
Exploring the comorbidity 
mechanisms between 
atherosclerosis and hashimoto’s 
thyroiditis based on microarray and 
single-cell sequencing analysis
Yirong Ma1, Shuguang Wu3, Junyu Lai2, Qiang Wan2, Jingxuan Hu1, Yanhong Liu1, Ziyi Zhou1 
& Jianguang Wu2

Atherosclerosis (AS) is a chronic vascular disease characterized by inflammation of the arterial wall 
and the formation of cholesterol plaques. Hashimoto’s thyroiditis (HT) is an autoimmune disorder 
marked by chronic inflammation and destruction of thyroid tissue. Although previous studies have 
identified common risk factors between AS and HT, the specific etiology and pathogenic mechanisms 
underlying these associations remain unclear. We obtained relevant datasets for AS and HT from 
the Gene Expression Omnibus (GEO). By employing the Limma package, we pinpointed common 
differentially expressed genes (DEGs) and discerned co-expression modules linked to AS and HT 
via Weighted Gene Co-expression Network Analysis (WGCNA). We elucidated gene functions and 
regulatory networks across various biological scenarios through enrichment and pathway analysis 
using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Core genes were 
identified using Cytoscape software and further validated with external datasets. We also conducted 
immune infiltration analysis on these core genes utilizing the CIBERSORT method. Lastly, Single-
cell analysis was instrumental in uncovering common diagnostic markers. Based on differential 
analysis and WGCNA, we identified 119 candidate genes within the cohorts for AS and HT. KEGG and 
GO enrichment analyses indicate that these genes are significantly involved in antigen processing 
and presentation, along with various immune-inflammatory pathways. Two pivotal genes, PTPRC 
and TYROBP, were identified using five algorithms from the cytoHubba plugin. Validation through 
external datasets confirmed their substantial diagnostic value for AS and HT. Moreover, the results 
of Gene Set Enrichment Analysis (GSEA) indicated that these core genes are significantly enriched in 
various receptor interactions and signaling pathways. Immune infiltration analysis revealed a strong 
association of lymphocytes and macrophages with the pathogenesis of AS and HT. Single-cell analysis 
demonstrated predominant expression of the core genes in macrophages, monocytes, T cells and 
Common Myeloid Progenitor (CMP). This study proposes that an aberrant immune response might 
represent a shared pathogenic mechanism in AS and HT. The genes PTPRC and TYROBP are identified 
as critical potential biomarkers and therapeutic targets for these comorbid conditions. Furthermore, 
the core genes and their interactions with immune cells could serve as promising targets for future 
diagnostic and therapeutic strategies.
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HT	� Hashimoto’s thyroiditis
GO	� Gene ontology
KEGG	� Kyoto Encyclopedia of Genes and Genomes
GEO	� Gene Expression Omnibus
PPI	� Protein–protein interaction
DEGs	� Differentially expressed genes
WGCNA	� weighted gene coexpression network
GSEA	� Gene Set Enrichment Analysis
scRNA-seq	� single-cell RNA sequencing
NES	� normalized enrichment score
FDR	� false positive rate
TOM	� topological overlap matrix
MAD	� median absolute deviation
ROC	� Receiver Operating Characteristic
AUC	� Area Under the Curve
t-SNE	� t-distributed stochastic neighbor embedding

Atherosclerosis (AS) is a chronic inflammatory disease marked by endothelial cell damage and cholesterol 
accumulation, which initiates an immune-inflammatory response, resulting in vessel wall thickening and plaque 
formation1. This disease process is a primary contributor to cardiovascular diseases worldwide, substantially 
altering vascular structure and function, and is strongly linked with critical complications such as myocardial 
infarction and stroke2,3. Driven by shifts in global lifestyles and the rise in aging populations, the incidence of 
AS continues to grow each year. The research delineated in the Global Burden of Disease Study highlights a 
significant rise in the incidence of cardiovascular diseases over a span from 1990 to 2019, where the number of 
cases escalated from 271 million to an alarming 523 million. Additionally, deaths attributed to cardiovascular 
conditions showed a consistent upward trajectory, climbing from 12.1 million to 18.6 million4,5. On a different 
note, Hashimoto’s Thyroiditis (HT), a prevalent autoimmune disorder of the thyroid, is marked by persistent 
thyroid gland inflammation and the generation of autoantibodies that frequently result in hypothyroidism. The 
disease typically presents with symptoms of hypothyroidism and thyroid enlargement, and in severe cases, it 
may precipitate a temporary hyperthyroid phase6. The pathogenesis of HT is multifaceted, involving genetic, 
environmental, and immunological factors7,8. Furthermore, HT often manifests alongside other autoimmune 
disorders, including rheumatoid arthritis and systemic lupus erythematosus, indicating a more extensive pattern 
of immune system malfunction9. Patients with HT exhibit an elevated cardiovascular (CV) risk. Numerous 
studies have demonstrated that hypothyroidism heightens the risk of cardiovascular diseases and AS, exhibiting 
strong independent correlations with aortic AS and myocardial infarction10,11. Moreover, a meta-analysis by 
Ochs et al. revealed that the risk of coronary heart disease (CHD) in individuals with subclinical hypothyroidism 
increases by approximately 20%. These findings highlight the tight link between thyroid dysfunction and AS. The 
thyroid gland plays an essential role in regulating metabolism and cardiovascular function. Its dysfunction can 
directly impact vascular health and exacerbate the progression of AS via effects on lipid metabolism, endothelial 
function, and inflammatory responses10,11. Therefore, delineating the interrelationship between HT and AS is 
essential for the effective prevention and management of cardiovascular diseases.

