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This paper presents a surrogate-assisted global and distributed local collaborative optimization 
(SGDLCO) algorithm for expensive constrained optimization problems where two surrogate 
optimization phases are executed collaboratively at each generation. As the complexity of 
optimization problems and the cost of solutions increase in practical applications, how to efficiently 
solve expensive constrained optimization problems with limited computational resources has become 
an important area of research. Traditional optimization algorithms often struggle to balance the 
efficiency of global and local searches, especially when dealing with high-dimensional and complex 
constraint conditions. For global surrogate-assisted collaborative evolution phase, the global 
candidate set is generated through classification collaborative mutation operations to alleviate the 
pre-screening pressure of the surrogate model. For local surrogate-assisted phase, a distributed central 
region local exploration is designed to achieve intensively search for promising distributed local areas 
which are located by affinity propagation clustering and mathematical modeling. More importantly, a 
three-layer adaptive selection strategy where the feasibility, diversity and convergence are balanced 
effectively is designed to identify promising solutions in global and local candidate sets. Therefore, 
the SGDLCO efficiently balances global and local search during the whole optimization process. 
Experimental studies on five classical test suites demonstrate that the SGDLCO provides excellent 
performance in solving expensive constrained optimization problems.

Keywords  Surrogate-assisted evolutionary algorithm, Expensive constrained optimization problems, Global 
search, Local search

Evolutionary algorithms (EAs) such as Differential evolution (DE)1, Teaching-Learning-Based Optimization 
(TLBO)2, Particle swarm optimization (PSO)3, Grey wolf optimizer (GWO)4have shown powerful search 
abilities in solving black-box problems where the gradient information of any input cannot be obtained. These 
algorithms not only handle single-objective optimization problems5but also demonstrate significant advantages 
in multi-objective optimization problems (MOOs)6, especially when multiple conflicting objectives need to be 
optimized simultaneously. As the problem dimensions increase, evolutionary algorithms continue to maintain 
strong competitiveness in high-dimensional optimization problems7. Specifically, various real-world engineering 
problems, such as the design of hybrid renewable energy systems8, task scheduling for airships9, the open 
vehicle routing problem10, and microgrid design11, have been successfully solved using EAs. These problems 
are usually unconstrained optimization problems or with bound constraints. In fact, there are many real-world 
engineering cases involving complex constraints, such as computational fluid dynamics12, computational 
electromagnetics13, and antenna design14. Zhou et al.15proposed an epsilon constraint handling method that 
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simultaneously considers objective function values and constraint violations, and integrated it into a multi-
objective evolutionary algorithm based on decomposition (MOEA/D)16. An adaptive fuzzy penalty method for 
mixed constraints optimization problems was proposed in17. Ang et al.18employed PSO with the feasibility rule-
based constraint handling method to handle constraint optimization problems. The relevant literatures about 
constrained optimization problems are thoroughly reviewed in19. It can be easily concluded that incorporating 
classical constraint handling techniques, such as penalty function method20, feasibility rules21, stochastic ranking 
method22, ensemble methods23, into EAs for biasing the search directions towards feasible region has received 
wide-spread attention.

However, time-consuming simulations are required to obtain the objective and constraints of many complex 
engineering cases, and such kind of problems where both the objective and constraints are expensive to evaluate 
are defined as expensive constrained optimization problems (ECOPs). As we know, EAs usually consume 5000D 
where Dis the dimension of the solved problem functions evaluations to obtain satisfied or feasible solutions, 
which is computational unaffordable for ECOPs within an acceptable design cycle. Hence, effective surrogate 
models such as Kriging24–28, RBF29–32, SVM33, etc., which can effectively approximate simulation problems, 
are used to replace unnecessary time-consuming simulation evaluations in evolutionary algorithms. This 
significantly accelerates the convergence speed of the algorithm. Such surrogate model-assisted evolutionary 
algorithms (SAEAs), widely applied in handling expensive constrained optimization problems, demonstrate 
excellent performance.

Generally, there are three key components in affecting the performance of SAEAs for ECOPs, such as 
constraint handling techniques, surrogate construction methods, and surrogate management strategies. Hence, 
the research progresses of SAEAs are summarized as follows from the perspectives of the three components.

Firstly, appropriate constraint-handling techniques (CHTs) can bias the search of the SAEAs towards the 
feasible region, thus the feasibility and convergence can be well maintained by designing effective combination 
between SAEAs and CHTs. Currently, several CHTs such as penalty function method20, feasible rules21and the 
stochastic ranking method22 are widely employed in SAEAs. Specifically, the penalty function method guides 
the algorithm into the feasible region by incorporating the degree of constraint violation into the objective 
function, thereby penalizing the objective value of infeasible solutions. Li et al.34explored methods for handling 
expensive inequality constraints within a dynamic surrogate-based optimization framework, in which the 
inequality constraints are handled by three different ways, such as constraining expected improvement (EI) 
function, penalizing surrogate prediction, and penalizing objective function. Multiple local surrogates and 
multiple penalty functions are designed in35 where the constraints of each subproblem are penalized by adopting 
different penalty coefficients and search areas. Lu et al.36 proposed an innovative Bayesian optimization method 
that effectively handles unknown equality and inequality constraints using exact penalty functions. However, 
penalty function method is sensitive to the penalize factor, and the value of the penalize factor is highly 
dependent on problems. In contrast, the advantage of stochastic ranking lies in its ability to effectively balance 
constraint feasibility and objective optimization through probabilistic ranking, thereby reducing the reliance on 
precisely designing penalty factors. Miranda-Varela et al.37 studied the relationship between surrogate models 
and different constraint-handling techniques, and different combinations between surrogate-assisted DE and 
different CHTs are designed to test the performances. To address constrained combinatorial optimization 
problems, Gu et al.38proposed an adaptive stochastic ranking strategy for developing an efficient surrogate-
assisted multi-objective particle swarm optimization algorithm. A stochastic ranking-based surrogate-assisted 
evolutionary algorithm was proposed in39to deal with offline data-driven optimization problems. Moreover, 
feasibility-based constraint handling techniques first prioritize feasible solutions by sorting them based on 
objective function values, and then sort infeasible solutions according to the degree of constraint violation, 
thereby guiding the algorithm into the feasible region. In40, a classification collaborative mutation operation 
was designed to fully utilize information from both subpopulations and guide the evolutionary direction of the 
algorithm towards the feasible region. Wang et al.5 proposed a differential evolution algorithm that combines 
global and local surrogate models which provides an effective solution for addressing expensive constrained 
optimization problems, particularly those involving inequality constraints.

Secondly, the surrogate construction methods in SAEAs mainly refers to using different surrogates such 
as Kriging, RBF and SVM to provide guidance. Kriging is a machine learning method based on probabilistic 
statistics theory, which can be viewed as a stochastic process model used for interpolation. Zhang et al.41proposed 
a two-stage optimization method that combines the Kriging model, in which a new Pareto dominance 
relationship is created by incorporating probability distribution information derived from the Kriging model. By 
integrating a Kriging surrogate model, a multi-stage evolutionary algorithm designed in42 successfully enhances 
the efficiency and accuracy in solving expensive multi-objective optimization problems. Song et al.43proposed 
a Kriging-assisted two-archive evolutionary algorithm where the information is exchanged between the two 
archives and the predictive capabilities of the Kriging model is used to guide the search process. By contrast, 
RBF is an approximation function based on the distance between input data and center points, and RBF model 
is widely used in SAEAs due to its excellent modeling efficiency. A distributed RBF-assisted differential evolution 
algorithm in44 was designed to combine the RBF model with a distributed computing framework. Bai et al.45 
proposed a method that combines surrogate models with clustering-based sampling which effectively improves 
solution quality in high-dimensional expensive black-box optimization problems. Chen et al.46 introduced 
an evolutionary algorithm based on the RBF surrogate model which combined the RBF model with the 
evolutionary algorithm. Support Vector Machine (SVM) is a supervised learning algorithm primarily used for 
classification, and the core idea of SVM is to find the optimal hyperplane that maximizes the margin between 
classes, thereby improving classification accuracy and robustness. Horaguchi et al.47explored a classification-
based multi-objective evolutionary algorithm (MOEA) for high-dimensional expensive optimization problems, 
incorporating dimensionality reduction techniques to improve optimization efficiency. A design optimization 
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method that combines sequential radial basis functions and support vector machines was proposed in48 which 
provides an effective solution for handling expensive objective functions. Liau et al.49 proposed a decomposition-
based enhanced multi-objective evolutionary algorithm that utilizes Support Vector Machine to predict and 
optimize the search process.

