Abstract
The subject of this multidisciplinary forensic archaeological-anthropological research is a near-complete skeleton of a woman aged 40–49 years with possible perimortal cranial trauma, found within a known archaeological site from the 7th−3rd century calBCE. The skeleton (without any artefacts) was exhumed by speleologists from a depth of 14 metres, 2.8 m below the sedimentary deposit, in a deep and narrow karst abyss known as Studňa na Jame, which is located in the district of Liptovský Mikuláš in the Low Tatra Mountains (Liptov Region, north Slovakia). Enthesopathies rank her among strong, physically-working individuals living in a mountainous terrain. Analysis of δ13C and δ15N testify to a terrestrial diet with high animal protein. A Bayesian chronological model with two 14C dates and osteological prior information suggested her death occurred in the 19th−20th centuries calCE. Oral history research in the nearby village concluded that reportedly, after 1870, an adult woman of a known name had gone missing. Genealogical and archival research produced her date of birth and later corrected the earliest possible date of missing to 1891. Analysis of nuclear and mitochondrial aDNA extracted from her molar were used for identification of the skeletal remains. Her only found living female offspring could not be sampled for DNA due to ethical reasons. Therefore, profound archival genealogical research was conducted and two living distant matrilineal relatives were identified. They were chosen as probands and were DNA matched as relatives of the studied woman, whom we refer to as LM. Hence, we could add her date of birth as new prior information in the Bayesian chronological model and, eventually, estimate her date of death to 1891–1911 calCE. In Slovakia, this is the first forensic archaeological-anthropological case of successful identification of a missing person from skeletal remains using a strong, multidisciplinary, case-specific research toolkit rooted both in sciences and humanities.
References
Laučík, P. Ľudia a jaskyne na Slovensku. Historická Revue. 10, 48–51 (2015).
Bárta, J. Liptovské jaskyne v praveku in Kras a jaskyne - výskum, využívanie a ochrana. Vedecká konferencia k 75. narodeninám RNDr. A. Droppu, CSc. (ed. Lalkovič, M.) 31–35 (SMOPaJ L. Mikuláš, (1996).
Šimková, Z. Osídlenie jaskýň Liptova (História speleoarcheologických výskumov a nálezov na Liptove). Slovenský Kras (Acta carsologica Slovaca), Zborník Slovenského múzea ochrany prírody a jaskyniarstva a Správy slovenských jaskýň v Liptovskom Mikuláši 46, 119–141 (2006).
Furman, M. et al. Nové objavy v Žilinskom kraji II. Archeologické aktivity v rokoch 2018–2022. (2024). (Spolok SEPTENTRIO Žilina.
Herich, P., Expedícia Jama. Spravodaj SSS. 47, 26–30 (2016).
Furman, M. Opevnenia na Liptove. Refúgiá, hradiská a hrádky od praveku po stredovek. (Žilina, (2016).
Benediková, L., Hajnalová, M., Furman, M., Lieskovský, T. & Zachar, J. Into the hills we go… Understanding the function of the prehistoric extreme upland sites in the Slovakian part of the Western Carpathians. Slov. Arch. 72, 273–324. https://doi.org/10.31577/slovarch.2024.72.8 (2024).
Barta, P., Hajnalová, M., Benediková, L., Dreslerová, D. & Pieta, K. Radiocarbon dated pulse and cereal crops indicate diachronic use of Iron age extreme upland sites in the Western Carpathians, Slovakia. Geochronometria. 50, 1–20. https://doi.org/10.2478/geochr-2023-0001 (2023).
Kettner, R. Předběžná zpráva o dosavadních geologických výzkumech v Nízkych Tatrách. Rozpravy II třídy České Akademie. 36, 1–18 (1927).
Droppa, A. Demänovské jaskyne. Krasové zjavy Demänovskej doliny (Vydavateľstvo SAV Bratislava, 1957).
Holúbek, P. Správa zo 40. jaskyniarskeho týždňa "Demänovská Dolina". Spravodaj SSS. 30, 25 (1999).
Holúbek, P. Studňa na jame v Demänovskej doline. Spravodaj SSS. 31, 14–15 (2000).
Furman, M. Výskumná dokumentácia z archeologického prieskumu refúgia „Na Jame v k. ú. Demänovská Dolina a Pavčina Lehota. (KPUZA- (2016).FUR), č. výskumnej dokumentácie 1/2016 (Research report; depon. in KPÚ Žilina, (2016).
Martin, R. & Saller, K. Lehrbuch Der Anthropologie in Systematischer Darstellung (G. Fisher, 1957).
Knussmann, R. Anthropologie. Handbuch Der Vergleichenden Biologie Des Menschen. Band I: Wesen Und Methoden Der Anthropologie (Spektrum Akademischer, 1988).
Acsádi, G. & Nemeskéri, J. History of Human Life Span and Mortality (Akadémiai Kiadó Budapest, 1970).