Although the precise mechanisms linking AS and HT remain elusive, both conditions underscore the 
critical role of inflammation and immune system dysregulation. AS typically begins with the subendothelial 
accumulation of low-density lipoprotein (LDL), provoking a localized inflammatory response12. This 
inflammation is intensified as macrophages ingest LDL and transform into foam cells, leading to endothelial 
damage and hardening of the vascular wall13. Conversely, the pathogenesis of HT involves intricate interactions 
among various immune cells and inflammatory mediators within the thyroid gland. Notably, there is a marked 
increase in T lymphocytes, B lymphocytes, and their subsets, which exacerbate the condition by secreting 
a range of cytokines (such as IL-1, IL-6, TNF-α) and chemokines (such as CXCL10, CCL2). These immune 
mediators not only sustain the chronic inflammatory state in the thyroid but also induce structural and 
functional impairments6,14. Furthermore, both diseases share a heightened immune-inflammatory response, 
exemplified by elevated levels of biomarkers like C-reactive protein (CRP), interleukin-6 (IL-6), and tumor 
necrosis factor (TNFα), indicating active inflammation and reflecting disease severity and progression15–18. 
This shared characteristic of immune-inflammatory response enhances our understanding of the interaction 
mechanisms between diseases and supports the development of new therapeutic approaches, thereby potentially 
improving treatment efficacy. Therefore, comprehensive research into these common pathological features is 
vital for devising broad-spectrum therapeutic strategies.

Despite numerous studies establishing a correlation between AS and HT, a clear consensus on their 
common etiology and pathogenesis remains elusive. Consequently, this study aims to enhance targeted clinical 
interventions by thoroughly analyzing the shared pathogenic mechanisms of these diseases. Leveraging gene 
expression profiles from public databases, we conducted DEG analysis and WGCNA to identify key genes 
implicated in both conditions. Additionally, through functional enrichment analysis, we explored relevant 
biological pathways. Utilizing five algorithms from the Cytohubba plugin, this study also delineated the core 
genes of these diseases and examined their associations with immune cell infiltration in AS and HT. Employing 
single-cell technology, we conducted a deeper analysis of these core gene expressions within diverse immune cells 
from patients with AS. The methodology and principal findings of this research are depicted in Fig. 1. Through 
this comprehensive series of analyses, we aspire to deepen our understanding of the comorbidity mechanisms 
between AS and HT and to identify potential therapeutic targets that could enhance patient outcomes.
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Materials and methods
Data source
We sourced transcriptome datasets (GSE100927, GSE28829, GSE138198, and GSE29315) and a single-cell dataset 
(GSE155512) from the GEO database. Regarding AS, the dataset GSE100927 (platform: GPL17077) comprised 
69 atherosclerotic and 35 healthy arterial samples. GSE28829 (platform: GPL570) included 16 late-stage and 
13 early-stage atherosclerotic plaque samples. Additionally, GSE155512 (platform: GPL24676) encompassed 
3 atherosclerotic samples. For HT, dataset GSE138198 (platform: GPL6244) contained 13 HT and 3 normal 
thyroid samples, while GSE29315 (platform: GPL8300) included 6 HT and 8 thyroid hyperplasia samples.

Differential gene expression screening
We performed gene expression analysis on datasets GSE28829 and GSE138198 for AS and HT, respectively. 
DEGs were identified using the Limma package in R (Version 4.4.0, released on June 10, 2024), adhering to 
criteria of Log2|fold change (FC)|> 1 and adjusted p value < 0.05. We generated volcano plots and heatmaps for 
the top 20 ranked DEGs using the ‘ggplot’ package. The ‘VennDiagram’ package was then employed to identify 
common DEGs between AS and HT.

Construction and module analysis of WGCNA
A methodology known as WGCNA enhances the investigation of biologically meaningful co-expressed gene 
modules and probes the connections between gene networks and diseases. In our research, we utilized the 
‘WGCNA’ package in R to develop a gene co-expression network, targeting the exploration of associations 
between genes and phenotypes19. Initially, we selected the upper quartile of genes displaying the greatest median 
absolute deviation (MAD). Subsequently, we computed the Pearson correlation matrix for all gene pairings and 
crafted a weighted adjacency matrix using average linkage along with weighted correlation coefficients. The 
adjacency matrix was established by applying a ‘soft’ thresholding power (b), which was then converted into a 
topological overlap matrix (TOM). For clustering genes with analogous expression patterns, we implemented 
average linkage hierarchical clustering based on TOM-derived dissimilarity, setting a threshold for the minimum 
module size at 60. Finally, we examined the similarity among genes within these modules, defined a threshold 
for cutting the module dendrogram, and amalgamated several modules. The WGCNA analysis enabled us to 

Fig. 1.  Workflow of the analysis.
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pinpoint significant modules related to AS and HT, and to create visual representations of characteristic gene 
networks.