Thirdly, surrogate management strategies mainly refer to the combination ways between surrogates and 
evolutionary algorithms, and they can be generally categorized into three types: individual-based strategy, 
generation-based strategy, and population-based strategy. For the first one, the surrogate model is used to provide 
predictions for many candidate solutions, and the identified several promising solutions are evaluated by the truly 
expensive evaluation. Lin et al.50 proposed a classification model-based assisted preselection and environment 
selection approach which provides an effective framework for solving expensive optimization problems. Regis et 
al.51 used the RBF model to find the most promising individual and improve the current overall best individual 
by finding the global minimum of the surrogate model. Wang et al.5proposed a differential evolution algorithm 
where both global and local surrogates were collaboratively employed. The generation-based strategy refers to 
using surrogate models for fitness evaluation in some generations of the evolutionary process, while using the 
truly expensive function or other surrogate models for fitness evaluation in other generations. The purpose 
of this approach is to reduce computational costs by decreasing the number of evaluations with the surrogate 
model, while retaining the ability to use the truly expensive function for precise evaluation at critical moments, 
thus balancing computational efficiency and optimization accuracy. In52, the global RBF model is restarted every 
few generations and the population is re-initialized at each restart using the best sample points. Zheng et al.53 
adopted a noise-based model switching strategy to select a surrogate model that meets the requirements from 
GP and RBFN for each generation. In different stages of the algorithm, Yu et al.54 used coarse Gaussian process 
model and the fine radial basis function model respectively to assist the differential evolution algorithm. For 
population-based strategies, the selection and management of surrogate models are dynamically adjusted based 
on the current state of the population. This involves dynamically choosing suitable surrogate models to support 
global exploration or local optimization, and updating the models in real-time. Li et al.55generated and updated 
surrogate by different techniques for different sub-populations and selected the suitable surrogates for each sub-
population. In56, a variable search region-based adaptive dynamic surrogate-assisted evolutionary computation 
method was introduced. As the current local optimal solution moves, the local search space is continuously 
transformed and the surrogate model is reconstructed. Couckuyt et al.57 created a subpopulation for each 
surrogate model and dynamically selected the best model type based on the data available to date.

Also, there are roughly three kinds of SAEAs in solving ECOPs, i.e., global surrogate-assisted40,52, local 
surrogated-assisted35, and the collaborative between global and local surrogates5. For the first category, the 
surrogate is built by using all the evaluated solutions, then the search of EAs can be guided globally. This 
kind of algorithm provide powerful abilities in locating unexplored promising regions, but they are unable to 
achieve intensively local exploit on specific local regions. To alleviate this limitation, some algorithms introduce 
perturbation strategies that apply small random perturbations to the current solution, thereby exploring a larger 
solution space. Perturbation helps maintain diversity in local search and prevents premature convergence58,59. 
However, it should be noted that these local surrogate-assisted optimization algorithms (especially those 
incorporating perturbations) may still not fully address complex ECOPs where many local optima exist in their 
landscapes. Therefore, for balancing the global exploration and local exploitation, the collaborative algorithms 
between global and local surrogates are widely devised where the global surrogate helps locate new promising 
regions and local surrogate accelerates the convergence in these located regions.

Based on the discussions, the existing SAEAs have indeed enhanced the optimization performance on 
solving ECOPs, but they cannot explicitly consider the differences of coverage regions for different solutions 
when executing local searches, or they don’t consider the similarity of surrogates constructed for different 
solutions in local searches. Thus, the corresponding local regions or surrogates of many local searches may be 
extremely similar, since their corresponding central solutions are closer to each other as the iterations progresses. 
Therefore, how to efficiently allocate well-distributed local searches during the optimization process is one of 
the research focuses of this paper. Moreover, these existing SAEAs mainly select the truly offspring through 
designing single-layer screening strategy constructed based on predicted objective or constraint values, in which 
the diversity among different offspring individuals may be ignored to a certain extent, thus the possibility of 
falling into local optima may not be effectively reduced. Therefore, two important search directions emerged in 
our mind, i.e., how to effectively design suitable fitness function on evaluating the quality of candidate solutions 
where the diversity and objective or constraint values can be comprehensively considered, and how to design 
effective multi-layer screen strategy to select promising candidate solutions layer by layer.

Therefore, this paper designs a surrogate-assisted global and distributed local collaborative optimization 
(SGDLCO) algorithm for expensive constrained problems. Specifically, for the aforementioned first search 
focuses, a distributed central region local exploration (DCRLE) is designed to diversify local searches where 
the affinity propagation clustering60 and mathematical modeling are utilized to identify well-distributed 
central solutions. By minimizing redundant local searches for similar solutions or surrogates, the efficiency of 
exploitation is substantially improved. Subsequently, for the second point, the fitness functions such as diversity-
based objective and constraints are designed to predict the overall quality of each candidate offspring individuals. 
Moreover, a three-layer adaptive screening strategy (TLAS) where the diversity, feasibility and overall quality 
are sequentially considered is proposed to progressively identify the truly promising offspring individual, thus 
the possibility of premature or trapping into local optima may be decreased since three key indicators are well 
balanced for each generation. Furthermore, for further improving the quality of candidate offspring individuals, 
a classification-cooperation mutation operation is employed in this paper to achieve the collaborative mutation 
between good and bad solutions.

Scientific Reports |         (2025) 15:1728 3| https://doi.org/10.1038/s41598-025-85233-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Based on the considerations mentioned above, the main contributions of this paper are summarized as 
follows:

	1)	� In the global surrogate-assisted collaborative evolution phase, the global candidate set is generated through 
classification collaborative mutation operations (CCMO) to alleviate the pre-screening pressure of the sur-
rogate model. In CCMO, the positive guidance information of better solutions and the negative guidance 
information of worse solutions are fully utilized to improve the quality of candidate solutions.

	2)	� In the local surrogate-assisted phase, a distributed central region local exploration (DCRLE) is designed to 
generate local candidate set for achieving intensively search in promising distributed local areas which are 
located by affinity propagation clustering and mathematical modeling. Thus, the redundant local searches 
for similar central solutions or surrogates can be largely alleviated, and the efficiency can be maintained by 
allocating specific local searches on well-distributed central solutions.

	3)	� A three-layer adaptive selection strategy, which incorporates the diversity among different offspring individ-
uals into the screening process, is adopted to progressively select promising candidate offspring solutions. 
Concretely, two diversity-based fitness functions where the feasibility, diversity and convergence are effec-
tively balanced are formulated to screen candidate solutions from the global or local candidate sets.

	4)	� Overall and systematic experiments on benchmark problems such as IEEE CEC200661, and IEEE CE-
C201062and IEEE CEC 201763 have shown that the proposed SGDLCO provides highly competitive perfor-
mance.

The structure of this paper is as follows: In Sect. 2, the problem statement and relative background techniques are 
presented. Section 3 describes the proposed SGDLCO. The experimental results are analyzed and summarized 
in Sect. 4. Conclusions are drawn in Sect. 6.

Problem statement and relative background techniques
Problem statement
The expensive constrained optimization problem with inequality constraints studied in this paper can be 
represented as:

	

minimize f(x)
subject to gj(x) ⩽ 0 j = 1, 2, ..., q

� (1)

Fig. 1.  Flowchart of SGDLCO.
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where f(x) and gj(x) donates the objective and j-th inequality constraint functions where their responses can 
only be obtained by calling computationally expensive simulations, and q is the number of inequality constraints. 
x = (x1, x2, ...., xD) is the decision vector, D  is the number of decision variables, L = (l1, l2, ..., lD) and 
U = (u1, u2, ..., uD) are the lower and upper bounds of design variables. The degree of constraint violation of 
x can be computed as follows:

	 Gj(x) = max(0, gj(x)), j = 1, ..., p� (2)

Afterward, the overall constraint violation function can be formulated as:

	
G(x) =

∑p

j=1
Gj(x)� (3)

 

Therefore, the objective of the optimization problem is to find the optimal solution that minimizes the objective 
function while satisfying the constraint violation function G(x).

Relative background techniques
Differential evolution (DE)
DE is a population-based optimization algorithm that relies on swarm intelligence theory64. It maintains the 
population by generating new individuals through mutation, selection, and crossover operations. By performing 
operations on the population of candidate solutions, DE explores the solution space through information 
exchange among different individuals in the population.

DE utilizes NP  parameter vectors of dimension D, treating them as the population for each generation. Each 
individual is represented as:

	 xi = (xi,1, ..., xi,D)� (4)

For each individual in the population xi = (xi,1, ..., xi,D), the mutant vector is generated as follows:
(1) DE/rand/1

	 vi = xr1 + F · (xr2 − xr3)� (5) 

(2) DE/best/1

	 vi = xbest + F · (xr1 − xr2)� (6) 

(3) DE/best/2

	 vi = xbest + F · (xr1 − xr2) + F · (xr3 − xr4)� (7) 

(4) DE/current-to-best/1

	 vi = xi + F · (xbest − xi) + F · (xr1 − xr2)� (8) 

In the above formula, r1, r2, r3, and r4 are four completely different random numbers which is selected from 
[1, i) ∪ (i, NP ]and NP  must be greater than 4. xbest presents the optimal solution in the population. F  is a 
scaling factor that amplifies the deviation variable. By performing crossover operation to increase the diversity 
of perturbed parameter vectors, the trial vector becomes:

Fig. 2.  Randomly select four individuals from the initial population.

 

Scientific Reports |         (2025) 15:1728 5| https://doi.org/10.1038/s41598-025-85233-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
ui,j =

{
vi,j if randj ⩽ CR or j = jrand

xi,j otherwise , j = 1, ..., n� (9)

where randj  presents the j-th estimate of a random number generator producing values between [0, 1], jrand 
is a randomly chosen integer from {1, ..., n}, CR represents the crossover operator, which ranges from [0, 1].

Radial basis function (RBF)
RBF is a function whose output value depends solely on the distance between the input and a certain center 
point. RBF approximates complex nonlinear relations by introducing a linear combination o.

f local basis functions in the input space. RBF demonstrates excellent universal approximation capabilities and 
performs exceptionally well in handling nonlinear problems. Given the existing data {xi, yi|xi ∈ R, i = 1, ..., N}
, the RBF approximation can be expressed as follows:

	
f̂ (x) = wT φ =

N∑
i=1

ωiϕ (∥x −xi∥)� (10)

where xi represents the computational center point of the ith basis function among all basis functions, ∥•∥ 
represents the distance between the input x and xi, N is the number of center points. ωi is the weight coefficient, 
Φ is the Gram matrix which can be defined in Eq. (11).

	

Φ =




φ (∥ x1 − x1 ∥) · · · φ (∥ x1 − xN ∥)
...

. . .
...

φ (∥ xN − x1 ∥) · · · φ (∥ xN − xN ∥)


� (11)

Affinity propagation clustering (APC)
Affinity Propagation Clustering (APC) is an advanced unsupervised clustering algorithm developed by Frey and 
Dueck in 200760. This technique automatically determines the number of clusters by identifying cluster centers 
through iterative message passing. The algorithm operates on a similarity matrix, where each element represents 
the negative squared distance between data points. There are two kinds of messages involved in APC, they are 
responsibility r(i, k) and availability s(i, k). r(i, k) can be computed as follows:

	
r(i, k) ← s(i, k) − max

k′ ̸=k
{a(i, k′) + s(i, k′)}� (12)

where s(i, k) is the similarity between i and k, and a(i, k′) is the availability of k′.

Fig. 3.  Four cases of DE/best/2.
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a(i, k) can be computed as follows:

	
a(i, k) ← min{0, r(k, k) +

∑
i′ /∈{i,k}

max{0, r(i′, k)}}� (13)

These two messages are iteratively updated till convergence, then the clustering result can be obtained by:

	
ĉi = arg max

k
{a(i, k) + r(i, k)}� (14)

Proposed algorithm
Most existing self-adaptive evolutionary algorithms (SAEAs) use traditional differential evolution mutation 
operations to generate offspring individuals when dealing with expensive optimization problems with inequality 
constraints. This method has a significant degree of blindness in producing offspring individuals. Therefore, this 
paper employs the classification cooperation mutation operation (CCMO) during the global search phase to 
generate offspring individuals, thereby effectively utilizing limited computational resources. As the algorithm 
progresses, the search space gradually narrows. The range of local search often becomes excessively repetitive, 
which can significantly waste computational resources. Therefore, this paper designs a distributed central 
region local exploration (DCRLE) to avoid the redundancy in local search. The existing SAEAs primarily select 
truly promising offspring through a single-layer screening strategy based on designed predictive objectives or 
constraint values. However, the diversity among different offspring individuals may be somewhat overlooked, 
which could limit the effectiveness of reducing the likelihood of falling into local optima. While the current SAEAs 
have improved optimization performance for solving ECOPs by incorporating specific local search strategies, 
the center solutions corresponding to local searches for each population individual become increasingly similar 
as iterations progress, and thus many redundant local searches for similar solutions or surrogates are designed 
in these SAEAs. Therefore, to filter genuinely potential offspring solutions, a fitness function based on diversity, 
feasibility, and overall quality is designed to assess the overall quality of each candidate offspring individual. 
Additionally, a three-layer adaptive screening strategy (TLAS) is proposed, which sequentially considers 
diversity, feasibility, and overall quality. To diversify local searches, this paper introduces a distributed center 
region local exploration, and the affinity propagation clustering60 and mathematical modeling are designed to 
identify well-distributed center solutions. This significantly reduces redundant local search iterations for similar 
solutions or alternatives.

SGDLCO Method
The flow chart of SGDLCO is shown in Fig. 1. In SGDLCO, the global and local surrogate-assisted phases are 
collaboratively executed where the global surrogate is employed to provide predictions for the global candidate 
solution sets generated by the classification collaborative mutation operation, and the local surrogate is used 
to build the distributed local search problems constructed for well-distributed central solutions selected based 
on affinity propagation clustering and mathematical modeling. More importantly, for effectively balancing 
feasibility, diversity and convergence, the three-layer adaptive screening strategy is designed to screen high-
promising solutions from global and local candidate sets which are respectively generated in global and local 

Fig. 4.  The tendency of movement of mutant vectors when all solutions are infeasible.
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surrogate-assisted phases. Thus, the proposed algorithm maintains efficient collaborative cooperation between 
global and local searches at each generation.
The main framework of SGDLCO is shown in Algorithm 1. The initial population P opis generated by Latin 
hypercube sampling (LHS)65. Then, the objective function and constraint functions of all individuals in the 
initial population are evaluated, and the obtained results are stored in the database DB. For global surrogate-
assisted collaborative evolution phase, the global RBF model is constructed by using all the individuals in DB. 
For each parent solution, the offspring candidate Vk ​ is produced through the classification cooperation mutation 
operation (CCMO), as detailed in Sect. 3.2. Gx is selected by applying the three-layer adaptive screening (TLAS) 
as described in Sect. 3.3 for candidate set Vk . Subsequently, Gx is evaluated by the real objective and constraint 
functions, and the DB is updated. P op is updated by selecting the top NP  individuals from the merged 
population of P op and Gx. During local surrogate-assisted phase, the candidate set LV  is generated by the 
distributed central region local exploration (DCRLE) as explained in Sect. 3.4. Similarly, the TLAS is used to 
select Lx, and then update DB and P op. The above procedure is repeated until the maximum number of fitness 
evaluations is reached.

Algorithm 1 SGDLCO method

Input: Population size:NP . The maximum number of function evaluations:MaxF Es. The database:DB.

Output: The optimized solution:xbest .

1. Generate the initial population,P op = {x1, x2, ..., xNP }, by Latin hypercube sampling.

2. Evaluate the initial population and archive them into DB, and set F Es = NP .

3. WhileF Es ⩽ MaxF Es

4. // The global surrogate-assisted collaborative evolution phase

5. Construct global RBF models, i.e., f̂G, ĝG
1 , ..., ĝG

t , for objective and constraints by using all the individuals inDB.

6. Generate candidate set, i.e., Vk  by the classification cooperation mutation operation (CCMO) shown in Algorithm 2.

7. Conduct Algorithm 3 (called Three-Level Adaptive Screening, TLAS) to obtain the offspring set, i.e., Gx from 
GU = {u1, ..., uNP }.

8. Evaluate Gx, and store them into DB, and F Es = F Es + NGx . //NGx  donates the number of individuals in Gx.

9. Select the best NP  individuals such as P op from the merged population based on FR, i.e., MP op = P op ∪ Gx.

10. // The local surrogate-assisted phase

11. Generate candidate set, i.e., LV  by the distributed central region local exploration (DCRLE) as explained in Algorithm 4.

12. Conduct Algorithm 3 (called Three-Layer Adaptive Screening, TLAS) to obtain the offspring set, i.e., Lx from LV .

13. Evaluate Lx, and store them into DB, and F Es = F Es + NLx . //NLx  donates the number of individuals in Lx.

14. Select the best NP  individuals such as P op from the merged population based on FR, i.e., MP op = P op ∪ Lx.

15. End While

16. Select the best solution xbest  from P op based on FR.
 

Classification Cooperation Mutation Operation (CCMO)
Most of the existing SAEAs for handling expensive optimization problems with inequality constraints adopt 
traditional mutation operations of evolutionary algorithms to generate offspring individuals, which introduces 
a significant degree of randomness. Therefore, the classification-collaboration mutation operation designed in40 
is adopted in this section to design the mutation operation. For visualizing the search behavior of the designed 
CCMO, the classic DE/best/2 in DE is used as an example to illustrate the randomness of classical mutation. The 
DE/best/2 primarily generates mutated individuals by adding four random differential vectors to the current best 
individual, thereby creating a mutation direction. In this context, xbest represents the current optimal individual 
in the optimization process, while xr1, xr2, xr3, and xr4 are four individuals randomly selected from the current 
population, F1 and F2 are the scaling factors.

As shown in Fig. 2(a), the entire area inside the black line represents the overall design domain, FR and IFR 
represent feasible and infeasible regions respectively. Within this design domain, the area inside the purple line 
is the feasible region, while the remaining areas are infeasible region. The current population consists of 15 
individuals, all represented as black dots. Thus, we first carry out the initial step of the DE/best/2 mutation by 
randomly selecting four different differential vectors. As shown in Fig. 2(b), the four green dots correspond to 
these four differential vectors. After determining the positions of the four differential vectors, it is necessary to 
further establish the selection order of these vectors and the values of the scaling parameters to generate mutated 
individuals. Due to the randomness of the mutation strategy, there are a total of 24 possible selection orders 
based on permutations. For simplicity, we will only show the visualization of the four cases corresponding to 
the limited rules, such as the first differential vector term consisting of xr1 and xr2, and the second differential 
vector term is composed of xr3 and xr4. Then the four cases are shown as below:

	(1)	� in Fig. 3(a), the mutation operation can be rewritten as: vi = xbest + F1 · (xr1 − xr2) + F2 · (xr4 − xr3) 
	(2)	� in Fig. 3(b), the mutation operation can be rewritten as: vi = xbest + F1 · (xr2 − xr1) + F2 · (xr4 − xr3) 
	(3)	� in Fig. 3(c), the mutation operation can be rewritten as: vi = xbest + F1 · (xr2 − xr1) + F2 · (xr3 − xr4) 
	(4)	� in Fig. 3(d), the mutation operation can be rewritten as: vi = xbest + F1 · (xr1 − xr2) + F2 · (xr3 − xr4)

In Fig. 3, the red dashed arrows indicate the diversity of mutation directions resulting from different values of 
the scaling factors. The gray shaded areas correspond to the regions occupied by all mutated individuals. From 
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these four subfigures, it can be observed that only the case shown in Fig. 3(d) leads all mutated individuals 
into the feasible region, while the mutated individuals in the other three cases are far from the feasible region. 
Therefore, in traditional mutation operations, the randomness in the selection of differential vectors leads to 
significant blindness in the mutation directions. When the surrogate model has some degree of prediction error, 
it becomes inefficient in filtering out a few high-potential individuals from a large pool of candidate offspring. 
Therefore, ensuring that each mutation is based on the situation in Fig. 3(d) to produce these high-potential 
individuals is the key focus of this section. In summary, this can be achieved by adjusting the selection rules 
for the four differential vectors in DE/best/2 to consistently obtain high-potential mutated individuals from the 
initial population shown in Fig. 2(b). Based on the visualization and the mutation formula in Fig. 3(d), we can 
derive two conclusions:

	(1)	� xr1 and xr3 are relatively close to the feasible region, and they produce a positive guidance effect.
	(2)	� xr2 and xr4are relatively far from the feasible region, and they produce a negative guidance effect

Therefore, for fully utilizing the positive guidance information of better solutions and the negative guidance 
information of worse solutions, the population is classified into two subpopulations based on feasibility rules 
in21, in which the first subpopulation consists of better solutions and the other is composed of the rest solutions. 
After this, the candidate set is generated for each parent solution by collaborative cooperation between the two 
subpopulations, and a high-promising candidate individual is selected from this candidate set based on RBF 
predictions. The pseudo-code of classification cooperation mutation operation (CCMO) is shown in Algorithm 
2.
In Algorithm 2, the advantage of selecting DE/best/2 as the mutation operator is that it combines information 
from both the better and worse solutions in the current population. This enables the mutation process to move 
towards promising regions indicated by the best solutions while avoiding unfavorable areas. Therefore, DE/best/2 
is well-suited to construct the CCMO shown in lines 5–6 of Algorithm 2. Specifically, two different solutions 
such as xB

r1 and xB
r3, which are randomly selected from BP op, are utilized to determine the positive guidance 

locations of CCMO; while xW
r2  and xW

r4  are selected from W P op to locate the negative guidance. However, 
incorporating massive current greedy information to mutation may lead the algorithm into local optima more 
easily. Hence, different cooperative ways are employed to adjust the evolution of the population based on its 
current state, which is shown in lines 4–11. Concretely, the current greedy information brought by the better 
solutions or the best solutions is gradually diluted when the algorithm presents instability or stagnation, i.e., the 
number of failures reaches the predetermined value.

Algorithm 2 Classification Cooperation Mutation Operation (CCMO)

Input: The population: P op.Threshold for determining which mutation strategy to use: F v.The count of failed attempts to 
update the population’s best solution: T_fail.

Output: Vk : Candidate set.

1. Divide the P op into two subpopulations based on FR where the BP op contains the top half individuals, and the 
W P op contains the rest.

Fig. 5.  The situation of normal APC.
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Algorithm 2 Classification Cooperation Mutation Operation (CCMO)

2. Fori = 1 : NP

3. Forj = 1 : NC

4. IfT_fail < F v

5. Randomly select two distinct individuals xB
r1  and xB

r2  from BP op, xW
r3  and xW

r4  from W P op.

6. wj = xbest + F1(xB
r1 − xW

r3) + F2(xB
r2 − xW

r4). // F1 = (1 + rand(0, 1))/ 2, F2 = (1 + rand(0, 1))/ 2

7. Else IfT_fail > F v & T_fail ⩽ 2F v

8. wj = xbest + F1(xr1 − xr2) + F2(xr3 − xr4), xr1 , xr2 , xr3 , and xr4  are four distinct individuals selected 
from P op.

9. Else IfT_fail > 2F v

10. wj = xr1 + F1(xr2 − xr3) + F2(xr4 − xr5), xr1 , xr2 , xr3 , xr4  and xr5  are five distinct individuals selected 
from P op.

11. End If

12. Obtain uj  by conducting binomial crossover on wj  and xi .

13. End For

14. Select the best one such as vk  from Uk  based on FR by using the global RBF predictions on Uk , and 
Vk = Vk ∪ {vk}.// Uk = {u1, ..., uNC }.

15. End For
 

As the algorithm progresses, the proportion of feasible solutions in the population gradually increases, while 
the proportion of infeasible solutions gradually decreases. The situation in which all the solutions are infeasible 
is selected as the example to clearly present the trajectory of mutation vectors, the tendency of movement of 
mutant vectors is shown in Fig.  4. In Fig.  4, the population P op is divided into BP op and W P op. BP op 
includes the top half solutions of P op, and W P op is composed of the remaining part. It can be easily found 
that the BP op is closer to the feasible region compared to W P op. This indicates that the generated candidate 
solutions should be moved towards the positive directions located by BP op, and the negative directions of 
W P op can be also used as guidance to further move the candidate solutions towards feasible region. Specifically, 
xr1,g  and xr3,g  are two randomly selected solutions from BP op, xr2,g  and xr4,g  are two randomly selected 
solutions from W P op. The line connecting xr1,g  to xr2,g , and the line connecting xr3,g  to xr4,g  represent the 
direction and length of F1 · (xr1,g − xr2,g) and F2 · (xr3,g − xr4,g) respectively. Hence, All the possible cases 
that F1 · (xr1,g − xr2,g) can be extended are on the red dotted line between xr1,g  and xr2,g . The red dotted 
line between xr3,g  and xr4,g  contains all the possible cases that F2 · (xr3,g − xr4,g) can be extended. Therefore, 
the parallelogram area formed by vertices w1

i,g , w2
i,g , w3

i,g , and w4
i,g  represents the region where the candidate 

offspring solutions are located. Hence, although all the solutions in current population are infeasible, all of the 
generated candidate solutions are moved into feasible region. This directly demonstrate that CCMO is capable of 
generating high-promising candidate solutions, then the screen pressure of RBF can be greatly deceased.

Fig. 6.  The situation of excessive APC.
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Three-layer adaptive screening (TLAS)
During the algorithm’s iterations, the selection strategy often becomes too stringent and only allows the optimal 
solutions to survive, the diversity among different offspring individuals may be ignored to a certain extent. This 
excessive selection pressure reduces the population’s diversity, increasing the risk of falling into local optima. 
When the population tends to consist of highly similar individuals, the algorithm is prone to getting stuck in 
local optima and fails to effectively find global optima. This situation can lead to a homogenized search process, 
resulting in premature convergence. Therefore, maintaining a certain level of diversity is crucial to promote a 
more comprehensive search and innovation, avoiding premature convergence to local optima. By introducing 
diversity maintenance mechanisms, the adaptability of the algorithm can be enhanced, increasing the chances of 
finding better solutions. To alleviate the selection pressure on the population, as shown in Algorithm 3, a three-
layer adaptive screening strategy (TLAS), which incorporates the diversity among different offspring individuals 
into the screening process, is adopted to progressively select promising candidate offspring solutions.

Specifically, TLAS sequentially considers the diversity, feasibility, and overall quality of each individual, and 
selects offspring based on these three indicators.

The first layer of the screening function is shown in lines 2–3 of Algorithm 3. The minimum distance 
calculated by Eq.  (15) represents the shortest distance between an individual and all other individuals in 
T DB. For each individual in the candidate CS, the minimum distance Dist(xi) from the individual to all 
individuals in the total database T DB except itself is calculated. As the iterations progress, the individuals in 
the population gradually become homogeneous. In fact, the individual with the biggest minimum distance to all 
other individuals indicates that it is located in a relatively isolated region in the design space. This means that the 
individual exhibits greater diversity from other individuals. Therefore, the individual with the biggest Dist(xi) 
is selected. It represents relatively unique positions in the design space, which helps prevent the algorithm from 
falling into local optima.

	
Dist(xi) = min

xi∈CS
∥xi − T DB∥� (15)

The second layer of the screening function is shown in line 4 of Algorithm 3. After selecting the individual with 
diversity as described above, the individual with the best predicted value in the current population is selected 
based on FR. Such individual plays a role in guiding the evolution direction of the population, and the region 
where the individual resides represents a more promising area in the sample space.

Given the condition that the individual selected based on diversity may not has better quality measured by the 
predicted objective and constraints, and the individual selected based on the combined quality of the predicted objective 
and constraints cannot reflect the differences between individuals in the population. Therefore, the third layer screening 
strategy is designed for selecting the individual with overall quality as shown in lines 7–8 of Algorithm 3.

A mathematical model for screening individuals based on their overall quality is designed, as shown in 
Eq. (16):

	

f̂div(xi) = f̂(xi)/Dist(xi)
ĝj,div(xi) = ĝj,div(xi)/Dist(xi)

� (16)

where f̂(xi) and ĝj,div(xi) respectively represents the predicted values of objective and j-th constraint functions 
for xi. Thenf̂div(xi) donates diversity-based objective, which represents the combined quality between objective 
and diversity; ĝj,div(xi) donates diversity-based constraint, which calculates the combined quality between 
constraints and diversity. Then the FR is employed to select a high-promising solution in terms of the overall 
quality of diversity, feasibility and diversity.

In summary, TLAS select individuals from the current population based on their diversity, feasibility, and 
comprehensive quality, aiming to maintain the quality of population individuals while generating a more 
exploratory population. Consequently, TLAS significantly increases the chances of finding global optimal 
solutions in the solution space rather than getting trapped in local optima.

Algorithm 3 Three-Layer Adaptive Screening (TLAS)

Input: Candidate set: CS(GU  or LV ). The Database: DB. The lower bound: xl. The upper bound: xu. The dimensions of an 
individual: n. The number of individuals which is selected: N1 .

Output: Offspring set: OS(Gx or Lx).

1. Construct the merged database, i.e., MDB = DB ∪ CS, and initialize OS = ∅.

2. For each xi  in CS, T DB = MDB\ {xi} and calculate the minimum distance Dist (xi) = min
xi∈CS

∥xi − T DB∥.

3. Store an individual such as oxdist  from CS with the biggest Dist (oxdist) into OS.

4. Archive the best one such as oxbest  into OS from CS based on FR by using the RBF predictions on CS.

5. CS = CS\ {oxbest}, and randomly select an individual such as oxrand  from CS, and OS = OS ∪ {oxrand}.

6.
Delete the similar individuals in OS within the minimum distance threshold Dis_eps

.//Dis_eps = min(
√

0.0012n, 5e−4nmin(xu − xl)).

7. Calculate the diversity-based objective for each xi  in CS, i.e., f̂div(xi) = f̂(xi)
/

Dist(xi).

8. Calculate the diversity-based constraints for each xi  in CS, i.e., ĝj,div(xi) = ĝj,div(xi)/ Dist(xi), ∀j ∈ {1, ..., t}.

9. Select the top N1 − NOS  individuals from CS based FR by using the diversity-based objective and constraints and store 
them into OS.
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Distributed Central Region Local Exploration (DCRLE)
As the algorithm progresses, the search scope tends to concentrate on a small range of more promising 
regions. Thus, the corresponding local regions or surrogates of many local searches may be extremely similar, 
since their corresponding central solutions are closer to each other, resulting in a limited exploration of new 
solution spaces. This limitation not only reduces the diversity of the algorithm but also increases the risk of 
local optima, as the algorithm may repeatedly evaluate similar solutions while neglecting other potentially high-
quality solutions. As iterations continue, an excessive focus on these similar regions can lead to a decline in the 
algorithm’s innovative capacity, making it difficult to escape the current local optimum, thereby affecting the 
overall search efficiency and effectiveness. Therefore, designing effective mechanisms to expand the search range 
and encourage the exploration of more diverse solution areas will help enhance the algorithm’s performance and 
increase the likelihood of finding global optima. Therefore, as shown in Algorithm 4, distributed central region 
local exploration (DCRLE) is designed to effectively allocate uniformly distributed local searches. It utilizes 
affinity propagation clustering and mathematical modeling to identify uniformly distributed central solutions. 
However, we found that during the progression of the algorithm, two different clustering situations are shown in 
Figs. 5 and 6. We take g6 from CEC2006 for an example. In these two figures, each point represents an individual 
and the different clusters generated by APC are distinguished by points of different colors. The polygons formed 
by connecting points of the same color represent the areas covered by each cluster. x and y represent two 
different dimensions of the design variables. Figure 5 represents the clustering situation at the initial stage of 
the algorithm where affinity propagation clustering divides the population into four clusters, represented by the 
four polygons in Fig. 5. However, as the algorithm progresses, the population tends to exhibit over-clustering 
due to low diversity, as shown in Fig. 6. When the number of iterations reaches 573, as indicated in the lower left 
corner of Fig. 6, each point represents its own cluster, with only one point in each cluster. This occurs because 
they lack sufficient similarity or shared features to form larger clustering structures, and they do not have enough 
similarity with other points to form larger clusters. At this point, if we directly perform local searches on each 
cluster, it will lead to excessive redundancy in the search areas. Then the mathematical modeling method shown 
in lines 1–7 of Algorithm 4 is used to reselect the central points for well-distributed local searches. For a detailed 
elaboration, the step-by-step introduction is shown below.

Step 1 in line 1, the cluster results of APC provide effective guidance to arrange the well-distributed local 
search.

Step 2 in lines 2–8, when the population demonstrates an excessive number of clusters resulting from high 
similarity among individuals, three central individuals are selected or generated based on different distributed 
information to ensure that the central regions of local searches designed around these individuals are diversified.

Step 3 in line 10, to determine the local search scope for each cluster, the K nearest points to each cluster 
center cxk  in the database DB are stored into MXk . K is calculated as follows.

	 K = max((D + 1)(D + 2)/2, 100)� (17)

Problem Dimension Type of objective (estimate feasibility ratio) L(N)a

g01 13 Quadratic (0.0111%) 9(0)6

g02 20 nonlinear (99.9971%) 0(2)1

g04 5 quadratic (52.1230%) 0(6)2

g06 2 cubic (0.0066%) 0(2)2

g07 10 quadratic (0.0003%) 3(5)6

g08 2 nonlinear (0.8560%) 0(2)0

g09 7 polynomial (0.5121%) 0(4)2

g10 8 linear (0.0010%) 3(3)6

g12 3 quadratic (4.7713%) 0(1)0

g16 5 nonlinear (0.0204%) 4(34)4

g18 9 quadratic (0.0000%) 0(13)6

g19 15 nonlinear (33.4761%) 0(5)0

g24 2 linear (79.6556%) 0(2)2

Table 1.  The main characteristics of thirteen benchmark problems from CEC2006. Note: a is the number of 
active constraints at x, and L and N are the numbers of linear inequality constraints and nonlinear inequality 
constraints, respectively.
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where D represents the number of dimensions.
Step 4 in line 11, to avoid irreversibility of the Gram matrix in constructing RBF, similar individuals within 

the distance threshold Dis_eps are removed in each cluster. Then the local RBF models are constructed using 
the remaining individuals for each cluster where the compute of Dis_eps is consistent with the formula in line 
6 of Algorithm 3.

Step 5 in lines 12–18, the inner optimization problem for conducting local search on each cluster is formulated 
as follows.

