataset. Similarly, SADiff39 combined spatial attention with a diffusion generator 
and, achieved a mean dice score of 83.48% and HD of 19.43 mm. AGFA-Net11 on the other hand reported the 
highest dice score on the ImageCAS dataset (i.e., DSC = 86.74%) together with a Hausdorff distance of 0.23 mm. 
Although these methods11,38,39 reported high performance, it is important to note that the evaluation was carried 
out using random data splits rather than the standardized splits published in the original article17. Finally, for 
completeness, a recent 3D-PSPNet variant trained on a 200-case ImageCAS subset reported a DSC of 0.76 (using 
global processing), which illustrates the range of recent results when non-official splits or smaller subsets are 
used. Although the performance of Seg2RefineNet can be seen as lower than the DiffCAS38 and AGFANet11 and 
close to the SADiff39, its results are reported following the official data split17. Therefore, overall, Seg2RefineNet 
remains competitive on ImageCAS achieving an average dice score of 0.8313 ± 0.018 and HD of 12.95 ± 0.53
mm.

Considering the best performance achieved on official data split, among the baseline approaches, in terms of 
the dice score and HD, the proposed Seg2RefineNet framework outperformed existing state-of-the-art methods 
with a mean dice score of 0.8313, and mean HD of 12.95 mm.

Computational complexity
To evaluate if the performance gain of Seg2RefineNet compared to the existing methods is achieved at the cost 
of increasing computational complexity, the computational complexity of the proposed model is analyzed. Table 
2 provides an overview of computational complexity of Seg2RefineNet and the existing methods.

3D-FCN9, 3D-UNet15, 3D-UNet & 3D-UNet++17, 3D-PSPNet40 are purely 3D convolutional approaches, 
thus exhibiting O(H×W ×D×K3) complexity, with the cubic kernel term dominating the computational 

Fig. 6.  Sample results for 3D Segmentation. (a) and (d) show the ground truth annotations (T), (b) and (e) 
represent the initial segmentation (S) while the (c) and (f) show the refined segmentation mask (Y). The 
colored annotations describe the false negatives in brown, and false positives in blue.
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cost. These techniques process entire volumes through 3D convolutions at each layer. Methods combining 2D 
and 3D processing, i.e., 2D+3D-UNet Ensemble20 and the proposed Seg2RefineNet, show O(H×W ×D×K2)
+O(H×W ×D×K3) complexity. However, the 3D term O(H×W ×D×K3) dominates over the 2D term 
O(H×W ×D×K2), thus maintaining cubic complexity but with reduced constants. Specifically, Seg2RefineNet 
initially processes the 2D slices of the input CCTA volume with time complexity of O(H×W ×D×K2), and 
then combined with the 3D Attention GAN, it is therefore computationally efficient compared to purely 3D 
convolutional methods. Although the method in20 also utilized both the 2D and 3D UNet-based models, 
training of multiple models in an ensemble learning setup increases the overall computational complexity. 
CFNet turns out to be the most computationally expensive method. In the case of transformer and attention-
based methods, CFNet37 and AGFA-Net11, O(N2) complexity is added to O(H×W ×D×K3) to account 
for self-attention mechanisms, where N represents the number of patches. In the case of 3D volumes, 
N = (H/p) × (W/p) × (D/p), where p is the patch size. Diffusion models, DiffCAS38 and SADiff39, multiply 
the base complexity by the diffusion iteration count I, resulting in O(I×H×W ×D×K2). Typical diffusion 
processes require I = 50–1000 steps, significantly increasing computational cost. In summary, through its 
hybrid 2D-3D design, Seg2RefineNet demonstrates important computational efficiency, achieving state-of-the-
art segmentation performance, while maintaining the same time complexity class as state-of-the-art methods, 
making it suitable for real-time clinical applications.

Generalizability analysis
To further assess how well Seg2RefineNet performs on out-of-distribution data, we evaluated our model on 
the Automated Segmentation of Coronary Arteries (ASOCA) Challenge dataset33. Seg2RefineNet was trained 
on ImageCAS and was then tested on the ASOCA dataset in coronary artery segmentation, producing a mean 
dice score of 0.767 ± 0.056 and an HD of 29.19 ± 0.71 mm. Table 3 systematically compares cross-dataset 
generalization performance across state-of-the-art approaches trained on the ImageCAS dataset and applied for 
zero shot performance evaluation on the ASOCA challenge dataset.

Seg2RefineNet demonstrates promising zero-shot generalization with only 6.4% DSC performance drop, 
with cross-dataset robustness exceeding the remaining two ImageCAS-trained methods by 0.5–6.2% DSC. 
In regards to HD, 3D-Unet demonstrates the smallest generalization gap with a drop of 4.27 mm compared 
to ImageCAS, however, its accuracy in both dataset is quite low. CFNet on the other hand has a HD drop of 
19.84 mm, demonstrating significant performance deterioration on the ASOCA dataset. Fig. 7 shows sample 
segmentations (e-h) of the ASOCA dataset compared to clinical annotations (a-d). It can be observed that 
similarly to the case of the ImageCAS dataset, Seg2RefineNet was able to capture the overall structure of the 
coronary arteries however, it did struggle in the case of fine thin vessels in the ASOCA dataset, particularly as we 
moved further away from the root of the arterial tree. This resulted in under-segmentation of the arterial tree.

Compared to the recent studies that utilized ASOCA dataset for training, Qiu et al.12 reported a Dice score 
of 0.8853 and an HD of 1.07 mm. Similarly, Yan et al.41 achieved a Dice score of 0.837 and an HD of 3.72 mm. 
In contrast, our model when only tested on the ASOCA dataset, without being trained on it, demonstrated 
competitive segmentation performance. This highlights its strong generalizability when tested on unseen dataset.

Sr.No Method Training Dataset Testing Dataset DSC ↑ HD (mm) ↓ Generalization Gap DSC/HD

1. 3D-UNet ImageCAS ASOCA 0.651 45.23 0.069/4.27

2. CFNet ImageCAS ASOCA 0.704 38.67 0.126/19.84

3. Seg2RefineNet ImageCAS ASOCA 0.767 ± 0.0.056 29.19 ± 0.71 0.064/16.24

Table 3.  Cross-Dataset Generalizability Performance.

 

Sr.No Method Input Data DSC ↑ HD (mm) ↓ Complexity

1. 3D-FCN 3D 0.8058 28.66 O(H×W ×D×K3)

2. 3D-UNet 3D 0.7201 40.96 O(H×W ×D×K3)

3. 3D-UNet & 3D-UNet++ 3D 0.8296 27.21 O(H×W ×D×K3)

4. 2D+3D-UNet Ensemble 2D & 3D 0.8231 17.54 O(H×W ×D×K3)

5. CFNet 3D 0.8267 18.83 O(N2)

6. DiffCAS 3D 0.8459 11.92 O(I×H×W ×D×K3)

7. SADiff 3D 0.8348 19.43 O(I×H×W ×D×K3)

8. AGFANet 3D 0.8674 0.23 O(N2)

9. 3D-PSPNet 3D 0.76 − O(H×W ×D×K3)

10. Seg2RefineNet 2D & 3D 0.8313 ± 0.018 12.95 ± 0.53 O(H×W ×D×K3)

Table 2.  Comparative analysis of segmentation methods evaluated on the ImageCAS dataset.
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Discussion
To shed light into model’s performance, we conducted a systematic analysis of CCTA instances where 
Seg2RefineNet produces lower than expected DSC scores (between 0.6 to 0.7). A few samples of those results 
with their corresponding ground truth is shown in Fig.8. The discussion of these results has been organized 
with respect to vessel morphology, vessel intensity and anatomical location. It was observed that the geometric 
characteristics of the arterial tree play a significant role on segmentation performance. Specifically, the thinning 
of distal vessels, complex branching topology and the degree of vessel tortuosity. Smaller distal vessels, often 
characterized by diameters close to CT’s spatial resolution limit, can form disconnected components, thus 
affecting the model’s performance. Furthermore, segmentation errors were observed in the vicinity of junction 
points, i.e., bifurcations and trifurcations, particularly evident when moving from proximal to distal segments, 
where the model exhibited geometric discontinuities in some of the predictions (see Fig.8(e)). Lastly, while 
Seg2RefineNet performs very well in straighter segments, it may produce discontinuous segmentations in highly 
tortuous vessels, and can often result in false positives (see Fig.8(f)). Varying vessel intensity can also contribute 
to imperfect segmentations. It appears that the model is finding it challenging to deal with gradually diminishing 
intensity gradients in distal segments resulting to under-segmentations. Despite the use of the spatio-frequency 
mechanism, blurry vessel boundaries also contribute to segmentation errors. Another pattern, which our 
analysis revealed, is that lower contrast between the vessels and the background, i.e., lower signal-to-noise (SNR) 
ratio, or equivalently, higher noise levels contribute to segmentation inaccuracies. This effect is witnessed in both 
Fig.8(e) and (f).