GO and KEGG enrichment analysis
GO and KEGG analysis facilitate systematic annotation and enrichment of gene functions and biological 
metabolic pathways, thereby enriching our understanding of the functional aspects contained within biological 
data20–23. We performed these analyses using the ‘clusterProfiler’ package in R, identifying significant pathways 
at a threshold of P < 0.05. The results were visualized using the ‘ggplot2’ package.

PPI network construction and cluster analysis
We employed the STRING database (http://string-db.org, released on June 12, 2024) to extract gene interactions. 
The resulting protein–protein interaction (PPI) network was visualized utilizing Cytoscape (version 3.10.1, 
released on June 12, 2024), with an interaction score threshold exceeding 0.4. Further, we performed cluster 
analysis through the MCODE algorithm integrated within the Cytoscape plugin24. The defined parameters for 
this analysis were a degree cutoff of 2, a node score cutoff of 0.2, a K-core of 2, and a maximum depth of 100.

Selection and validation of core genes
We utilized five algorithms from the cytoHubba plugin—MCC, MNC, Degree, EPC, and Bottleneck—to identify 
the top 10 genes ranked by each method. Subsequently, we employed the Jvenn online tool ​(​​​h​t​t​p​s​:​/​/​j​v​e​n​n​.​t​o​u​l​o​u​
s​e​.​i​n​r​a​e​.​f​r​/​a​p​p​/​e​x​a​m​p​l​e​.​h​t​m​l​​​​​, released on June 12, 2024)25 to intersect the genes identified by these algorithms, 
identifying two shared core genes. For validation, datasets GSE100927 and GSE29315 were used for AS and 
HT, respectively, with the expression of core genes confirmed using the ‘ggpubr’ R package. Additionally, we 
conducted Receiver Operating Characteristic (ROC) curve analysis using the ‘pROC’ R package, utilizing the 
Area Under the Curve (AUC) as a measure of reliability.

Gene set enrichment analysis
Upon pinpointing the central genes, GSEA was utilized for AS and HT employing the ‘clusterProfiler’ package. 
Patients diagnosed with AS or HT were categorized into groups with high and low gene expression, determined 
by the median expression levels of the central genes. GSEA was then applied to compute enrichment scores for 
gene sets, which illuminated differing functional phenotypes. Additionally, GSEA facilitated the comparison 
of biological pathways between the two expression groups, referencing the c5.go.bp.v7.5.1.entrez.gmt gene set. 
Gene sets achieving a p value < 0.05, a normalized enrichment score (NES) > 1, and a false positive rate (FDR) q-
value < 0.05 were deemed significantly enriched. Enrichment plots prominently displayed the top five activating 
and inhibiting pathways for each essential gene in both conditions.

Immune infiltration analysis
Immune cell infiltration was assessed using the CIBERSORT algorithm to investigate the associations between 
different immune cell populations and disease conditions. This algorithm deciphers the composition of immune 
cells from gene expression data. Using the CIBERSORT R package26 and the LM22 gene signature from the 
CIBERSORT website, we quantified 22 types of immune cells. Pearson correlation analysis was then used to 
elucidate the relationships between various immune cell phenotypes and critical genes, which were visually 
represented in lollipop plots.

Single-cell sequencing analysis
Due to the absence of suitable single-cell RNA sequencing (scRNA-seq) datasets for HT, we downloaded only 
the AS scRNA-seq dataset GSE155512 from the GEO database. We conducted downstream analyses using the 
Seurat R package (version 4.4.0, released on June 16, 2024)27. Initially, we created a Seurat object from the 
read single-cell expression data and conducted quality control, excluding cells with fewer than 50 expressed 
genes and those with a mitochondrial gene expression ratio exceeding 5%. The data underwent normalization 
via the LogNormalize technique, followed by the identification of 1500 highly variable genes through the 
‘FindVariableFeatures’ function. Principal Component Analysis (PCA) was then executed, along with cluster 
analysis using Seurat’s ‘FindClusters’ function. Additionally, t-distributed stochastic neighbor embedding 
(t-SNE) was utilized for nonlinear dimensionality reduction, facilitating the visualization of the data in t-SNE 
plots.

Results
Identification of differentially expressed genes
In the AS dataset GSE28829, we identified 308 DEGs, of which 257 were upregulated and 51 were downregulated. 
Similarly, in the HT dataset GSE138198, 1773 DEGs were identified, with 899 upregulated and 874 downregulated. 
The expression patterns of DEGs in both conditions are depicted using volcano plots (Fig. 2A,B). The top 20 
DEGs for AS and HT are represented in heatmaps (Fig. 2C,D). Notably, there is a shared differential expression 
of 75 genes between AS and HT (Fig. 3A,B).

WGCNA analysis of AS and HT
We performed WGCNA on the AS dataset GSE28829 and the HT dataset GSE138198 to identify highly associated 
modules. No significant outliers were found in either dataset. For GSE28829, a “soft” threshold of β = 12 was 
established based on scale independence and mean connectivity (Supplementary material 1), and 10 modules 
were detected. Clinical correlation analysis indicated that the “MEturquoise” and “MEred” modules exhibited 
the strongest positive and negative correlations with AS, respectively (MEturquoise: r = 0.82, p = 4e−08; MEred: 
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r = − 0.74, p = 5e−06) (Fig. 4A,C). Similarly, for GSE138198, a “soft” threshold of β = 10 was selected, identifying 
10 modules. The “MEblack” and “MEcyan” modules showed the highest positive and negative correlations with 
HT, respectively (MEblack: r = 0.77, p = 4e−04; MEcyan: r = − 0.91, p = 1e−06) (Fig. 4B,D). Subsequently, these 
pivotal modules were targeted for further analysis. Intersection analysis of the genes from these key modules 
identified 45 potential driver genes common to both AS and HT (Fig. 5D).

Enrichment analysis of genes jointly driving AS and HT
We identified 75 common DEGs between AS and HT and discovered 45 overlapping genes within key modules. 
To ensure comprehensive coverage of potential key genes, we merged the DEGs with genes from these modules. 
After eliminating duplicates, 119 candidate genes were identified, which are hypothesized to jointly contribute to 

Fig. 3.  Venn plot of common DEGs between AS and HT. (A) Intersection of up-regulated DEGs. (B) 
Intersection of down-regulated DEGs.

 

Fig. 2.  Volcano plot and Heatmap of the DEGs identified from GSE28829 and GSE138198. (A,B) Volcano map 
of DEGs fromGSE28829 and GSE138198. (C,D) Heatmap of DEGs from GSE28829 and GSE138198.
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the pathogenesis of both diseases (Supplementary material 2). Subsequent GO and KEGG enrichment analyses 
were conducted on these genes. The GO analysis indicated that biological process (BP) genes are predominantly 
involved in antigen processing and presentation, crucial for T-cell activation and immune response regulation, 
through the presentation of exogenous and endogenous peptide antigens via MHC class I and II molecules. 
Cellular component (CC) genes were mainly enriched in locations such as the external side of the plasma 
membrane, secretory granule membrane, endocytic vesicle membrane, and MHC protein complex. Molecular 
function (MF) genes showed enrichment in activities like MHC protein complex binding, immunoglobulin 
binding, and MHC class II protein complex binding, which are integral to immunoglobulin receptor activity 
(Fig. 5A,B). The KEGG analysis revealed significant enrichment in pathways associated with Staphylococcus 
aureus infection, phagosome, tuberculosis, systemic lupus erythematosus, and alcoholic liver disease (Fig. 5C).

Selection and verification of core genes
We inputted 119 candidate genes into the STRING online database and subsequently constructed their PPI 
network using Cytoscape software, which resulted in 78 nodes and 472 links after isolating genes (Fig. 6A). Using 
the MCODE plugin, we identified a cluster consisting of 19 nodes and 141 edges, scoring 15.667 (Fig. 6B). We 
employed five different algorithms to calculate gene scores and identified the top 10 core genes (Fig. 6C). From 
these analyses, two core genes, PTPRC and TYROBP, emerged (Supplementary material 3). We subsequently 
validated their expression levels across four datasets, noting that their expression was elevated in AS and HT 
compared to controls (Figs. 7A–D and 8A–D). Additionally, the diagnostic efficacy of these genes was evaluated 
across four distinct datasets, with AUC values exceeding 0.9, confirming their high diagnostic potential for AS 
and HT (Figs. 7E–H and 8E–H).

Fig. 4.  Screening of genes in the GSE28829 and GSE138198 datasets using the WGCNA algorithm. (A,B) The 
Cluster dendrogram in GSE28829 and GSE138198. (C,D) Heatmap illustrating the module-trait relationships 
in GSE28829 and GSE138198. WGCNA, weighted gene coexpression network analysis.
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GSEA analysis of core genes
GSEA was performed on two core genes within the AS and HT datasets (Figs. 9, 10). The analysis, conducted 
using the “GSEA” software package, highlighted the top five upregulated and downregulated pathways. In both 
disease cohorts, these core genes were implicated in cytokine-cytokine receptor interactions and pathways 
related to systemic lupus erythematosus. Furthermore, all genes showed enrichment in a variety of immune and 
inflammatory pathways, including the chemokine signaling pathway, toll-like receptor signaling pathway, T cell 
receptor signaling pathway, and the complement and coagulation cascades.

Immune cell infiltration and its association with core genes
To elucidate the immune landscape and investigate potential immune mechanisms, we analyzed the distribution 
of 22 immune cell types in the GSE100927 and GSE138198 datasets using the CIBERSORT algorithm, 
presenting the results in bar graphs (Figs. 11A and 12A). In the AS cohort, increased counts of memory B cells, 
regulatory T cells, follicular helper T cells, gamma delta T cells, M0 macrophages, and activated mast cells were 
observed. Conversely, levels of naive B cells, plasma cells, naive CD4 + T cells, activated CD4 + memory T cells, 
resting NK cells, monocytes, activated dendritic cells, M1 macrophages, M2 macrophages, and resting mast 
cells were reduced. In HT, there was an elevation in memory B cells and M1 macrophages, while activated NK 
cells, monocytes, M0 macrophages, resting mast cells, and neutrophils showed lower levels (Figs. 11B and 12B). 
In both conditions, memory B cells consistently exhibited elevated levels, while monocytes and resting mast 
cells showed decreased counts. Additionally, a correlation analysis between core genes and immune cells was 
conducted (Figs. 11C,D and 12C,D). Spearman correlation tests revealed significant associations between hub 
genes and macrophages, T cells, and monocytes.

Expression of core genes in single cells
We acquired single-cell data from GSE155512 and performed single-cell analysis using the Seurat software 
package, with cell clustering executed via the t-SNE algorithm. Following data quality control, low-quality 
cells were excluded (Fig.  13A). Cells from three samples were organized into seven subgroups, including 
chondrocytes, macrophages, endothelial cells, T cells, monocytes, CMP and smooth muscle cells (Fig. 13B). The 

Fig. 5.  Venn plot of common genes between AS and HT and the PPI network of the merged genes. (A) The 
overlapped genes between the key modules in GSE28829 and GSE138198. (B) The PPI network of the merged 
genes. (C) One cluster extracted by MCODE.
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Fig. 7.  Validation of the expression level and diagnostic efficacy of PTPRC gene. The violin plots of PTPRC 
gene in GSE28829 (A), GSE100927 (B), GSE138198 (C) and GSE29315 (D). The ROC curves of PTPRC 
gene in GSE28829 (E), GSE100927 (F), GSE138198 (G) and GSE29315 (H). *p < 0.05; **p < 0.01;***p < 0.001; 
****p < 0.0001.

 

Fig. 6.  Enrichment analysis of merged genes. (A,B) Circle plot and bubble plot of GO enrichment analysis 
includes biological process, cellular component and molecular function. (C) Bubble plot of KEGG enrichment 
analysis. (D) Venn diagram of core genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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Fig. 9.  GSEA analysis of core genes (PTPRC and TYROBP) in AS. GSEA Gene set enrichment analysis.

 

Fig. 8.  Validation of the expression level and diagnostic efficacy of TYROBP gene. The violin plots of TYROBP 
gene in GSE28829 (A), GSE100927 (B), GSE138198 (C) and GSE29315 (D). The ROC curves of TYROBP 
gene in GSE28829 (E), GSE100927 (F), GSE138198 (G) and GSE29315 (H). *p < 0.05; **p < 0.01;***p < 0.001; 
****p < 0.0001.
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analysis revealed that PTPRC and TYROBP were predominantly expressed in macrophages, monocytes, T cells 
and CMP (Fig. 13C).

Discussion
Research indicates that both AS and HT are associated with immune system involvement and inflammatory 
responses28,29. The development of AS initiates with damage to vascular endothelial cells, which in turn activates 
the immune system. This activation prominently features inflammatory cells including monocytes, macrophages, 
and T-cells. These cells migrate to the subendothelial regions of blood vessels, establishing the primary sites for 
atherosclerotic plaque formation. Notably, macrophages undergo transformation into foam cells through the 
absorption of oxidized low-density lipoprotein (oxLDL) and the activation of receptors including LOX-1 and 
CD36, thereby becoming essential components of atherosclerotic plaques. Furthermore, macrophages contribute 
to the release of inflammatory factors such as IL-1β and TNF-α via the NF-κB pathway, thereby exacerbating 
the inflammatory response and accelerating the progression of AS12,13. Concurrently, T-cells recognize vascular-
specific antigens, such as oxidized low-density lipoprotein, and provoke the release of pro-inflammatory 
cytokines, including IFN-γ, TNF-α, IL-1, and IL-6. This activity intensifies the inflammatory response within 
plaque regions and promotes the recruitment and activation of additional immune cells30,31. Specifically, Th1 
cells enhance macrophage uptake and activation of s through their production of IFN-γ. Regulatory T-cells 
(Tregs), although playing a limited role in controlling these inflammatory responses, contribute to the 
persistence and exacerbation of the inflammatory milieu. The behavior of these immune cells not only influences 
the level of inflammation but also potentially affects the stability of the plaques, thereby increasing the risk of 
rupture—a major risk factor for acute cardiovascular events such as myocardial infarction and stroke32–34. In the 
pathogenesis of HT, specific autoantibodies, including anti-thyroid peroxidase (TPO) and anti-thyroglobulin 
(Tg) antibodies, play a pivotal role. These antibodies attach to particular target molecules on thyroid cell 
surfaces, thereby stimulating the immune response. This activation leads to an accumulation of inflammatory 
cells such as macrophages and T-cells within the thyroid tissue, accompanied by the release of cytokines and 
chemokines, including IL-1, IL-6, TNF-α and IFN-γ. These mediators not only intensify the inflammatory 
response and facilitate further migration and activation of immune cells but also directly impair thyroid cell 
functionality, disrupting their ability to synthesize hormones35,36. Moreover, the persistent inflammatory 
response induces oxidative stress and activates chronic tissue repair mechanisms within the thyroid, which may 

Fig. 10.  GSEA analysis of core genes (PTPRC and TYROBP) in AS. GSEA Gene set enrichment analysis.
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exacerbate thyroid structure damage. Over time, this chronic damage can result in thyroid tissue fibrosis, a 
direct outcome of prolonged inflammation37–39. In conclusion, macrophages and T-cells play a fundamental 
role in the pathogenesis of AS and HT, driving disease progression through their involvement in inflammatory 
processes and immune regulation. Future research is directed towards elucidating the mechanisms of action 
of these cells, with the aim of developing targeted therapies such as modulating specific receptor activities or 
enhancing regulatory T-cell functions. These advancements aim to effectively control inflammatory responses, 
improve treatment outcomes, and pioneer new strategies for disease management. Such progress not only has 
the potential to enhance patient quality of life but also offers significant theoretical and practical insights for the 
clinical treatment of cardiovascular and autoimmune diseases.

The precise mechanisms underlying AS and HT remain elusive, which has prompted this study to undertake 
a comprehensive bioinformatics analysis aimed at elucidating the shared mechanisms, pathways, and immune 
infiltration characteristics of AS and HT. Our analysis identified two pivotal genes, PTPRC and TYROBP. 
Results of the GSEA demonstrate a significant association between the elevated expression of specific genes and 
enhanced interactions with numerous receptors, alongside involvement in various receptor signaling pathways. 
Further examination of immune infiltration has uncovered a notable correlation between the expression of 
these genes and the prevalence of macrophages and lymphocytes in the development of AS and HT. Single-cell 
analysis showed that PTPRC and TYROBP are predominantly expressed in macrophages, monocytes, T cells, 
and common CMP. Moreover, immune profiles from patients with AS and HT demonstrated increased levels of 
memory B cells in affected individuals. Consequently, we propose that there may be shared pathogenic processes 
between AS and HT, possibly linked to memory B cells.

The involvement of B cells in the progression of AS is complex and presents conflicting evidence. Studies 
have demonstrated that various B cell subtypes exert both promotive and inhibitory effects on atherogenesis. B 
cells can recognize oxidized low-density lipoprotein (ox-LDL) and generate specific antibodies, leading to the 
formation of immune complexes. These aggregates build up within the vascular endothelium, possibly triggering 
inflammatory responses that facilitate the formation and growth of atherosclerotic plaques. Moreover, B cells 
might secrete pro-inflammatory cytokines, including IL-6 and TNF-α, further exacerbating local inflammation 
and vascular damage29,40. Ox-LDL not only triggers inflammation and oxidative stress in endothelial cells but 
also facilitates the recruitment and activation of leukocytes by modulating immune cell activity, such as that of 
macrophages, thereby exacerbating vascular inflammation and dysfunction. These processes underscore the 
critical role of B cells in AS and highlight their potential as therapeutic targets12,31,41. Conversely, regulatory B 
cells (Bregs), particularly those producing interleukin-10 (IL-10), known as B10 cells, exert substantial anti-
inflammatory and immunomodulatory effects in the disease. By secreting IL-10, these B cells help mitigate 
inflammatory responses, thus safeguarding the vascular wall against further damage. Research indicates that 

Fig. 11.  Immune infiltration analysis of AS. (A) Histogram of proportion of immune cells. (B) Comparison 
of immune cell proportion between AS and controls (Willcoxon’s test). (C) Correlation between PTPRC and 
immune cells content in AS. (D) Correlation between TYROBP and immune cells content in AS. *p < 0.05; 
**p < 0.01;***p < 0.001.
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B10 cells’ development and function necessitate a diverse range of antigen receptors and Toll-like receptor 
(TLR) signaling. These cells are crucial in modulating autoimmunity and inflammation, particularly within 
the spleens of adult mice, where B10 cells proliferate significantly and are more prevalent in aged mice and 
those susceptible to autoimmune diseases42–44. Furthermore, B cells are crucial in the pathogenesis of HT due 
to their production of specific autoantibodies, such as TPO antibodies and Tg antibodies. These autoantibodies 
target and bind to molecules on thyroid cells, triggering immune responses that promote inflammation and the 
gradual deterioration of thyroid tissue8,45,46. Furthermore, studies have shown that B cells significantly influence 
the pathogenesis of HT by modulating the functions of T cells. During the initial stages of HT, B cells contribute 
to the regulation of autoimmune responses by secreting immunomodulatory factors, such as IL-10, which 
significantly impact the behavior of Th1 and Th2 cells and subsequently influence the long-term progression 
of the disease47. Recent advances indicate that targeted therapeutic approaches that focus on B cell functions—
such as the use of combined monoclonal antibodies and chimeric molecules of thyroid protein epitopes—may 
modulate autoreactive B cells and potentially alleviate or reverse the progression of HT48,49. This strategy, which 
involves inhibiting the overactivation of B cells, promoting the apoptosis of specific B cells, and regulating 
cytokines and chemokines, opens new avenues for treating HT and allows for more precise management of 
autoimmune thyroiditis. Future studies may delve into methods for modulating the activity or specific functions 
of B cells to develop novel treatments for both AS and HT. Potential approaches could include small molecule 
inhibitors, monoclonal antibodies, or other biologics that target B cell surface receptors or secreted cytokines50. 
Additionally, leveraging advanced gene editing technologies, such as CRISPR/Cas9, to precisely regulate specific 
gene expression in B cells may represent an effective treatment method. The development of these therapeutic 
strategies necessitates a profound understanding of the role of B cells in these diseases and a comprehensive 
grasp of the intricate interactions within the immune system.

PTPRC, also known as CD45, is a tyrosine phosphatase receptor ubiquitously present on all nucleated 
leukocytes, playing an essential role in the activation of T cells and B cells mediated by antigen receptors51,52. 
PTPRC modulates cell signaling by regulating the activity of Janus kinases (JAK) and Src family kinases (SFKs). 
It mainly acts by dephosphorylating tyrosine kinases within the JAK family, thereby inhibiting their activity. 
This function is crucial in both the activation and regulation of immune cells53–55. Additionally, PTPRC exhibits 
various isoforms across different immune cells due to its multiple splicing variants, each significantly influencing 
cell function and activity. For instance, the CD45RA isoform is primarily expressed in naïve T cells that have 
not yet been activated by antigens, while the CD45RO isoform is predominantly found in memory T cells. This 
differential expression of isoforms highlights their distinct roles in cell activation and signal transduction56. 
In the study of autoimmune diseases, memory T cells expressing CD45RO exhibit heightened reactivity to 
specific autoantigens. Furthermore, inflammatory states and infections modulate the expression of these 

Fig. 12.  Immune infiltration analysis of HT. (A) Histogram of proportion of immune cells. (B) Comparison of 
immune cell proportion between HT and controls (Willcoxon’s test). (C) Correlation between TYROBP and 
immune cells content in HT. (D) Correlation between TYROBP and immune cells content in HT. *p < 0.05; 
**p < 0.01;***p < 0.001.
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PTPRC isoforms. For instance, during sepsis, the expression of CD45RO on lymphocytes may decrease, while 
the expression of CD45RA can vary depending on the cell type and inflammatory stimuli56,57. PTPRC’s role 
in the immune system is extensive, encompassing not only adaptive immunity but also a critical function in 
innate immunity. For example, in mast cells, PTPRC regulates antigen-induced immune responses through Fc 
receptor-mediated signaling pathways. In dendritic cells, it acts as a key regulator of TLR signaling, which is 
essential for pathogen recognition and the activation of innate immune responses52,58. The regulatory functions 
of PTPRC are invaluable in studying AS, notably through its indirect control over the composition and activity 
of inflammatory cells within plaques. This control is primarily exerted through the anti-inflammatory actions of 
regulatory T cells and B cells, effectively reducing inflammation and preventing the destabilization of plaques33. 
Numerous studies have established a close association between increased expression of PTPRC and the onset 
and progression of AS59–62. This multifunctional regulatory mechanism highlights the importance of PTPRC 
as a potential therapeutic target for cardiovascular diseases, offering new avenues for future research aimed 
at combating AS. Additionally, genetic studies on HT have identified specific variations in the PTPRC gene 
that increase susceptibility to autoimmune diseases, such as Type 1 diabetes and Graves’ disease. PTPRC may 
significantly influence aberrant autoimmune responses by regulating lymphocyte signal transduction and 
activation63,64. This implies a possible role for PTPRC in HT, although further studies are required to substantiate 
this hypothesis. Dysfunctional PTPRC may lead to the dysregulation of autoimmune responses, resulting in 
attacks on thyroid tissue, which underscores a potentially critical role in HT65,66. This connection opens new 
avenues for future research that could clarify the specific pathogenesis of HT and identify potential therapeutic 
targets. In conclusion, the roles of PTPRC in studies on HT and AS mutually reinforce its broad applications 
in immune regulation. Therefore, a deeper exploration of the interactions between PTPRC and other immune 
regulatory molecules could uncover the complex networks involved in pathological states, setting the stage for 
the development of more comprehensive treatment approaches.

TYROBP (also known as DAP12) is a transmembrane adaptor protein extensively expressed in human 
immune cells, including natural killer (NK) cells, macrophages, and specific T cell subsets67,68. This protein 
features an Immunoreceptor Tyrosine-based Activation Motif (ITAM) essential for signaling processes. Upon 
ligand binding to immune cell surface receptors, TYROBP’s ITAM domain is phosphorylated, initiating the 

Fig. 13.  Quality control results for single-cell data are presented as follows: the number of genes, the number 
of gene reads, and the proportion of mitochondrial genes, listed from top to bottom. (A) Post-processing panel. 
(B) Cellular subtypes of AS. (C) Scatter plot of the expression of PTPRC and TYROBP.
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activation of key signaling molecules such as the tyrosine kinases Syk and ZAP70. This activation triggers a 
cascade of intracellular signaling events, including cell activation, proliferation, cytokine release, and cytotoxic 
functions69,70. The phosphorylated ITAM can also recruit and activate additional crucial signaling molecules, 
such as phosphoinositide 3-kinase (PI3K), small GTPase RAS, and phospholipase C gamma (PLCγ), facilitating 
various biological responses like transcription, cell proliferation, and cytokine release71,72. Studies have 
demonstrated that TYROBP plays a pivotal role in the progression of AS through its signaling pathways. In 
macrophages, TYROBP directly affects lipid uptake and processing. The phosphorylation of TYROBP’s ITAM 
domain, mediated by Src family kinases, occurs upon receptor activation when macrophages engage low-
density lipoprotein (LDL) via receptors such as CD36 and SR-A73,74. This phosphorylated ITAM then serves 
as a signaling hub, further recruiting and activating Syk. Syk’s activation initiates signaling cascades involving 
pathways such as PI3K and PLCγ. PI3K activation leads to the production of PIP3, which in turn activates 
the Akt signaling pathway, impacting cell survival and proliferation. Simultaneously, PLCγ activation results in 
the generation of diacylglycerol (DAG) and inositol trisphosphate (IP3), which regulate intracellular calcium 
signaling and protein kinase C activation75,76. This cascade of activated signaling pathways results in macrophages 
engulfing and accumulating oxidized LDL, thereby transforming into foam cells. This transformation increases 
intracellular oxidative stress and inflammatory responses, exacerbating AS77,78. Furthermore, TYROBP is 
crucial in autoimmune diseases like HT, influencing immune responses involving macrophages and NK cells. 
NK cells, which are capable of producing cytokines such as IL-10, regulate immune balance and play various 
roles in the initiation, progression, and alleviation of autoimmune and autoinflammatory diseases79,80. Studies 
indicate that in the pathogenesis of HT, the influx of macrophages and dendritic cells is directly triggered 
by inflammatory events. These cells impact thyroid cell growth and function through pathways mediated by 
interleukins such as IL-1 and IL-6. This process facilitates lymphocyte recognition of self-antigens, leading to 
considerable generation of autoreactive CD4 + T cells, CD8 + cytotoxic T cells, and immunoglobulin G (IgG) 
autoantibodies. Additionally, research suggests that the interplay between macrophages, dendritic cells, and T 
cells amplifies the inflammatory response, culminating in the production of diverse inflammatory cytokines 
that are vital for the progression of HT65,81. Genetic research also reveals that genetic variations associated with 
TYROBP may increase susceptibility to autoimmune diseases. Specific genetic markers identified in genome-
wide association studies (GWAS) related to autoimmunity may enhance disease risk by influencing molecules 
in immune regulation pathways, such as TYROBP. These genetic variations significantly affect immune cell 
functions, particularly those of T cells and regulatory T cells, thereby playing a pivotal role in the development 
of autoimmune diseases. These findings offer new targets for the treatment of autoimmune diseases and enhance 
our understanding of their pathogenic mechanisms82. Therefore, based on prior research, TYROBP is likely to 
serve as a biomarker for patients with AS and HT.

This study boasts several significant strengths. We implemented a comprehensive and intricate bioinformatics 
analysis approach to investigate the interactions between AS and HT. By examining the shared molecular 
mechanisms and pathways of AS and HT, we pinpointed crucial genes and immune infiltration characteristics. 
These were corroborated through external datasets, thereby enhancing the predictive accuracy. Our findings 
potentially illuminate the shared mechanisms underpinning AS and HT. Nevertheless, it is important to 
acknowledge the limitations of this study. Firstly, the data were sourced from the GEO database, which could 
have inconsistencies in collection and processing methods, potentially affecting the accuracy and reliability of our 
analyses. Variations in processing methods and technical platforms across laboratories could introduce biases. 
Additionally, our analysis primarily focused on gene expression changes without directly measuring protein 
expression and activity. Considering that gene expression levels do not always correlate with protein functions, 
our findings necessitate further validation at the protein level. Consequently, future research should prioritize 
multidimensional data integration, enhance quality control, expand sample sizes, and experimentally validate 
the functions of identified genes and proteins. Such approaches will foster a more comprehensive understanding 
of the pathogenic mechanisms of AS and HT and identify more precise clinical treatment targets.

Conclusion
In this research, we pinpointed two key genes, PTPRC and TYROBP, crucial for AS and HT, and elucidated 
shared regulatory pathways and common immune characteristics. This led to the development of an effective 
diagnostic model. Further analysis using CIBERSORT revealed a significant correlation between the expression 
of these core genes and immune cell infiltration. Additionally, single-cell sequencing analysis demonstrated that 
these genes are primarily expressed in macrophages, monocytes, T cells, and CMPs. Our findings enhance the 
understanding of the molecular mechanisms underlying both diseases by highlighting key genes and immune 
regulatory pathways. These achievements not only deepen our knowledge of the pathologies of AS and HT but 
also set the stage for further clinical research and therapeutic development.

Data availability
The datasets GSE100927, GSE28829, GSE155512, GSE138198, and GSE29315 for this study can be found in the 
https://www.ncbi.nlm.nih.gov/geo/. The data supporting the findings of this study are available from the ​c​o​r​r​e​s​
p​o​n​d​i​n​g author upon a reasonable request.
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