	

minimize f̂(x)
subjectto ĝj(x) ⩽ 0 j = 1, 2, · · · , q

xLi < xi < xUi, i = 1, · · · , D

ĝdis(x) ⩽ 0

� (18)

where f̂(x) and ĝj(x) are the RBF surrogates built with the K nearest points for the original objective and the 
j-th constraint, respectively. xUi and xLi respectively represents the upper and lower bounds of i-th dimension 
in the current local search scope. ĝdis(x) donates the distance constraint calculated based on the diversity 
threshold which is computed in Eq. (19).

	 ĝdis(xi) = Dis_eps − Dist(xi)� (19)

Step 6 in lines 19–21, the current population in inner optimization is regenerated when the current population 
trapped in a local infeasible region, i.e., all the individuals are infeasible and their constraint violations show 
extremely small differences.

Step 7in lines 22–33, based on the recommendation in CoDE66, three different combinations of mutation 
operations and parameters are employed to generate diverse offspring solutions.

Step 8 in line 36, the best solution lvk  is obtained by completing the inner optimization for each central 
solution.

Prob.

SGDLCO C2ODE CORCO FROFI DeCODE

ER ER ER ER ER

g01 100% 0% 8% 0% 8%

g02 100% 100% 100% 100% 100%

g04 100% 100% 100% 100% 100%

g06 100% 100% 60% 100% 60%

g07 100% 8% 12% 8% 0%

g08 100% 100% 100% 100% 100%

g09 100% 100% 96% 100% 100%

g10 100% 0% 0% 0% 0%

g12 100% 100% 100% 100% 100%

g16 100% 60% 8% 80% 0%

g18 100% 0% 0% 0% 0%

g19 100% 100% 100% 100% 100%

g24 100% 100% 100% 100% 100%

Table 3.  Effective rates among SGDLCO, C2ODE, CORCO, FROFI, and DeCODE on thirteen test problems 
from CEC2006.
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Algorithm 4 Distributed Central Region Local Exploration (DCRLE)

Input: P op, DB, NP , total evaluation times: totalF Es, K, Dis_eps.

Output: LV

1. The P op is clustered into np clusters, such as CX1, ..., CXnp  based on APC.

2. Ifnp ⩾ ⌊0.2NP ⌋ // Re-select three individuals based on the distribution of P op when the clustered number is large.

3. Reset np = 3, for each individual in P op, calculate the minimum distance Dist (xi) = min
xi∈P op

∥xi − DB∥.

4. Select an individual such as cx1  and cx2  with the maximum and minimum i.e., Dist (cx1) and Dist (cx2).

5. Obtain the mean individual of P op, i.e., cx3,j =
NP∑
i=1

xi,j

/
NP , ∀j ∈ {1, ..., n} ∀xi ∈ P op .

6. Else If

7. Obtain the mean individual of CXk  for each dimension, i.e., cx3,j =
NP∑
i=1

xi,j

/
NP , ∀j ∈ {1, ..., n} ∀xi ∈ CXk

.

8. End If

9. Fork = 1 : np

10. Store the K nearest individuals to cxk  into MXk  from DB and MXk = MXk ∪ NPk .

11. Delete the similar individuals in MXk  and construct local RBF models, i.e., f̂k, ĝk
1 , ..., ĝk

t , for objective and constraints 
by using the remaining individuals in MXk .

12. WhileF Es ⩽ totalF Es

13. Initialize the population T X .

14. For each txiin T X

15. Calculate the minimum distance Dist (txi) = min
txi∈T X

∥txi − DB∥.

16. Predict the objective and constraints for txi  by local RBF models.

17. Evaluate the distance constraint for txi , i.e., gdis = Dis_eps − Dist(txi).

18. End For

19. If all the individuals are infeasible and their constraint violations show extremely small differences

20. Regenerate the population such as T X , and predict them by local RBF models.

21. End If

22. For each txi  in T X

23. Ifrand(0, 1) ⩽ 1/3

24. tvi = txi + F (txbest − txi) + F (txr1 − txr2), txr1  and txr2  are two distinct individuals selected from T X , 
and F = 0.6.

25. Else Ifrand(0, 1) > 2/3

26. tvi = txi + F (txr1 − txi), txr1  is a distinct individual selected from T X , and F = 0.8.

27. Else

28. tvi = txi + F (txr1 − tx2), txr1  and txr2  are two distinct individuals selected from T X , and F = 1.0.

29. End If

30. Obtain uvi  by conducting binomial crossover on tvi  and txi .

31. Ifuvi  is better than txi  based on FR.

32. txi = uvi .

33. End If

34. End For

35. End While

36. Store the best one lvk  from T X , and archive lvk  into LV = {lv1, ..., lvnp}.

37. End For
 

Prob.

SGDLCO C2ODE CORCO FROFI DeCODE

ER ER ER ER ER

C01 100% 100% 100% 100% 100%

C07 100% 100% 100% 100% 100%

C08 100% 100% 100% 100% 100%

C13 100% 12% 0% 0% 0%

C14 100% 100% 100% 100% 92%

C15 4% 16% 0% 8% 0%

Table 5.  Effective rates among SGDLCO, C2ODE, CORCO, FROFI, and DeCODE on six 10-D test problems 
from CEC2010.

 

Scientific Reports |         (2025) 15:1728 16| https://doi.org/10.1038/s41598-025-85233-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Pr
ob

.
SG

D
LC

O
C

2 O
D

E
C

O
RC

O
FR

O
FI

D
eC

O
D

E

D
 =

 30
M

ea
n(

St
h)

M
ea

n(
St

h)
M

ea
n(

St
h)

M
ea

n(
St

h)
M

ea
n(

St
h)

C
01

−3
.8

6E
-0

1(
4.

49
E-

02
)

−2
.1

9E
-0

1(
1.

41
E-

02
)+

4.
46

E 
+ 

14
(1

.8
0E

 +
 14

)+
−1

.9
0E

-0
1(

1.
05

E-
02

)+
−2

.3
8E

-0
1(

2.
23

E-
02

)+

C
07

2.
67

E 
+ 

07
(1

.4
0E

 +
 07

)
7.

98
E 

+ 
10

(7
.3

0E
 +

 09
)+

3.
64

E 
+ 

10
(1

.2
4E

 +
 10

)+
5.

62
E 

+ 
10

(1
.5

0E
 +

 10
)+

7.
28

E 
+ 

10
(1

.3
2E

 +
 10

)+

C
08

1.
93

E 
+ 

09
(1

.0
5E

 +
 09

)
6.

83
E 

+ 
10

(1
.4

7E
 +

 10
)+

8.
64

E 
+ 

10
(3

.7
0E

 +
 10

)+
6.

21
E 

+ 
10

(1
.4

7E
 +

 10
)+

5.
74

E 
+ 

10
(1

.0
9E

 +
 10

)+

C
13

−4
.7

8E
 +

 01
(7

.8
5E

 +
 00

)
N

aN
+

N
aN

+
N

aN
+

N
aN

+

C
14

1.
68

E 
+ 

14
(5

.7
1E

 +
 13

)
3.

41
E 

+ 
14

(1
.1

1E
 +

 14
)+

1.
88

E 
+ 

14
(1

.8
3 +

 14
)~

3.
16

E 
+ 

14
(7

.1
7E

 +
 13

)+
4.

22
E 

+ 
14

(1
.2

9E
 +

 14
)+

C
15

5.
21

E 
+ 

14
(2

.4
1E

 +
 14

)
7.

47
E 

+ 
14

(1
.9

7E
 +

 14
)+

4.
46

E 
+ 

14
(1

.8
0E

 +
 14

)~
4.

61
E 

+ 
14

(1
.4

7E
 +

 14
)~

N
aN

+

+/
~/

-
W

in
/T

ie
/L

os
s

6/
0/

0
4/

2/
0

5/
1/

0
6/

0/
0

Ta
bl

e 6
. 

Ex
pe

rim
en

ta
l f

un
ct

io
n 

va
lu

es
 am

on
g 

SG
D

LC
O

, C
2 O

D
E,

 C
O

RC
O

, F
RO

FI
, a

nd
 D

eC
O

D
E 

on
 si

x 
30

-D
 te

st 
pr

ob
le

m
s f

ro
m

 C
EC

20
10

.

 

Scientific Reports |         (2025) 15:1728 17| https://doi.org/10.1038/s41598-025-85233-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Experimental studies
Experimental settings
The performance of the proposed algorithm SGDLCO is verified by using thirteen widely used inequality-
constrained problems from CEC2006, as well as 10-dimensional and 30-dimensional inequality-constrained 
problems from CEC2010 and CEC2017. The main characteristics of these thirteen benchmark problems 
from CEC2006 are listed in Table 1. And the main characteristics of other test problems from CEC2017 are 
listed in Table A1 in the Appendix. The maximum number of fitness evaluations MaxF Es is set to 1000 for 
all the test problems. All experimental results are obtained over 25 independent runs in Matlab R2023a. To 
systematically evaluate and compare the performance of SGDLCO with other different algorithms in solving 
specific optimization problems, the effective rate (ER) metric shown in Eq. (19) is used to measure the ratio of 
effective evaluations to total evaluations. If at least one feasible solution is found during one evaluation, then 
that evaluation is considered effective. In Eq. (20), Neffective and Nmax respectively represent the number of 
effective evaluations and the total number of evaluations. Additionally, in the following table. “Mean” and “Std” 
respectively represent the average and standard deviation of the objective function values obtained among all 
effective runs.

	
ER = Neffective

Nmax
� (20)

Comparison with four evolutionary algorithms
Four excellent evolutionary algorithms, i.e., C2oDE67, CORCO68and FROFI69, DeCODE70 are selected for 
comparison with SGDLCO. C2oDE utilizes three different trial vector generation strategies to balance diversity 
and convergence, while achieving a balance between constraints and the objective function. It performs better or 
at least comparably to other state-of-the-art methods on multiple benchmark test functions. CORCO proposes 
a new constrained optimization evolutionary algorithm which utilizes the correlation between constraints and 
the objective function for the first time, and it balances this correlation through a correlation index. FROFI 
introduces a novel replacement mechanism and mutation strategy, and effectively utilizes objective function 
information to alleviate the excessive bias of known feasibility rules, thereby enhancing its robustness. DeCODE 
utilizes the decomposition-based multi-objective optimization method to solve constrained optimization 
problems by transforming them into bi-objective optimization problems and decomposing them into scalar 
optimization subproblems.

The experimental results (objective function values) of all these algorithms on the 13 test problems from 
CEC2006 are listed in Table 2. The effective rate of all these algorithms on the 13 test problems from CEC2006 are 
listed in Table 3. Tables 4 and 5 list the test results of each algorithm on six 10-dimensional and 30-dimensional 
problems in CEC2010, respectively, while Tables  6 and 7 list the test results of each algorithm on seven 
10-dimensional and five 30-dimensional problems in CEC2017, respectively. In these tables, t-test are employed, 
as shown in Table  3, where “Win” indicates the number of test problems where SGDLCO outperforms the 
algorithm, “Tie” indicates the number of test problems where SGDLCO performs comparably to the algorithm, 
and “Loss” indicates the number of test problems where SGDLCO performs worse than the algorithm.

In Table 2, on nine test problems (g1, g2, g4, g6, g7, g10, g16, g18, g19, g24), SGDLCO is able to achieve 
solutions that are significantly better than those of the other four algorithms. This indicates that within 1000 
evaluation attempts, SGDLCO is able to find optimal solutions that are significantly better than those of the 
other four algorithms. In Table 3, for eight test problems (i.e., g01, g07, g10, g16, g18) with smaller feasibility 
ratio, SGDLCO is able to achieve a 100% ER on these test problems. This means that, compared to these four 
algorithms, SGDLCO is always able to find at least one feasible solution when dealing with these test problems.

As shown in Table  4, SGDLCO performs excellently on the majority of problems, outperforming other 
algorithms on the C01, C07, C08, C13, and C14 problems. As shown in Tables 5 and 7, for C13 problem with 
a low feasibility rate, SGDLCO consistently finds feasible solutions in every run, whereas other algorithms fail 
to obtain feasible solutions. As shown in Table 6, SGDLCO achieved better or comparable results than other 
algorithms on all problems. As shown in Table 8, SGDLCO performs excellently on the C01, C02, C04, C05, 
C13, and C22 problems, outperforming other algorithms on these problems. As shown in Table 9, for C13 and 
C22 problems with low feasibility rates, SGDLCO consistently finds feasible solutions in every run, whereas 
other algorithms fail to obtain a feasible solution. Similar results can also be seen in Tables 10 and 11. Therefore, 

Prob.

SGDLCO C2ODE CORCO FROFI DeCODE

ER ER ER ER ER

C01 100% 100% 40% 100% 100%

C07 100% 100% 100% 100% 100%

C08 100% 100% 100% 100% 100%

C13 100% 0% 0% 0% 0%

C14 100% 100% 100% 100% 92%

C15 28% 16% 40% 20% 0%

Table 7.  Effective rates among SGDLCO, C2ODE, CORCO, FROFI, and DeCODE on six 30-D test problems 
from CEC2010.
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SGDLCO significantly outperforms the other four algorithms across various test problems, demonstrating its 
superiority and stability in handling inequality-constrained optimization problems.

Comparison with four SAEAs
Many SAEAs are developed to solve expensive constrained optimization problems. Seven out of these algorithms, 
i.e., GLoSADE5, SADE-CVSR

37, SADE-CVFR
37, SParEA71, MPMLS35, SA-TSDE72and SACCDE40provide 

competitive performance than others on solving classical test suites. Therefore, they are employed to compare 
with SGDLCO on three widely used test suites, i.e., IEEE CEC200661, IEEE CEC201062and IEEE CEC201763. 
To be consistent with the three comparison methods, we suppose that both the objective and constraints are 
simultaneously evaluated by running one expensive simulation. The comparison results of these algorithms 
on benchmark problems from IEEE CEC2006, IEEE CEC2010 and IEEE CEC2017 are respectively shown in 
Tables 12, 13 and 14.

In Table 12, SGDLCO is capable of obtaining near-optimal solutions for the majority of relatively simple 
problems in IEEE CEC2006 and outperforms these comparison algorithms on most functions. This indicates 
that SGDLCO has the ability to quickly locate the global optimum for simple problems. Furthermore, in 
Table  13, for relatively complex problems such as those in IEEE CEC2010, SGDLCO also significantly 
outperforms these comparison algorithms on most functions, which indicates that SGDLCO has a significant 
performance advantage on CEC2010 test suites. In Table 14, SGDLCO has a significant advantage over only 
four of the seven algorithms such as GLoSADE, SADE-CVSR, SADE-CVFR, and MPMLS, and SGDLCO has 
comparable performance with the other three algorithms. This indicates that the performance of SGDLCO 
varies across different test suites and the performance of SGDLCO on CEC2017 does not seem to be significant. 
In order to analyze the overall performance of the SGDLCO algorithm on the three test suites more clearly, the 
statistical results of the overall performance of the algorithm against the three test sets are presented in Sect.4.4. 
In addition, the detailed comparative analysis results with each algorithm are as follows:

	(1)	� For GLoSADE, in CEC2006, SGDLCO achieves better results on seven out of thirteen problems. In 
CEC2010, SGDLCO outperforms GLoSADE on six problems and achieves comparable results on two prob-
lems. Additionally, in CEC 2017, SGDLCO achieves better results on ten out of twelve problems.

	(2)	� For SADE-CVSR and SADE-CVFR, in CEC2006, SGDLCO achieves better results on eleven out of thirteen 
problems. In CEC2010, SGDLCO outperforms both SADE-CVSR and SADE-CVFR on ten problems. Addi-
tionally, in CEC 2017, SGDLCO achieves better results on eleven out of twelve problems compared to both 
algorithms.

	(3)	� For SParEA, in CEC2006, SGDLCO achieves better results on six out of thirteen problems and had similar 
results on five problems. In CEC2010, SGDLCO outperforms SParEA on six problems. Additionally, in 
CEC 2017, SGDLCO achieves better results on three out of twelve problems and had similar results on 
seven problems with SParEA. It is worth noting that while the t-test results were similar on some problems, 
such as C22 in Table 15 and C04 in the six row of Table 14, SGDLCO consistently obtained significantly 
better average values for these specific problems compared to SParEA.

	(4)	� For MPMLS, in CEC2006, SGDLCO achieves better results on seven out of thirteen problems. In CEC2010, 
the performance of SGDLCO is significantly better than MPMLS on five problems, and SGDLCO obtains 
comparable results than MPMLS on five problems. In CEC2017, SGDLCO outperforms MPMLS on six 
problems, and SGDLCO obtains comparable results than MPMLS on four problems.

	(5)	� For SA-TSDE, in CEC2006, SGDLCO achieves better results on eight out of thirteen problems and obtains 
similar results on four problems. In CEC2010, the performance of SGDLCO is significantly better than 
SA-TSDE on six problems and SGDLCO obtains comparable results than SA-TSDE on four problems. In 
the twelve problems tested in CEC2017, SGDLCO outperforms SA-TSDE on four problems, and SGDLCO 
obtains comparable results on another four.

	(6)	� For SACCDE, in CEC2006, SGDLCO achieves better results on five out of thirteen problems, and SGDLCO 
has similar results than SACCDE on five problems. In the twelve problems tested in CEC2010, SGDL-
CO achieves better results on six problems, and SGDLCO obtains comparable results on six problems. In 
CEC2017, SGDLCO outperforms SACCDE on three problems, and SGDLCO obtains comparable results 

Prob.

SGDLCO C2ODE CORCO FROFI DeCODE

ER ER ER ER ER

C01 100% 100% 100% 100% 100%

C02 100% 100% 100% 100% 100%

C04 100% 100% 100% 100% 100%

C05 100% 100% 100% 32% 100%

C13 100% 0% 0% 0% 0%

C20 100% 100% 100% 100% 100%

C22 100% 0% 0% 0% 0%

Table 9.  Effective rates among SGDLCO, C2ODE, CORCO, FROFI, and DeCODE on six 10-D test problems 
from CEC2017.
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than SACCDE on six problems. This indicates that in the three test suites, SGDLCO outperforms or per-
forms comparably to SACCDE in most problems.

Wilcoxon signed rank test for comparison
To further compare the overall performance of SGDLCO with these classical algorithms on the aforementioned 
test problems, we employed the Wilcoxon signed rank test73 to comprehensively assess their performance 
differences. All Wilcoxon signed rank test results are listed in Table 15. Here, different dimensions of the same 
function (e.g., 10D C01 and 30D C01) are considered as distinct problems.

In Table 15, it can be observed that SGDLCO shows a significant improvement over SADE-CVSR, SADE-
CVFR with a level of significance level α = 0.01, over GLoSADE with α = 0.02, over SA-TSDE with α = 0.05, 
over SACCDE with α = 0.10, over SParEA with α = 0.20, and over MPMLS with α = 0.25.

Effectiveness of some strategies in SGDLCO
In this subsection, five 10-D problems in CEC2017 are chosen to discuss the effectiveness of several strategies 
proposed in this paper. The maximum number of fitness evaluations MaxF Es is set to 1000, and the rest 
parameters about SGDLCO are set the same as that suggested in subsection 4.1.

(1) Effectiveness of classification cooperation mutation operation
To verify the effectiveness of the classification cooperation mutation operation (CCMO) proposed in SGDLCO, 
a variant called SGDLCO_noCCMO is introduced for detailed comparison. SGDLCO_noCCMO replaces the 
classification cooperation mutation operation (CCMO) in SGDLCO with the DE/best/2 method as shown in 
Eq8.

Figure 7 lists the comparison results of SGDLCO and SGDLCO_noCCMO on the five 10-D test problems 
from CEC2017. From Fig. 7, it can be seen that SGDLCO achieved better or comparable results to SGDLCO_
noCCMO except for C05. This demonstrates that CCMO effectively utilizes information from all individuals to 
obtain more accurate solutions. Figure 8 lists the standard deviations of the operational results of SGDLCO and 
SGDLCO_noCCMO on the five 10-dimensional test problems from CEC2017. From the table, we can see that 
SGDLCO exhibits more stable results than SGDLCO_noCCMO on most problems.

(2) Effectiveness of three-layer adaptive screening
To maintain population diversity during the selection process and avoid the population getting trapped in local 
optima, this study constructs a variant of SGDLCO called SGDLCO_noTLAS. SGDLCO_noTLAS replaces 
TLAS in SGDLCO with FR.

Figure 9 presents the experimental results of SGDLCO and SGDLCO_noTLAS on five selected problems 
from CEC2017. From Fig. 9, we can see that SGDLCO achieves better results than SGDLCO_noTLAS. These 
experimental results indicate that TLAS effectively maintains the diversity of the population, enabling effective 
exploration of the solution space and enhancing the quality of individuals within the population. Therefore, 
TLAS significantly increases the chances of finding the global optimum in the solution space, rather than 
getting stuck in local optima. Figure 10 lists the standard deviations of the operational results of SGDLCO and 
SGDLCO_noTLAS on the five 10-dimensional test problems from CEC2017. From the table, we can see that 
SGDLCO exhibits more stable results than SGDLCO_noTLAS in 3 out of the 5 problems.

(3) Effectiveness of distributed central region local exploration
To verify the effectiveness of the DCRLE proposed in this paper, a variant of SGDLCO, called SGDLCO_
noDCRLE, was introduced. SGDLCO_noDCRLE replaces the DCRLE in SGDLCO with the local surrogate-
assisted search phase detailed introduced in GLoSADE. The core difference between the local surrogate-assisted 
search phase in GLoSADE and the DCRLE is that the first approach performs complete local search processes 
for each population individual, while the DCRLE only performs local searches for selected individuals with well-
distribution and potentiality.

Figure 11 lists the test results of SGDLCO and SGDLCO_noDCRLE on five problems from CEC2017. It can 
be seen that SGDLCO achieved better results on 4 out of 5 tested problems, with C20 achieving comparable 
results between the two. And from Fig.  12 we can observe that SGDLCO achieves more stable results than 
SGDLCO-noDCRLE on all problems except C20. This indicates that SGDLCO has a stronger search capability 
compared to SGDLCO_noDCRLE. This suggests that DCRLE can effectively allocate uniformly distributed local 

Prob.

SGDLCO C2ODE CORCO FROFI DeCODE

ER ER ER ER ER

C01 100% 100% 100% 100% 100%

C02 100% 32% 24% 8% 16%

C04 100% 100% 100% 100% 100%

C05 100% 0% 0% 0% 0%

C20 100% 100% 100% 100% 100%

Table 11.  Effective rates among SGDLCO, C2ODE, CORCO, FROFI, and DeCODE on five 30-D test problems 
from CEC2017.
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Fig. 8.  Comparison results (std values) among SGDLCO and SGDLCO-noCCMO on five 10-D test problems 
from IEEE CEC 2017.

 

Fig. 7.  Comparison results (mean values) among SGDLCO and SGDLCO-noCCMO on five 10-D test 
problems from IEEE CEC 2017.

 

Comparison Num P-value

SGDLCO vs. GLoSADE 37 1.77E-02

SGDLCO vs. SADE-CVSR 27 6.74E-06

SGDLCO vs. SADE-CVFR 27 1.90E-04

SGDLCO vs. SParEA 37 1.60E-01

SGDLCO vs. MPMLS 37 2.07E-01

SGDLCO vs. SACCDE 37 7.90E-02

SGDLCO vs. SA-TSDE 37 2.14E-02

Table 15.  The Wilcoxon signed rank test results for mean value comparison.
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Fig. 11.  Comparison results (mean values) among SGDLCO and SGDLCO-noDCRLE on five 10-D test 
problems from IEEE CEC 2017.

 

Fig. 10.  Comparison results (std values) among SGDLCO and SGDLCO-noTLAS on five 10-D test problems 
from IEEE CEC 2017.

 

Fig. 9.  Comparison results (mean values) among SGDLCO and SGDLCO-noTLAS on five 10-D test problems 
from IEEE CEC 2017.
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Fig. 12.  Comparison results (std values) among SGDLCO and SGDLCO-noDCRLE on five 10-D test 
problems from IEEE CEC 2017.

 

searches, concentrating the search range on a smaller, more promising area, thereby making more efficient use 
of limited computational resources.

Conclusion
This paper introduces a surrogate-assisted global and distributed local collaborative optimization algorithm 
for expensive constrained optimization problems, named SGDLCO. The algorithm operates in two phases 
during each iteration: global surrogate-assisted collaborative evolution and distributed local surrogate-assisted 
search. In the global surrogate-assisted collaborative evolution phase, to fully utilize the positive guidance 
information from better solutions and the negative guidance information from poorer solutions, and to 
alleviate the pre-screening pressure on the surrogate model, the global candidate set is generated through 
classification cooperative mutation operation. In the distributed local surrogate-assisted phase, to effectively 
allocate uniformly distributed local searches, this paper designs a distributed central region local exploration 
method that uses affinity propagation clustering and mathematical modeling to identify uniformly distributed 
central solutions. For different clustering situations, targeted mathematical modeling methods are used to 
reselect central points for well-distributed local searches. Additionally, distance constraints are considered 
during the local search process to maintain search diversity and prevent the algorithm from getting trapped 
in local optima. To alleviate the selection pressure on the population, this paper designs a three-layer adaptive 
selection strategy. Two diversity-based fitness functions are formulated to screen candidate solutions from global 
or local candidate sets. This approach ensures the quality of the population while generating a more exploratory 
population, thereby significantly increasing the probability of TLAS finding the global optimum in the solution 
space and avoiding local optima. Compared to other algorithms, SGDLCO demonstrates significant advantages 
in handling expensive constraint optimization problems. It reduces the blind exploration in the global search 
stage and effectively avoids excessive redundancy in the local search. This significantly increases the likelihood 
of finding the global optimum and prevents the algorithm from getting trapped in local optima.

Furthermore, the design philosophy and methodology of SGDLCO provide a solid foundation for future 
algorithm extensions and improvements, particularly in addressing multi-objective and high-dimensional 
problems, where it is expected to achieve superior performance. Therefore, how to effectively extend the current 
proposed SGDLCO for solving these problems is an important future work.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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