Bruzek, J. A method for visual determination of sex, using the human hip bone. Am. J. Phys. Anthropol. 117, 157–168. https://doi.org/10.1002/ajpa.10012 (2002).
Lovejoy, O. C., Meindl, R. S., Pryzbeck, T. R. & Mensforth, R. P. Chronological metamorphosis of the auricular surface of the ilium: A new method for the determination of adult skeletal age at death. Am. J. Phys. Anthropol. 68, 15–28. https://doi.org/10.1002/ajpa.1330680103 (1985).
Brooks, S. & Suchey, J. M. Skeletal age determination based on the os pubis: a comparison of the Acsádi–Nemeskéri and Suchey–Brooks methods. Hum. Evol. 5, 227–238. https://doi.org/10.1007/BF02437238 (1990).
Sjøvold, T. Estimation of stature from long bones utilizing the line of organic correlation. Hum. Evol. 5, 431–447. https://doi.org/10.1007/BF02435593 (1990).
Villotte, S. Connaissances médicales actuelles, cotation des enthésopathies: Nouvelle méthode. Bull. Mém Soc. Anthropol. 18, 65–85. https://doi.org/10.4000/bmsap.1325 (2006).
Villotte, S. Enthésopathies et activités des hommes préhistoriques: Recherche méthodologique et application aux fossiles européens du Paléolithique supérieur et du MésolithiqueArchaeopress Oxford, (2009).
Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242. https://doi.org/10.1038/230241a0 (1971).
Hatfield, R. E-mail communication on bone and tooth pretreatment in the Beta Analytic, Miami, FL, USA. April 4 and June 23, (2025).
Sealy, J., Johnson, M., Richards, M. & Nehlich, O. Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. JAS 47, 64–69. https://doi.org/10.1016/j.jas.2014.04.011 (2014).
van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695. https://doi.org/10.1006/jasc.1998.0385 (1999).
Bronk Ramsey, C. OxCal program, v4.4.4. (2024). https://c14.arch.ox.ac.uk/oxcal.html
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S0033822200033865 (2009).
Reimer, P. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757. https://doi.org/10.1017/RDC.2020.41 (2020).
Millard, A. Conventions for reporting radiocarbon ages. Radiocarbon 56, 555–559. https://doi.org/10.2458/56.17455 (2014).
Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2, 1756–1762. https://doi.org/10.1038/nprot.2007.247 (2007).
Šebest, L. et al. Detection of mitochondrial haplogroups in a small Avar-Slavic population from the eigth-ninth century AD. Am. J. Phys. Anthropol. 165, 536–553. https://doi.org/10.1002/ajpa.23380 (2018).
Weissensteiner, H. et al. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud. Nucleic Acids Res. 44 (W1). https://doi.org/10.1093/nar/gkw247 (2016). W64-W69.
Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147. https://doi.org/10.1038/13779 (1999).
Van Oven, M. PhyloTree Build 17: Growing the human mitochondrial DNA tree. Forensic Sci. Int. : Genet. Suppl. Ser. e392-e394 https://doi.org/10.1016/j.fsigss.2015.09.155 (2015).
Horáčková, L., Strouhal, E. & Vargová, L. Základy paleopatologie. Panoráma biologické a sociokulturní antropologie. Modulové učební texty pro studenty antropologie a „příbuzných oborů (Masarykova univerzita Brno, 2004).
Genant, H. K., Wu, C. Y., van Kuijk, C. & Nevitt, M. C. Vertebral fracture assessment using a semiquantitative technique. J. Bone Min. Res. 8, 1137–1148. https://doi.org/10.1002/jbmr.5650080915 (1993).
Genant, H. K., Li, J., Wu, C. Y. & Shepherd, J. A. Vertebral fractures in osteoporosis: a new method for clinical assessment. J. Clin. Densitom. 3, 281–290. https://doi.org/10.1385/JCD:3:3:281 (2000).
Donnally, I. I. I., Margetis, C. J. & Varacallo, M. A. K. Vertebral Compression Fractures. [Updated 2025 May 4]. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. (2025). https://www.ncbi.nlm.nih.gov/books/NBK448171/
Myers, E. R. & Wilson, S. E. Biomechanics of osteoporosis and vertebral fracture. Spine 22, 25S–31S. https://doi.org/10.1097/00007632-199712151-00005 (1997).
Brickley, M. B. Rib fractures in the archaeological record: a useful source of sociocultural information? Int. J. Osteoarchaeol. 16, 61–75. https://doi.org/10.1002/oa.809 (2006).
Heary, R. F. & Kumar, S. Decision-making in burst fractures of the thoracolumbar and lumbar spine. Indian J. Orthop. 41, 268–276. https://doi.org/10.4103/0019-5413.36986 (2007).
Currarino, G., Rollins, N. & Diehl, J. T. Congenital defects of the posterior arch of the atlas: a report of seven cases including an affected mother and son. AJNR Am. J. Neuroradiol. 15, 249–254 Erratum in: AJNR Am. J. Neuroradiol. 15, A9 (1994). (1994).
Mariotti, V., Facchini, F. & Belcastro, M. G. Enthesopathies–proposal of a standardized scoring method and applications. Coll. Antropol. 28, 145–159 (2004).
DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317, 806–809. https://doi.org/10.1038/317806a0 (1985).
Svyatko, S. V., Reimer, P. J. & Schulting, R. Modern freshwater reservoir offsets in the Eurasian steppe: implications for archaeology. Radiocarbon 59, 1597–1607. https://doi.org/10.1017/RDC.2017.11 (2017).
Svyatko, S. V. et al. Freshwater reservoir effects in archaeological contexts of Siberia and the Eurasian steppe. Radiocarbon 64, 377–388. https://doi.org/10.1017/RDC.2022.21 (2022).
van Klinken, G. J., Richards, M. P. & Hedges, R. E. M. An overview of causes for stable isotopic variation in past European human populations: environmental, ecophysiological, and cultural effects in Biogeochemical Approaches to Paleodietary Analysis (eds Ambrose, S. H. & Katzenberg, M. A.) 39–63 (Kluwer Academic/Plenum New York (2000).
Blau, S. et al. Moving from the unknown to the known: a multidisciplinary approach to the identification of skeletal remains from sandy Point, Australia. Forensic Sci. Res. 9, owae032. https://doi.org/10.1093/fsr/owae032 (2024).
Blau, S. Routledge New York,. More than just bare bones: Ethical considerations for forensic anthropologists in Handbook of forensic anthropology and archaeology (eds. Blau, S. & Ubelaker, D. H.) 593–606 (2016).
Acknowledgements
We would like to sincerely thank Christopher Bronk Ramsey for his advice on OxCal modeling, Jakub Tamaškovič for creating a map with the location of the karst abyss Studňa na Jame, and Michael Sabo for proofreading the manuscript. Radiocarbon and stable isotopic analyses were covered by a donor from the Slovak Republic.
Funding
This research was funded by: the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V04-00672 – Peter Barta; Slovak Research and Development Agency (APVV-23-0299) – Marian Baldovič, Silvia Bodoriková and Michaela Dörnhöferová; The Cultural and Educational Grant Agency of the Ministry of Education, Research, Development and Youth of the Slovak Republic (KEGA 028UK-4/2023) – Michaela Dörnhöferová and Silvia Bodoriková; Scientific Grant Agency of the Ministry of Education, Research, Development and Youth of the Slovak Republic and the Slovak Academy of Sciences (VEGA 1/0333/26) – Silvia Bodoriková and Michaela Dörnhöferová.
Author information
Authors and Affiliations
Contributions
Peter Barta: Writing – original draft, Methodology, Archaeological analysis, Radiocarbon dating analysis, Formal analysis; Michaela Dörnhöferová: Methodology, Formal analysis, Anthropological and palaeopathological analysis, Visualization, Formal analysis; Marián Baldovič : Methodology, DNA analysis; Gabriela Bľandová : Methodology, DNA analysis; Zuzana Šimková: Methodology, Archaeological analysis, Validation, Formal analysis; Michaela Kerešová: Methodology, Genealogical analysis, Validation; Pavel Herich: Methodology, Speleological analysis and excavation, Validation, Formal analysis; Peter Laučík: Methodology, Speleological analysis and excavation, Validation, Formal analysis; Silvia Bodoriková: Writing – review and editing, Writing – original draft, Visualization, Methodology, Anthropological and palaeopathological analysis, Formal analysis, Conceptualization.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical declaration
The authors confirm that all experiments using human dental tissues and buccal scrapings were performed in accordance with regular guidelines and regulations valid in the Slovak Republic. DNA sampling and analysis were approved by the Ethics Committee of the Faculty of Natural Sciences, Comenius University in Bratislava (application number ECH19018).
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
41598_2025_34905_MOESM1_ESM.jpg
Supplementary Material 1 Suppl. Fig. 1. Gel electrophoresis image of PCR amplicons targeting HVR1 regions of mtDNA (positions 16159–16264 and 16282–16400). Samples include multiple ancient DNA extracts, the Demänovská Valley sample (DJ), positive controls, and a negative control. The figure demonstrates successful amplification and absence of contamination.
41598_2025_34905_MOESM2_ESM.jpg
Supplementary Material 2 Suppl. Fig. 2. Antemortem, perimortem and postmortem changes in the skeleton. Green arrows – antemortem traumas in L1 vertebra and 5th right rib; Blue arrow – perimortem trauma in the right parietal bone; Yellow arrows – postmortem lesions in the frontal bone, right zygomatic arch, ribs, left humerus and both fibulae.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Barta, P., Dörnhöferová, M., Baldovič, M. et al. Multidisciplinary identification of human skeletal remains from the karst abyss in Demänovská Valley (19th–20th century calCE, Slovakia). Sci Rep (2026). https://doi.org/10.1038/s41598-025-34905-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-34905-4