Conclusion
In this study, we proposed Seg2RefineNet, a two stage coronary artery segmentation method that is developed 
to achieve accurate segmentation with precise segmentation of vessel boundaries. To this extent, we proposed 
SFANet, a novel 2D spatio-frequency attention-based UNet architecture equipped with frequency feature 
enhancement followed by the channel and spatial attention mechanism. Frequency feature enhancement 

Fig. 7.  Sample test results for 3D Segmentation on ASOCA dataset. (a-d) show the ground truth annotations 
of ASOCA dataset, (e-h) represent the segmentation results of our proposed Seg2RefineNet. (i-l) represent 
the difference between the ground truth and the segmentation results. False positives are highlighted in blue 
whereas the false negatives in brown.
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worked by selecting vessel-related information in both high and low-frequency components. Filtered frequency 
components then undergo the channel and spatial attention allowing the model to focus on the target information. 
Results showed that although attention itself improved the segmentation performance, compared to the standard 
UNet, when combined with the frequency feature enhancement, a mean Dice score of 0.8024 was achieved. 
When it comes to volume-based performance, 97.1% of the CCTA volumes were predicted with a dice score 
greater than 0.7. Furthermore, compared to the existing methods, which utilized a single step approach, SFANet 
outperformed the 3D-UNet (dice score 0.7201) and achieved comparable performance to that of 3D-FCN (dice 
score 0.8058). It was also found that although the method was able to capture the cross-sectional representation 
of coronary arteries in 2D-slices, it did struggle with handling instances of vessel branching and thin vessels, 
thus losing the contextual information. This led to the use of a 3D-Attention GAN-based method as a second 
stage of Seg2RefineNet to refine the initial segmentation results. To ensure the topological consistency in the 
refined segmentation masks, the difference in the number of connected components compared to the ground 
truth annotations was also integrated as a loss term during the training of the model. The use of 3D-Attention 
GAN not only integrated the contextual information across the entire volume but also its generative capabilities 
allowed the model to learn to refine the vessel segmentation by removing the falsely predicted and generating the 
falsely removed vessel structures. In Seg2RefineNet, the use of frequency feature enhancement integrated with 

Fig. 8.  Representative challenging cases from ImageCAS dataset showing Maximum Intensity Projection 
(MIP) visualizations with inverted intensity values for enhanced contrast. Ground truth vessels (a-c) and 
corresponding segmented results (d-f) demonstrate cases with Dice scores between 0.6–0.7. The apparent 
elongated vessel morphology results from MIP projection effects and complex 3D-to-2D visualization 
constraints. Shades of black highlight the thicker vessels in darker shade while the thinner ones in lighter. (g-i) 
represent the differences between the ground truth and predicted vessels. False positives are highlighted in blue 
and false negatives in brown.
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attention mechanisms allowed the model to focus on the vessel structures, thus leading to precise segmentation 
of vessel boundaries along with the topological consistency introduced by the 3D-Attention GAN. This 
combination allowed the model to achieve a mean dice score of 0.8313 with HD of 12.95 mm. This not only 
ensured the accurate segmentation of both vessel structures and their boundaries, but also outperformed the 
existing state-of-the-art methods. When tested on ASOCA dataset, a mean dice score of 0.767 and HD of 29.19 
mm, showed that Seg2RefineNet is able to generalize well on unseen data.

In the future, we will consider the integration of methods that can capture small vessels effectively resulting 
in a better segmentation performance with even lower HD. To this extent, we aim to incorporate vessel-oriented 
filters that can help to highlight vessels and capture the cross-sectional information of the coronary artery 
more effectively. Work can also be done to incorporate a multi-level attention mechanism that can leverage the 
information from the deep and shallow layers at the same time. Integrating transformer-based architectures as 
generators within the GAN framework can be explored as part of our future work to further improve long-range 
dependency modeling and global context understanding. This could be particularly beneficial in complex 3D 
segmentation tasks. We also aim to design a custom task-specific loss function that is sensitive to the vessel 
boundaries and variations and to thoroughly evaluate and fine-tune its integration into our method. Lastly, 
we would like to evaluate the Seg2RefineNet on external/real world datasets to further assess its generalization 
capability.

Data availability
The dataset used in this study is a publicly available dataset ImageCAS (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​x​​i​a​o​w​
e​i​​x​u​m​e​d​i​​c​a​​l​a​i​/​i​m​a​g​e​c​a​s)

Code availability
Source code used in this work is available for non-commercial purposes from the corresponding author on 
request.
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