Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Plant cuttings of invasive alien Impatiens glandulifera Royle develop flowers and produce viable seeds
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Plant cuttings of invasive alien Impatiens glandulifera Royle develop flowers and produce viable seeds

  • Kamil Najberek1,
  • Monika Myśliwy2,
  • Agnieszka Rewicz3 &
  • …
  • Wojciech Solarz1 

Scientific Reports , Article number:  (2026) Cite this article

  • 248 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Flowering
  • Invasive species
  • Plant reproduction
  • Pollination
  • Seed development

Abstract

Controlling the invasive alien Himalayan balsam Impatiens glandulifera is both expensive and time-consuming. The most promising control methods include manual mowing and hand-pulling. However, long-term effectiveness of these methods can be unsatisfactory. We hypothesized that such partial success might result from eradication efforts occurring too late in the season, allowing improperly treated cuttings to flower. Moreover, we experimentally tested whether cut flowering individuals left on the ground could survive long enough to produce viable seeds. The experiment involved plant cuttings and reference individuals. We recorded the number of flowers on each plant, monitored floral visitor activity, and simultaneously measured abiotic factors (air temperature, solar radiation, wind speed). The relationship between insect visitation rates and both flower abundance and solar radiation was nonlinear, highlighting the importance of considering complex environmental effects in pollination dynamics. The seeds were collected, and seed viability was compared between the two treatment groups. We demonstrated that the plant cuttings survived for about three weeks, developed flowers and produced viable seeds. Although the reference individuals had more flowers and were more frequently visited by insects (mainly Bombus pascuorum), they did not develop significantly more viable seeds than the cuttings. This confirms the remarkable survival capacity of I. glandulifera plant cuttings and supports our hypothesis that this feature may hinder the full eradication of the species through mowing and hand-pulling under current guidelines. Based on our results, we recommend changing the control timing.

Similar content being viewed by others

Pollen morphology of three invasive Impatiens species in Europe under varying habitat conditions—a case study from Poland

Article Open access 13 December 2025

Rapid morphological change in UK populations of Impatiens glandulifera

Article Open access 20 August 2024

Managed pollination is a much better way of increasing productivity and essential oil content of dill seeds crop

Article Open access 30 July 2022

Data availability

The raw data used to perform the statistical analyses are provided in the supplementary material file.

References

  1. Beerling, D. J. & Perrins, J. M. Impatiens glandulifera royle (Impatiens Roylei Walp.). Journal of Ecology 81, 367–382 (1993).

    Google Scholar 

  2. Wadsworth, R. A., Collingham, Y. C., Willis, S. G., Huntley, B. & Hulme, P. E. Simulating the spread and management of alien riparian weeds: are they out of control? Journal of Applied Ecology 37, 28–38 (2000).

    Google Scholar 

  3. Elst, E. M. et al. Pre-adaptation or genetic shift after introduction in the invasive species Impatiens glandulifera? Acta Oecologica 70, 60–66 (2016).

    Google Scholar 

  4. Helsen, K. et al. Biological flora of Central Europe: Impatiens glandulifera Royle. Perspectives in Plant Ecology, Evolution and Systematics 50, 125609 (2021).

    Google Scholar 

  5. CABI Impatiens glandulifera. In Invasive Species Compendium (CAB International, Wallingford, UK, 2025). Available at: https://www.cabi.org/.

    Google Scholar 

  6. Chittka, L. & Schürkens, S. Successful invasion of a floral market. Nature 411, 653 (2001).

    Google Scholar 

  7. Jakubska-Busse, A., Czeluśniak, I., Hojniak, M., Myśliwy, M. & Najberek, K. Chemical insect attractants produced by flowers of Impatiens spp. (Balsaminaceae) and list of floral visitors. Int. J. Mol. Sci. 24(24), 17259 (2023) doi:https://doi.org/10.3390/ijms242417259.

    Google Scholar 

  8. Najberek, K., Olejniczak, P., Berent, K., Gąsienica-Staszeczek, M. & Solarz, W. The ability of seeds to float with water currents contributes to the invasion success of Impatiens Balfourii and I. glandulifera. Journal of Plant Research 133, 649–664 (2020).

    Google Scholar 

  9. Adamowski, W., Krzysztofiak, A. & Dajdok, Z. Impatiens glandulifera Royle Himalayan balsam – karta informacyjna gatunku. Generalna Dyrekcja Ochrony Środowiska (2018). http://www.gov.pl/gdos/inwazyjne-gatunki-obce-ias

  10. Skalova, H., Havlícková, V. & Pyšek, P. Seedling traits, plasticity and local differentiation as strategies of invasive species of Impatiens in central Europe. Annals of Botany 110, 1429–1438 (2012).

  11. Wyatt, A. L., Pardoe, H. S., Cleal, C. J. & Sánchez Vilas, J. Rapid morphological change in UK populations of Impatiens glandulifera. Sci Rep 14, 19275 (2024).

    Google Scholar 

  12. Kiełtyk, P. & Delimat, A. Impact of the alien plant Impatiens glandulifera on species diversity of invaded vegetation in the Northern foothills of the Tatra Mountains, central Europe. Plant Ecology 220, 1–12 (2019).

    Google Scholar 

  13. Gaggini, L., Rusterholz, H.-P. & Baur, B. The invasion of an annual exotic plant species affects the above- and belowground plant diversity in deciduous forests to a different extent. Perspectives in Plant Ecology, Evolution and Systematics 38, 74–83 (2019).

  14. Tanner, R. Biocontrol can touch touch-me-not. Biocontrol News Info 28(1): 15N16N (2007).

  15. Hulme, P. E. & Bremner, E. T. Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. Journal of Applied Ecology 43, 43–50 (2005).

    Google Scholar 

  16. Ruckli, R., Rusterholz, H.-P. & Baur, B. Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate. Acta Oecologica 47, 16–23 (2013).

    Google Scholar 

  17. Tanner, R. A., Jin, L., Shaw, R., Murphy, S. T. & Gange, A. C. An ecological comparison of Impatiens glandulifera Royle in the native and introduced range. Plant Ecol 215, 833–843 (2014).

    Google Scholar 

  18. Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. Is invasion success explained by the enemy release hypothesis? Ecology Letters 7, 721–733 (2004).

    Google Scholar 

  19. Gruntman, M., Segev, U., Glauser, G. & Tielbörger, K. Evolution of plant defences along an invasion chronosequence: defence is lost due to enemy release - but not forever. Journal of Ecology 105, 255–264 (2017).

    Google Scholar 

  20. Najberek, K. et al. Biological invasions threaten crops: alien Himalayan Balsam lures and co-opts floral visitors away from cultivated Cherry tomatoes. NeoBiota 95, 241–266 (2024).

    Google Scholar 

  21. Najberek, K., Kosior, A. & Solarz, W. Alien balsams, strawberries and their pollinators in a warmer world. BMC Plant Biol 21, 500 (2021).

    Google Scholar 

  22. Najberek, K., Solarz, W., Wysoczański, W., Węgrzyn, E. & Olejniczak, P. Flowers of Impatiens glandulifera as hubs for both pollinators and pathogens. NeoBiota 87, 1–26 (2023).

  23. Leblanc, M. & Lavoie, C. Controlling purple Jewelweed (Impatiens glandulifera): assessment of feasibility and costs. Invasive Plant Science and Management 10, 254–261 (2017).

    Google Scholar 

  24. Csiszár, Á. & Korda, M. Practical Experiences in Invasive Alien Plant Control (Duna–Ipoly National Park Directorate, 2015).

    Google Scholar 

  25. IRD Duhallow LIFE Project. Removal and monitoring of Himalayan balsam Impatiens glandulifera - Monitoring report. Action C10, LIFE09 NAT/IE/000220 BLACKWATER SAMOK. 30 (2015).

  26. Pisarczyk, E. & Tokarska-Guzik, B. Risk assessment for Impatiens glandulifera. (2015). https://circabc.europa.eu/sd/a/e77e105f-fa8d-417c-8d5e-7f903a395453/Impatiens%20glandulifera%20RA.pdf

  27. Bomanowska, A. & Adamowski, W. Niecierpek gruczołowaty Impatiens glandulifera royle. In Metody zwalczania obcych gatunków roślin występujących na terenie Puszczy Kampinoskiej (eds Obidziński, A. et al.) 16–24 (Wydawnictwo BioDar, 2016).

    Google Scholar 

  28. Schiffleithner, V. & Essl, F. Is it worth the effort? Spread and management success of invasive alien plant species in a Central European National Park. NeoBiota 31, 43–61 (2016).

  29. Krzysztofiak, L., Myśliwy, M., Tokarska-Guzik, B. Metody zwalczania niecierpka pomarańczowego i gruczołowatego. Kompendium (Generalna Dyrekcja Ochrony Środowiska, 2022).

    Google Scholar 

  30. Tanner, R., Ellison, C., Shaw, R., Evans, H. & Gange, A. Losing patience with Impatiens: are natural enemies the solution? Outlooks on Pest Management 19, 86–91 (2008).

    Google Scholar 

  31. Čuda, J., Skálová, H. & Pyšek, P. Spread of Impatiens glandulifera from riparian habitats to forests and its associated impacts: insights from a new invasion. Weed Research 60, 8–15 (2020).

    Google Scholar 

  32. Drescher, A. & Prots, B. Role of dispersal agents for the spread of Impatiens glandulifera in Transcarpathia. Journal of Biological Systems 2, 42–46 (2010).

    Google Scholar 

  33. Janczak, B. & Zielinski, J. Wybrane aspekty biologii nasion inwazyjnego terofita Impatiens glandulifera Royle (Balsaminaceae). Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej 14, (2012).

  34. Skálová, H., Moravcová, L., Čuda, J. & Pyšek, P. Seed-bank dynamics of native and invasive Impatiens species during a five-year field experiment under various environmental conditions. NeoBiota 50, 75–95 (2019).

    Google Scholar 

  35. Invasive Species Centre ISC. Himalayan balsam (Impatiens glandulifera). https://www.invasivespeciescentre.ca/invasive-species/meet-the-species/invasive-plants/himalayan-balsam/ (2025).

  36. Helmisaari, H. NOBANIS – Invasive alien species fact sheet – Impatiens glandulifera. Online Database of the European Network on Invasive Alien Species – NOBANIS. https://www.nobanis.org/ (2010).

  37. EU Regulation. European Union 2014 Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Brussels (2014).

  38. Zhao, R., Zhang, H. & An, L. Plant size influences abundance of floral visitors and biomass allocation for the cushion plant Thylacospermum caespitosum under an extreme alpine environment. Ecology and Evolution 9, 5501–5511 (2019).

    Google Scholar 

  39. Najberek, K., Solarz, W., Gąsienica-Staszeczek, M. & Olejniczak, P. Role of enemy release and hybridization in the invasiveness of Impatiens balfourii and I. glandulifera. J Plant Res 135, 637–646 (2022).

    Google Scholar 

  40. Wood, S. N. Generalized Additive Models: An introduction with R (2nd edition). Chapman and Hall/CRC (2017).

  41. Wood, S. N. Thin-plate regression splines. Journal of the Royal Statistical Society (B) 65, 95–114 (2003).

    Google Scholar 

  42. Wood, S. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73, 3–36 (2011).

    Google Scholar 

  43. Wood, S. N., Pya, N. & Saefken, B. Smoothing parameter and model selection for general smooth models (with discussion). Journal of the American Statistical Association 111, 1548–1575 (2016).

    Google Scholar 

  44. Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-Level / mixed) regression models. R package version 0.4.6. (2022).

  45. Polish Regulation. The National Alien Species Act of August 11, 2021. (2021).

  46. Pietrzyk-Kaszyńska, A., Olszańska, A., Najberek, K., Maciaszek, R. & Solarz, W. What starts with laughter ends in tears: invasive alien species regulations should not hinder scientific research. Conservation Letters e12986 (2023) https://doi.org/10.1111/conl.12986.

  47. Genovesi, P., Carboneras, C., Vilà, M. & Walton, P. EU adopts innovative legislation on invasive species: a step towards a global response to biological invasions? Biol Invasions 17, 1307–1311 (2015).

    Google Scholar 

  48. Tollington, S. et al. Making the EU legislation on invasive species a conservation success. Conservation Letters 10, 112–120 (2017).

    Google Scholar 

  49. Coakley, S. & Petti, C. Impacts of the invasive Impatiens glandulifera: lessons learned from one of Europe’s top invasive species. Biology 10, 619 (2021).

  50. Hildesheim, L. S., Opedal, Ø. H., Armbruster, W. S. & Pélabon, C. Fitness costs of delayed pollination in a mixed-mating plant. Annals of Botany 124, 869–881 (2019).

    Google Scholar 

  51. Crampton, A. Environmental Technologist, City of Port Moody. (2018).

  52. Szewczyk, K. & Olech, M. Optimization of extraction method for LC–MS based determination of phenolic acid profiles in different Impatiens species. Phytochemistry Letters 20, 322–330 (2017).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute of Nature Conservation, Polish Academy of Sciences (Kraków, Poland), through statutory funding and co-financed by the Minister of Science under the “Regional Excellence Initiative” Program for 2024-2027 (RID/SP/0045/2024/01).

Author information

Authors and Affiliations

  1. Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, Kraków, 31-120, Poland

    Kamil Najberek & Wojciech Solarz

  2. Institute of Marine and Environmental Studies, Department of Environmental Ecology, University of Szczecin, Adama Mickiewicza 16, Szczecin, 70-383, Poland

    Monika Myśliwy

  3. Department of Geobotany and Plant Ecology, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland

    Agnieszka Rewicz

Authors
  1. Kamil Najberek
    View author publications

    Search author on:PubMed Google Scholar

  2. Monika Myśliwy
    View author publications

    Search author on:PubMed Google Scholar

  3. Agnieszka Rewicz
    View author publications

    Search author on:PubMed Google Scholar

  4. Wojciech Solarz
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Research idea: KN; study design: KN; identification of the plant material used in study: KN; surveys and insect identification: KN; seed viability test: KN; statistical analyses: KN; writing - original draft preparation: KN, MM, AR, WS; writing - review and editing: KN, MM, AR, WS; funding acquisition: KN, MM.

Corresponding author

Correspondence to Kamil Najberek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najberek, K., Myśliwy, M., Rewicz, A. et al. Plant cuttings of invasive alien Impatiens glandulifera Royle develop flowers and produce viable seeds. Sci Rep (2026). https://doi.org/10.1038/s41598-025-33573-8

Download citation

  • Received: 18 March 2025

  • Accepted: 19 December 2025

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41598-025-33573-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Biological invasions
  • Cost-effectiveness
  • Invasive alien species (IAS)
  • Management
  • Nonlinear environmental effects
  • Survival mechanisms
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing