Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Comparative gut microbiome analysis of Rohu fish from Halda River and Kaptai Lake using 16S rRNA sequencing
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Comparative gut microbiome analysis of Rohu fish from Halda River and Kaptai Lake using 16S rRNA sequencing

  • Mohammad Sharif Uddin1Ā na1,
  • Kazi Chamonara2Ā na1,
  • Maksudur Rahman Nayem3,
  • Afifa Siddiqua4,
  • Salma Chowdhury5,
  • Imam Hossain1,
  • A. S. M. Lutful Ahasan6 &
  • …
  • Md. Habib Ullah MasumĀ  ORCID: orcid.org/0000-0002-0055-18957Ā na1Ā 

Scientific Reports , ArticleĀ number:Ā  (2026) Cite this article

  • 542 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Environmental sciences
  • Microbiology

Abstract

Freshwater ecosystems are vital for biodiversity and livelihoods in Bangladesh, where interest in fish gut microbiota is growing to aid aquaculture sustainability through microbial interventions. Therefore, this research investigated the bacteriomes of the gut of Rohu from the Halda River and Kaptai Lake, using Oxford Nanopore long-read 16S rRNA sequencing. The evaluation of diversity demonstrated notable variations in both alpha and beta diversity indices (p < 0.05). The fish in the Halda River had a varied bacteriome, mostly composed of Pirellulaceae_uncultured (9.26%), with environmentally tolerant taxa such as Exiguobacterium (5.48%). In contrast, the Kaptai Lake fish have a bacteriome that is abundant in probiotics, including Lactiplantibacillus (48.84%) and Pediococcus (8.82%). Water samples exhibited unique microbiological signatures: Halda River water was mostly characterized by Exiguobacterium (41.93%), while Kaptai Lake water was primarily composed of Acinetobacter (71.24%). Furthermore, functional analysis indicated that fish from the Halda River comprised metabolically diverse communities involved in nitrogen cycling, whereas the Kaptai Lake fish demonstrated a strong capacity for ammonia oxidation and pollutant breakdown. The research offers significant insights into the relationship between the host, microbiome, and environment, with implications for enhancing fish health and promoting sustainable aquaculture practices.

Similar content being viewed by others

In vitro study of the modulatory effects of heat-killed bacterial biomass on aquaculture bacterioplankton communities

Article Open access 16 November 2022

The effect of urbanization on planktonic and biofilm bacterial communities in different water bodies of the Danube River in Hungary

Article Open access 12 October 2024

Microbiome study of a coupled aquaponic system: unveiling the independency of bacterial communities and their beneficial influences among different compartments

Article Open access 11 November 2023

Data availability

Sequence data that support the findings of this study have been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) with the primary accession code [PRJNA1270017](https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1270017) .

References

  1. DOF. Yearbook of Fisheries Statistics of Bangladesh, 2022–23. 40, 138 (Fisheries Resource Survey System, Ministry of Fisheries and Livestock, 2023).

  2. Ferdous, M., Karim, M., Hossain, M., Rahman, M. & Iqbal, M. Fin fish assemblage and biodiversity status of carps on Halda River. Bangladesh. Ann. Vet. Anim. Sci. 2, 151–161 (2015).

    Google ScholarĀ 

  3. Arshad-Ul-Alam, M. & Azadi, M. Fisheries exploitation of the Halda River, Bangladesh. J. Fish. 4, 361–370 (2016).

    Google ScholarĀ 

  4. Nath, R. K. et al. Assessment of heavy metal concentration in the water of major carp breeding River Halda Bangladesh. Sustain. Chem. One World. 3, 100018 (2024). https://doi.org/10.1016/j.scowo.2024.100018.

  5. Patra, R. & Azadi, M. Hydrological conditions influencing the spawning of major carps in the Halda River, Chittagong, Bangladesh. Bangladesh J. Zool. 13, 63–72 (1985).

    Google ScholarĀ 

  6. Shampa, M. T. A., Shimu, N. J., Chowdhury, K. M. A., Islam, M. M. & Ahmed, M. K. A comprehensive review on sustainable coastal zone management in Bangladesh: present status and the way forward. Heliyon 9, 18190. https://doi.org/10.1016/j.heliyon.2023.e18190 (2023).

    Google ScholarĀ 

  7. Boyd, C. E. et al. Achieving sustainable aquaculture: historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 51, 578–633 (2020).

    Google ScholarĀ 

  8. Lima, R. et al. An overview on hydro-biology and management of Kaptai Lake fisheries. Bangladesh. Int. J. Aquac. Fish. Sci. 9, 29–39 (2023).

    Google ScholarĀ 

  9. Karmakar, S., Haque, S. S., Hossain, M. & Shafiq, M. Water quality of Kaptai reservoir in Chittagong Hill tracts of Bangladesh. J. For. Res. 22, 87–92 (2011).

    Google ScholarĀ 

  10. Ahmed, K., Rahman, S. & Ahammed, S. Managing fisheries resources in Kaptai Reservoir, Bangladesh. Outlook Agric. 35, 281–289 (2006).

    Google ScholarĀ 

  11. Naher, S. & Galib, S. Fishes of Kaptai Lake: management and conservation perspectives. J. Life Earth Sci. 15, 53–58 (2020).

    Google ScholarĀ 

  12. Arafeen, M. et al. Present status of fish diversity of the Kaptai Lake. J. Bangladesh Agric. Univ. 22, 506–516 (2024).

    Google ScholarĀ 

  13. Bakar, M. & Bhuyan, M. Assessment of water quality in Halda River (the major carp breeding ground) of Bangladesh. J. Pollut. 3, 429–444 (2017).

    Google ScholarĀ 

  14. Talwar, C., Nagar, S., Lal, R. & Negi, R. K. Fish gut microbiome: Current approaches and future perspectives. Indian J. Microbiol. 58, 397–414 (2018).

    Google ScholarĀ 

  15. Kanika, N. H. et al. Fish gut microbiome and its application in aquaculture and biological conservation. Front. Microbiol. 15, 1521048. https://doi.org/10.3389/fmicb.2024.1521048 (2025).

    Google ScholarĀ 

  16. See, M. S. et al. Aquatic microbiomes under stress: The role of gut microbiota in detoxification and adaptation to environmental exposures. J. Hazard. Mater. Adv. 17, 100612. https://doi.org/10.1016/j.hazadv.2025.100612 (2025).

    Google ScholarĀ 

  17. Stephens, W. Z. et al. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 10, 644–654 (2016).

    Google ScholarĀ 

  18. Li, X. et al. Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L.). PLoS ONE 8, 64577. https://doi.org/10.1371/journal.pone.0064577 (2013).

    Google ScholarĀ 

  19. Giatsis, C. et al. Probiotic legacy effects on gut microbial assembly in tilapia larvae. Sci. Rep. 6, 33965. https://doi.org/10.1038/srep33965 (2016).

    Google ScholarĀ 

  20. Nayak, S. K. Role of gastrointestinal microbiota in fish. Aquac. Res. 41, 1553–1573 (2010).

    Google ScholarĀ 

  21. Jyoti, & Dey, P. Mechanisms and implications of the gut microbial modulation of intestinal metabolic processes. Npj Metab. Health Dis. 3, 24 (2025).

    Google ScholarĀ 

  22. Pham, V. T., Dold, S., Rehman, A., Bird, J. K. & Steinert, R. E. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res. 95, 35–53 (2021).

    Google ScholarĀ 

  23. Llewellyn, M. S., Boutin, S., Hoseinifar, S. H. & Derome, N. Teleost microbiomes: The state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 5, 207 (2014).

    Google ScholarĀ 

  24. Lee, P.-T., Yamamoto, F. Y., Low, C.-F., Loh, J.-Y. & Chong, C.-M. Gut immune system and the implications of oral-administered immunoprophylaxis in finfish aquaculture. Front. Immunol. 12, 773193. https://doi.org/10.3389/fimmu.2021.773193 (2021).

    Google ScholarĀ 

  25. Linda, S. S. et al. Synbiotic supplementation boosts growth, gut health, and immunity in Asian fossil catfish (Heteropneustes fossilis). Aquac. Res. 2025, 4542077. https://doi.org/10.1155/are/4542077 (2025).

    Google ScholarĀ 

  26. RingĆø, E. et al. Effect of dietary components on the gut microbiota of aquatic animals: A never-ending story?. Anim. Nutr. 22, 219–282 (2016).

    Google ScholarĀ 

  27. El-Saadony, M. T. et al. The functionality of probiotics in aquaculture: an overview. Fish Shellfish Immunol. 117, 36–52 (2021).

    Google ScholarĀ 

  28. Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. 21, 3363–3378 (2012).

    Google ScholarĀ 

  29. Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).

    Google ScholarĀ 

  30. Maji, U. et al. Exploring the gut microbiota composition of Indian major carp, rohu (Labeo rohita), under diverse culture conditions. Genomics 114, 110354. https://doi.org/10.1016/j.ygeno.2022.110354 (2022).

    Google ScholarĀ 

  31. Cardona, E. et al. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiol. 16, 157 (2016).

    Google ScholarĀ 

  32. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    Google ScholarĀ 

  33. Percie du Sert, N. et al. The arrive guidelines 20: Updated guidelines for reporting animal research. PLoS Biol. 18, 3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).

    Google ScholarĀ 

  34. Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1. https://doi.org/10.1093/nar/gks808 (2013).

    Google ScholarĀ 

  35. Bonenfant, Q., NoƩ, L. & Touzet, H. Porechop_ABI: Discovering unknown adapters in Oxford Nanopore technology sequencing reads for downstream trimming. Bioinform. Adv. 3, 085. https://doi.org/10.1093/bioadv/vbac085 (2022).

    Google ScholarĀ 

  36. De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).

    Google ScholarĀ 

  37. Tyler, A. D. et al. Evaluation of Oxford Nanopore’s MinION sequencing device for microbial whole genome sequencing applications. Sci. Rep. 8, 10931. https://doi.org/10.1038/s41598-018-29334-5 (2018).

    Google ScholarĀ 

  38. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Google ScholarĀ 

  39. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/s13059-019-1891-0 (2019).

    Google ScholarĀ 

  40. McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, 61217. https://doi.org/10.1371/journal.pone.0061217 (2013).

    Google ScholarĀ 

  41. Oksanen, J. et al. Vegan: community ecology package. R Package Version 2.2–1, 1–2 https://cran.r-project.org/web/packages/vegan/vegan.pdf (2015).

  42. Arndt, D. et al. METAGENassist: A comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40, 88–95 (2012).

    Google ScholarĀ 

  43. RingĆø, E. et al. Lactic acid bacteria in finfish—An update. Front. Microbiol. 9, 1818. https://doi.org/10.3389/fmicb.2018.01818 (2018).

    Google ScholarĀ 

  44. Salma, U. et al. Occurrence, risks, and mitigation of antibiotic pollution in Bangladeshi aquaculture systems. Environ. Chem. Ecotoxicol. 7, 351–363 (2025).

    Google ScholarĀ 

  45. Okeke, E. S. et al. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environ. Sci. Pollut. Res. Int. 29, 69241–69274 (2022).

    Google ScholarĀ 

  46. Popoola, B. M., Adeyemi, O. A. & Samson, O. J. Antibiotic-resistant bacteria in tropical freshwater ecosystems: A review of occurrence, distribution and environmental implications. Microbe https://doi.org/10.1016/j.microb.2025.100457 (2025).

    Google ScholarĀ 

  47. Buckland, S. T., Magurran, A. E., Green, R. E. & Fewster, R. M. Monitoring change in biodiversity through composite indices. Phil. Trans. R. Soc. 360, 243–254 (2005).

    Google ScholarĀ 

  48. Yasmin, Z. et al. Comparison of fecal bacteriome of diarrhoeic and non-diarrhoeic calves revealed diversified community structures. Microbe 6, 100251. https://doi.org/10.1016/j.microb.2025.100251 (2025).

    Google ScholarĀ 

  49. Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).

    Google ScholarĀ 

  50. Liu, T.-T. & Yang, H. Comparative analysis of the total and active bacterial communities in the surface sediment of Lake Taihu. FEMS Microbiol. Ecol. 96, 059. https://doi.org/10.1093/femsec/fiaa059 (2020).

    Google ScholarĀ 

  51. Vitorino, I. R., Gambardella, N., Semedo, M., Magalhães, C. & Lage, O. M. Diversity and vertical distribution of Planctomycetota in the water column of the remote North Pacific. Environ. Microbiol. Rep. 17, 70063. https://doi.org/10.1111/1758-2229.70063 (2025).

    Google ScholarĀ 

  52. KaborƩ, O. D., Godreuil, S. & Drancourt, M. Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front. Cell. Infect. Microbiol. 10, 519301. https://doi.org/10.3389/fcimb.2020.519301 (2020).

    Google ScholarĀ 

  53. Katiku, M. M., Matofari, J. W. & Nduko, J. M. Preliminary evaluation of probiotic properties and safety profile of Lactiplantibacillus plantarum isolated from spontaneously fermented milk, Amabere amaruranu. Heliyon 8, 10342. https://doi.org/10.1016/j.heliyon.2022.e10342 (2022).

    Google ScholarĀ 

  54. Kumari, V. B. et al. Characterization of Lactobacillus spp. as probiotic and antidiabetic potential isolated from Boza, traditional fermented beverage in Turkey. Adv. Biol. 2024, 2148676. https://doi.org/10.1155/2024/2148676 (2024).

    Google ScholarĀ 

  55. Xie, G. et al. Functional genomic characterization reveals the probiotic tendency and safety assessment of Exiguobacterium acetylicum G1–33 isolated from the gut of the hybrid grouper (Epinephelus fuscoguttatus♀ Ɨ E. lanceolatus♂). Aquac. Rep. 36, 102127; https://doi.org/10.1016/j.aqrep.2024.102127 (2024).

  56. Bai, J. et al. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: ensiling characteristics, dynamics of bacterial community and their functional shifts. Microb. Biotechnol. 14, 1171–1182 (2021).

    Google ScholarĀ 

  57. Xiong, J. B., Nie, L. & Chen, J. Current understanding on the roles of gut microbiota in fish disease and immunity. Zool. Res. 40, 70–76 (2019).

    Google ScholarĀ 

  58. Luan, Y. et al. The fish microbiota: Research progress and potential applications. Engineering 29, 137–146 (2023).

    Google ScholarĀ 

  59. Mohammed, E. A. H., Ahmed, A. E. M., KovƔcs, B. & PƔl, K. The significance of probiotics in aquaculture: A review of research trend and latest scientific findings. Antibiotics 14, 302. https://doi.org/10.3390/antibiotics14030242 (2025).

    Google ScholarĀ 

  60. Zhang, Y., Shi, P. & Ma, J. Exiguobacterium spp. and their applications in environmental remediation. Chin. J. Appl. Environ. Biol. 19, 898–904 (2013).

    Google ScholarĀ 

  61. Delegan, Y. et al. Characterization and genomic analysis of Exiguobacterium alkaliphilum B-3531D, an efficient crude oil degrading strain. Biotechnol. Rep. 32, 00678. https://doi.org/10.1016/j.btre.2021.e00678 (2021).

    Google ScholarĀ 

  62. Howard, A., O’Donoghue, M., Feeney, A. & Sleator, R. D. Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence 3, 243–250 (2012).

    Google ScholarĀ 

  63. Hossain, M. et al. Mixed dye degradation by Bacillus pseudomycoides and Acinetobacter haemolyticus isolated from industrial effluents: a combined affirmation with wetlab and in silico studies. Arab. J. Chem. 15, 104078. https://doi.org/10.1016/j.arabjc.2022.104078 (2022).

    Google ScholarĀ 

  64. Jung, J. & Park, W. Acinetobacter species as model microorganisms in environmental microbiology: Current state and perspectives. Appl. Microbiol. Biotechnol. 99, 2533–2548 (2015).

    Google ScholarĀ 

  65. Benoit, T. et al. Acinetobacter calcoaceticus-baumannii complex prevalence, spatial-temporal distribution, and contamination sources in Canadian aquatic environments. Microbiol. Spectr. 12, 0150924. https://doi.org/10.1128/spectrum.01509-24 (2024).

    Google ScholarĀ 

  66. Segura, A., HernĆ”ndez SĆ”nchez, V., MarquĆ©s, S. & Molina, L. Insights in the regulation of the degradation of PAHs in Novosphingobium sp HR1a and utilization of this regulatory system as a tool for the detection of PAHs. Sci. Total Environ. 590–591, 381–393 (2017).

    Google ScholarĀ 

  67. Segura, A., Udaondo, Z. & Molina, L. PahT regulates carbon fluxes in Novosphingobium sp HR1a and influences its survival in soil and rhizospheres. Environ. Microbiol. 23, 2969–2991 (2021).

    Google ScholarĀ 

  68. Dong, Y. et al. Distinct gut microbial communities and functional predictions in divergent ophiuroid species: host differentiation, ecological niches, and adaptation to cold-water habitats. Microbiol. Spectr. 11, 0207323. https://doi.org/10.1128/spectrum.02073-23 (2023).

    Google ScholarĀ 

  69. Magnuson, E., Altshuler, I., Freyria, N. J., Leveille, R. J. & Whyte, L. G. Sulfur-cycling chemolithoautotrophic microbial community dominates a cold, anoxic, hypersaline Arctic spring. Microbiome 11, 203. https://doi.org/10.1186/s40168-023-01628-5 (2023).

    Google ScholarĀ 

  70. Hou, Y., Jia, R., Ji, P., Li, B. & Zhu, J. Organic matter degradation and bacterial communities in surface sediment influenced by Procambarus clarkia. Front. Microbiol. 13, 985555. https://doi.org/10.3389/fmicb.2022.985555 (2022).

    Google ScholarĀ 

  71. Hayatsu, M., Tago, K. & Saito, M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. J. Plant Nutr. Soil Sci. 54, 33–45 (2008).

    Google ScholarĀ 

  72. Omori, T., Iwata, K., Yu, S. S. & Azlan, N. N. A. Ammonia Accumulation of Novel Nitrogen-Fixing Bacteria in Biotechnology—Molecular Studies and Novel Applications for Improved Quality of Human Life (ed Sammour, R. H.) (IntechOpen, 2012).

  73. Wang, X. et al. Adaptation and assembly of microbial communities under saline-alkaline stress in paddy ecosystems: implications for nitrogen and carbon cycling. Environ. Technol. Innov. 39, 104329. https://doi.org/10.1016/j.eti.2025.104329 (2025).

    Google ScholarĀ 

  74. Zhang, K. et al. Fish growth enhances microbial sulfur cycling in aquaculture pond sediments. Microb. Biotechnol. 13, 1597–1610 (2020).

    Google ScholarĀ 

Download references

Acknowledgements

We are thankful to the Research and Extension, and Department of Genomics and Bioinformatics, Chattogram Veterinary and Animal Sciences University.

Funding

This research is funded by the Research and Extension (Grant ID: 830-75) Division of Chattogram Veterinary and Animal Sciences University, Chattogram.

Author information

Author notes
  1. Mohammad Sharif Uddin, Kazi Chamonara and Md. Habib Ullah Masum contributed equally to this work.

Authors and Affiliations

  1. Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh

    Mohammad Sharif UddinĀ &Ā Imam Hossain

  2. Department of Environmental Biotechnology, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University, Khulshi, 4225, Bangladesh

    Kazi Chamonara

  3. DNA Solution Ltd. (NGS Division), Bridge Momtaz Heights, Dhaka, 1207, Bangladesh

    Maksudur Rahman Nayem

  4. Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulsi, Chattogram, 4225, Bangladesh

    Afifa Siddiqua

  5. Department of Industrial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University, Khulshi, 4225, Bangladesh

    Salma Chowdhury

  6. Department of Anatomy and Histology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, 4225, Bangladesh

    A. S. M. Lutful Ahasan

  7. Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University, Khulshi 4225, Chattogram, Bangladesh

    Md. Habib Ullah Masum

Authors
  1. Mohammad Sharif Uddin
    View author publications

    Search author on:PubMedĀ Google Scholar

  2. Kazi Chamonara
    View author publications

    Search author on:PubMedĀ Google Scholar

  3. Maksudur Rahman Nayem
    View author publications

    Search author on:PubMedĀ Google Scholar

  4. Afifa Siddiqua
    View author publications

    Search author on:PubMedĀ Google Scholar

  5. Salma Chowdhury
    View author publications

    Search author on:PubMedĀ Google Scholar

  6. Imam Hossain
    View author publications

    Search author on:PubMedĀ Google Scholar

  7. A. S. M. Lutful Ahasan
    View author publications

    Search author on:PubMedĀ Google Scholar

  8. Md. Habib Ullah Masum
    View author publications

    Search author on:PubMedĀ Google Scholar

Contributions

M. S. U., K. C. and M. H. U. M. Conceptualized and designed the study outline, performed all the analyses, prepared the figures, wrote and revised the manuscript; M. R. N., S. C., A. S. and I. H. performed the analyses, wrote the manuscript; M. S. U., M. H. U. M. and ASM. L. A. Supervised the study and revised the manuscript; All authors have agreed with the manuscript and provided their consent for publication.

Corresponding author

Correspondence to Md. Habib Ullah Masum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The Ethics Approval Committee (EAC) of Chattogram Veterinary and Animal Sciences University (CVASU) reviewed and authorized the study protocol (Approval no. CVASU/Dir (R&E) EC/2025/881/15).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.S., Chamonara, K., Nayem, M.R. et al. Comparative gut microbiome analysis of Rohu fish from Halda River and Kaptai Lake using 16S rRNA sequencing. Sci Rep (2026). https://doi.org/10.1038/s41598-025-33754-5

Download citation

  • Received: 23 July 2025

  • Accepted: 22 December 2025

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41598-025-33754-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gut bacteriome
  • Lactic acid bacteria
  • Probiotic
  • Oxford Nanopore sequencing
  • Sustainable aquaculture
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology