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This paper presents a surrogate-assisted global and distributed local collaborative optimization
(SGDLCO) algorithm for expensive constrained optimization problems where two surrogate
optimization phases are executed collaboratively at each generation. As the complexity of
optimization problems and the cost of solutions increase in practical applications, how to efficiently
solve expensive constrained optimization problems with limited computational resources has become
an important area of research. Traditional optimization algorithms often struggle to balance the
efficiency of global and local searches, especially when dealing with high-dimensional and complex
constraint conditions. For global surrogate-assisted collaborative evolution phase, the global
candidate set is generated through classification collaborative mutation operations to alleviate the
pre-screening pressure of the surrogate model. For local surrogate-assisted phase, a distributed central
region local exploration is designed to achieve intensively search for promising distributed local areas
which are located by affinity propagation clustering and mathematical modeling. More importantly, a
three-layer adaptive selection strategy where the feasibility, diversity and convergence are balanced
effectively is designed to identify promising solutions in global and local candidate sets. Therefore,
the SGDLCO efficiently balances global and local search during the whole optimization process.
Experimental studies on five classical test suites demonstrate that the SGDLCO provides excellent
performance in solving expensive constrained optimization problems.

Keywords Surrogate-assisted evolutionary algorithm, Expensive constrained optimization problems, Global
search, Local search

Evolutionary algorithms (EAs) such as Differential evolution (DE)!, Teaching-Learning-Based Optimization
(TLBO)?, Particle swarm optimization (PSO)?, Grey wolf optimizer (GWO)*have shown powerful search
abilities in solving black-box problems where the gradient information of any input cannot be obtained. These
algorithms not only handle single-objective optimization problems’but also demonstrate significant advantages
in multi-objective optimization problems (MOOs)®, especially when multiple conflicting objectives need to be
optimized simultaneously. As the problem dimensions increase, evolutionary algorithms continue to maintain
strong competitiveness in high-dimensional optimization problems’. Specifically, various real-world engineering
problems, such as the design of hybrid renewable energy systems®, task scheduling for airships’, the open
vehicle routing problem!?, and microgrid design'!, have been successfully solved using EAs. These problems
are usually unconstrained optimization problems or with bound constraints. In fact, there are many real-world
engineering cases involving complex constraints, such as computational fluid dynamics'?, computational
electromagnetics'?, and antenna design'“. Zhou et al.">proposed an epsilon constraint handling method that
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simultaneously considers objective function values and constraint violations, and integrated it into a multi-
objective evolutionary algorithm based on decomposition (MOEA/D)'®. An adaptive fuzzy penalty method for
mixed constraints optimization problems was proposed in'”. Ang et al.'*employed PSO with the feasibility rule-
based constraint handling method to handle constraint optimization problems. The relevant literatures about
constrained optimization problems are thoroughly reviewed in'. It can be easily concluded that incorporating
classical constraint handling techniques, such as penalty function method?, feasibility rules?!, stochastic ranking
method??, ensemble methods??, into EAs for biasing the search directions towards feasible region has received
wide-spread attention.

However, time-consuming simulations are required to obtain the objective and constraints of many complex
engineering cases, and such kind of problems where both the objective and constraints are expensive to evaluate
are defined as expensive constrained optimization problems (ECOPs). As we know, EAs usually consume 5000D
where Dis the dimension of the solved problem functions evaluations to obtain satisfied or feasible solutions,
which is computational unaffordable for ECOPs within an acceptable design cycle. Hence, effective surrogate
models such as Kriging®*-28, RBF?-32, SVM™, etc., which can effectively approximate simulation problems,
are used to replace unnecessary time-consuming simulation evaluations in evolutionary algorithms. This
significantly accelerates the convergence speed of the algorithm. Such surrogate model-assisted evolutionary
algorithms (SAEAs), widely applied in handling expensive constrained optimization problems, demonstrate
excellent performance.

Generally, there are three key components in affecting the performance of SAEAs for ECOPs, such as
constraint handling techniques, surrogate construction methods, and surrogate management strategies. Hence,
the research progresses of SAEAs are summarized as follows from the perspectives of the three components.

Firstly, appropriate constraint-handling techniques (CHTs) can bias the search of the SAEAs towards the
feasible region, thus the feasibility and convergence can be well maintained by designing effective combination
between SAEAs and CHTT. Currently, several CHTs such as penalty function method?, feasible rules?!and the
stochastic ranking method?? are widely employed in SAEAs. Specifically, the penalty function method guides
the algorithm into the feasible region by incorporating the degree of constraint violation into the objective
function, thereby penalizing the objective value of infeasible solutions. Li et al.**explored methods for handling
expensive inequality constraints within a dynamic surrogate-based optimization framework, in which the
inequality constraints are handled by three different ways, such as constraining expected improvement (EI)
function, penalizing surrogate prediction, and penalizing objective function. Multiple local surrogates and
multiple penalty functions are designed in*> where the constraints of each subproblem are penalized by adopting
different penalty coefficients and search areas. Lu et al.*® proposed an innovative Bayesian optimization method
that effectively handles unknown equality and inequality constraints using exact penalty functions. However,
penalty function method is sensitive to the penalize factor, and the value of the penalize factor is highly
dependent on problems. In contrast, the advantage of stochastic ranking lies in its ability to effectively balance
constraint feasibility and objective optimization through probabilistic ranking, thereby reducing the reliance on
precisely designing penalty factors. Miranda-Varela et al.” studied the relationship between surrogate models
and different constraint-handling techniques, and different combinations between surrogate-assisted DE and
different CHTs are designed to test the performances. To address constrained combinatorial optimization
problems, Gu et al.¥¥proposed an adaptive stochastic ranking strategy for developing an efficient surrogate-
assisted multi-objective particle swarm optimization algorithm. A stochastic ranking-based surrogate-assisted
evolutionary algorithm was proposed in*’to deal with offline data-driven optimization problems. Moreover,
feasibility-based constraint handling techniques first prioritize feasible solutions by sorting them based on
objective function values, and then sort infeasible solutions according to the degree of constraint violation,
thereby guiding the algorithm into the feasible region. In%’, a classification collaborative mutation operation
was designed to fully utilize information from both subpopulations and guide the evolutionary direction of the
algorithm towards the feasible region. Wang et al.’> proposed a differential evolution algorithm that combines
global and local surrogate models which provides an effective solution for addressing expensive constrained
optimization problems, particularly those involving inequality constraints.

Secondly, the surrogate construction methods in SAEAs mainly refers to using different surrogates such
as Kriging, RBF and SVM to provide guidance. Kriging is a machine learning method based on probabilistic
statistics theory, which can be viewed as a stochastic process model used for interpolation. Zhang et al.*'proposed
a two-stage optimization method that combines the Kriging model, in which a new Pareto dominance
relationship is created by incorporating probability distribution information derived from the Kriging model. By
integrating a Kriging surrogate model, a multi-stage evolutionary algorithm designed in*? successfully enhances
the efficiency and accuracy in solving expensive multi-objective optimization problems. Song et al.**proposed
a Kriging-assisted two-archive evolutionary algorithm where the information is exchanged between the two
archives and the predictive capabilities of the Kriging model is used to guide the search process. By contrast,
RBF is an approximation function based on the distance between input data and center points, and RBF model
is widely used in SAEAs due to its excellent modeling efficiency. A distributed RBF-assisted differential evolution
algorithm in** was designed to combine the RBF model with a distributed computing framework. Bai et al.*>
proposed a method that combines surrogate models with clustering-based sampling which effectively improves
solution quality in high-dimensional expensive black-box optimization problems. Chen et al.%® introduced
an evolutionary algorithm based on the RBF surrogate model which combined the RBF model with the
evolutionary algorithm. Support Vector Machine (SVM) is a supervised learning algorithm primarily used for
classification, and the core idea of SVM is to find the optimal hyperplane that maximizes the margin between
classes, thereby improving classification accuracy and robustness. Horaguchi et al.”’explored a classification-
based multi-objective evolutionary algorithm (MOEA) for high-dimensional expensive optimization problems,
incorporating dimensionality reduction techniques to improve optimization efficiency. A design optimization
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method that combines sequential radial basis functions and support vector machines was proposed in*® which
provides an effective solution for handling expensive objective functions. Liau et al.** proposed a decomposition-
based enhanced multi-objective evolutionary algorithm that utilizes Support Vector Machine to predict and
optimize the search process.

Thirdly, surrogate management strategies mainly refer to the combination ways between surrogates and
evolutionary algorithms, and they can be generally categorized into three types: individual-based strategy,
generation-based strategy, and population-based strategy. For the first one, the surrogate model is used to provide
predictions for many candidate solutions, and the identified several promising solutions are evaluated by the truly
expensive evaluation. Lin et al.>® proposed a classification model-based assisted preselection and environment
selection approach which provides an effective framework for solving expensive optimization problems. Regis et
al.’! used the RBF model to find the most promising individual and improve the current overall best individual
by finding the global minimum of the surrogate model. Wang et al.’proposed a differential evolution algorithm
where both global and local surrogates were collaboratively employed. The generation-based strategy refers to
using surrogate models for fitness evaluation in some generations of the evolutionary process, while using the
truly expensive function or other surrogate models for fitness evaluation in other generations. The purpose
of this approach is to reduce computational costs by decreasing the number of evaluations with the surrogate
model, while retaining the ability to use the truly expensive function for precise evaluation at critical moments,
thus balancing computational efficiency and optimization accuracy. In®2, the global RBF model is restarted every
few generations and the population is re-initialized at each restart using the best sample points. Zheng et al.>
adopted a noise-based model switching strategy to select a surrogate model that meets the requirements from
GP and RBEN for each generation. In different stages of the algorithm, Yu et al.>* used coarse Gaussian process
model and the fine radial basis function model respectively to assist the differential evolution algorithm. For
population-based strategies, the selection and management of surrogate models are dynamically adjusted based
on the current state of the population. This involves dynamically choosing suitable surrogate models to support
global exploration or local optimization, and updating the models in real-time. Li et al.”>generated and updated
surrogate by different techniques for different sub-populations and selected the suitable surrogates for each sub-
population. In®, a variable search region-based adaptive dynamic surrogate-assisted evolutionary computation
method was introduced. As the current local optimal solution moves, the local search space is continuously
transformed and the surrogate model is reconstructed. Couckuyt et al.>” created a subpopulation for each
surrogate model and dynamically selected the best model type based on the data available to date.

Also, there are roughly three kinds of SAEAs in solving ECOPs, i.e., global surrogate-assisted’>>2, local
surrogated-assisted®®, and the collaborative between global and local surrogates®. For the first category, the
surrogate is built by using all the evaluated solutions, then the search of EAs can be guided globally. This
kind of algorithm provide powerful abilities in locating unexplored promising regions, but they are unable to
achieve intensively local exploit on specific local regions. To alleviate this limitation, some algorithms introduce
perturbation strategies that apply small random perturbations to the current solution, thereby exploring a larger
solution space. Perturbation helps maintain diversity in local search and prevents premature convergence®®.
However, it should be noted that these local surrogate-assisted optimization algorithms (especially those
incorporating perturbations) may still not fully address complex ECOPs where many local optima exist in their
landscapes. Therefore, for balancing the global exploration and local exploitation, the collaborative algorithms
between global and local surrogates are widely devised where the global surrogate helps locate new promising
regions and local surrogate accelerates the convergence in these located regions.

Based on the discussions, the existing SAEAs have indeed enhanced the optimization performance on
solving ECOPs, but they cannot explicitly consider the differences of coverage regions for different solutions
when executing local searches, or they don’t consider the similarity of surrogates constructed for different
solutions in local searches. Thus, the corresponding local regions or surrogates of many local searches may be
extremely similar, since their corresponding central solutions are closer to each other as the iterations progresses.
Therefore, how to efficiently allocate well-distributed local searches during the optimization process is one of
the research focuses of this paper. Moreover, these existing SAEAs mainly select the truly offspring through
designing single-layer screening strategy constructed based on predicted objective or constraint values, in which
the diversity among different offspring individuals may be ignored to a certain extent, thus the possibility of
falling into local optima may not be effectively reduced. Therefore, two important search directions emerged in
our mind, i.e., how to effectively design suitable fitness function on evaluating the quality of candidate solutions
where the diversity and objective or constraint values can be comprehensively considered, and how to design
effective multi-layer screen strategy to select promising candidate solutions layer by layer.

Therefore, this paper designs a surrogate-assisted global and distributed local collaborative optimization
(SGDLCO) algorithm for expensive constrained problems. Specifically, for the aforementioned first search
focuses, a distributed central region local exploration (DCRLE) is designed to diversify local searches where
the affinity propagation clustering®® and mathematical modeling are utilized to identify well-distributed
central solutions. By minimizing redundant local searches for similar solutions or surrogates, the efficiency of
exploitation is substantially improved. Subsequently, for the second point, the fitness functions such as diversity-
based objective and constraints are designed to predict the overall quality of each candidate offspring individuals.
Moreover, a three-layer adaptive screening strategy (TLAS) where the diversity, feasibility and overall quality
are sequentially considered is proposed to progressively identify the truly promising offspring individual, thus
the possibility of premature or trapping into local optima may be decreased since three key indicators are well
balanced for each generation. Furthermore, for further improving the quality of candidate offspring individuals,
a classification-cooperation mutation operation is employed in this paper to achieve the collaborative mutation
between good and bad solutions.
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Based on the considerations mentioned above, the main contributions of this paper are summarized as

follows:

1)

2)

3)

4)

In the global surrogate-assisted collaborative evolution phase, the global candidate set is generated through
classification collaborative mutation operations (CCMO) to alleviate the pre-screening pressure of the sur-
rogate model. In CCMO, the positive guidance information of better solutions and the negative guidance
information of worse solutions are fully utilized to improve the quality of candidate solutions.

In the local surrogate-assisted phase, a distributed central region local exploration (DCRLE) is designed to
generate local candidate set for achieving intensively search in promising distributed local areas which are
located by affinity propagation clustering and mathematical modeling. Thus, the redundant local searches
for similar central solutions or surrogates can be largely alleviated, and the efficiency can be maintained by
allocating specific local searches on well-distributed central solutions.

A three-layer adaptive selection strategy, which incorporates the diversity among different offspring individ-
uals into the screening process, is adopted to progressively select promising candidate offspring solutions.
Concretely, two diversity-based fitness functions where the feasibility, diversity and convergence are effec-
tively balanced are formulated to screen candidate solutions from the global or local candidate sets.

Overall and systematic experiments on benchmark problems such as IEEE CEC2006°', and IEEE CE-
C2010°%and IEEE CEC 20175 have shown that the proposed SGDLCO provides highly competitive perfor-
mance.

The structure of this paper is as follows: In Sect. 2, the problem statement and relative background techniques are
presented. Section 3 describes the proposed SGDLCO. The experimental results are analyzed and summarized
in Sect. 4. Conclusions are drawn in Sect. 6.

Problem statement and relative background techniques

Problem statement

The expensive constrained optimization problem with inequality constraints studied in this paper can be
represented as:

minimize f(x)
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Fig. 1. Flowchart of SGDLCO.
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where f(z) and g;(z) donates the objective and j-th inequality constraint functions where their responses can
only be obtained by calling computationally expensive simulations, and g is the number of inequality constraints.
x = (z1,x2,....,xp) is the decision vector, D is the number of decision variables, L = (1,12, ...,Ip) and
U = (u1,u2, ...,up) are the lower and upper bounds of design variables. The degree of constraint violation of
x can be computed as follows:

Gj(x) = maX(O,gj(:r))J =1,..,p (2)

Afterward, the overall constraint violation function can be formulated as:

) =" G 3)

Therefore, the objective of the optimization problem is to find the optimal solution that minimizes the objective
function while satisfying the constraint violation function G(x).

Relative background techniques
Differential evolution (DE)
DE is a population-based optimization algorithm that relies on swarm intelligence theory®*. It maintains the
population by generating new individuals through mutation, selection, and crossover operations. By performing
operations on the population of candidate solutions, DE explores the solution space through information
exchange among different individuals in the population.

DE utilizes N P parameter vectors of dimension D, treating them as the population for each generation. Each
individual is represented as:

X; = (Xi,17...7X7;7D) (4)

For each individual in the population x; = (x;,1, ..., Z;,p ), the mutant vector is generated as follows:
(1) DE/rand/1

Vi =Xp1 + F - (Xp2 — Xr3) (5)
(2) DE/best/1
Vi = Xpest + F - (Xr1 — Xp2) (6)
(3) DE/best/2
Vi = Xpest + F - (Xr1 — Xp2) + F - (X3 — Xra) (7)
(4) DE/current-to-best/1
Vi =X + F - (Xpest — X4) + F - (X1 — Xp2) (8)

In the above formula, r1, r2, 3, and 74 are four completely different random numbers which is selected from
[1,7) U (i, NPJand N P must be greater than 4. pes¢ presents the optimal solution in the population. F is a
scaling factor that amplifies the deviation variable. By performing crossover operation to increase the diversity
of perturbed parameter vectors, the trial vector becomes:

The current
population The current

population

@ (b)

Fig. 2. Randomly select four individuals from the initial population.
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iy = { vi; if rand; < CRorj = jrand Y (9)

x;,; otherwise

where rand; presents the j-th estimate of a random number generator producing values between [0, 1], jrand
is a randomly chosen integer from {1, ..., n}, C'R represents the crossover operator, which ranges from [0, 1].

Radial basis function (RBF)
RBF is a function whose output value depends solely on the distance between the input and a certain center
point. RBF approximates complex nonlinear relations by introducing a linear combination o.

flocal basis functions in the input space. RBF demonstrates excellent universal approximation capabilities and
performsexceptionally wellin handling nonlinear problems. Given theexisting data {x;, y;|x; € R,i =1,..., N}
, the RBF approximation can be expressed as follows:

N
F=wo=> wi(lx—xl) (10)
=1

where x; represents the computational center point of the ith basis function among all basis functions, ||e||
represents the distance between the input x and x;, N is the number of center points. w; is the weight coefficient,
® is the Gram matrix which can be defined in Eq. (11).

elxi—xl) - o(lx—xnl)
d = : : (11)
o (lxv=xil) - @ xy=—xnl)

Affinity propagation clustering (APC)

Affinity Propagation Clustering (APC) is an advanced unsupervised clustering algorithm developed by Frey and
Dueck in 2007%. This technique automatically determines the number of clusters by identifying cluster centers
through iterative message passing. The algorithm operates on a similarity matrix, where each element represents
the negative squared distance between data points. There are two kinds of messages involved in APC, they are
responsibility (4, k) and availability s(, k). (4, k) can be computed as follows:

(i, k) < s(i, k) — ggf{a(i» k') + (i, K')} (12)

where s(7, k) is the similarity between i and k, and a (i, k") is the availability of .

The area where
all the mutants
are located

The area where
all the mutants
are located

IFR

(b)

The area where
all the mutants
are located

The area where
all the mutants
are located

(© (d)

Fig. 3. Four cases of DE/best/2.

Scientific Reports | (2025) 15:1728 | https://doi.org/10.1038/s41598-025-85233-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

a(t, k) can be computed as follows:

a(i, k) < min{0,r(k, k) + »_ max{0,r(i’,k)}} (13)
i/ ¢{i,k}

These two messages are iteratively updated till convergence, then the clustering result can be obtained by:

¢ = argmax{a(i, k) + r(i, k)} (14)

Proposed algorithm

Most existing self-adaptive evolutionary algorithms (SAEAs) use traditional differential evolution mutation
operations to generate offspring individuals when dealing with expensive optimization problems with inequality
constraints. This method has a significant degree of blindness in producing offspring individuals. Therefore, this
paper employs the classification cooperation mutation operation (CCMO) during the global search phase to
generate offspring individuals, thereby effectively utilizing limited computational resources. As the algorithm
progresses, the search space gradually narrows. The range of local search often becomes excessively repetitive,
which can significantly waste computational resources. Therefore, this paper designs a distributed central
region local exploration (DCRLE) to avoid the redundancy in local search. The existing SAEAs primarily select
truly promising offspring through a single-layer screening strategy based on designed predictive objectives or
constraint values. However, the diversity among different offspring individuals may be somewhat overlooked,
which could limit the effectiveness of reducing the likelihood of falling into local optima. While the current SAEAs
have improved optimization performance for solving ECOPs by incorporating specific local search strategies,
the center solutions corresponding to local searches for each population individual become increasingly similar
as iterations progress, and thus many redundant local searches for similar solutions or surrogates are designed
in these SAEAs. Therefore, to filter genuinely potential offspring solutions, a fitness function based on diversity,
feasibility, and overall quality is designed to assess the overall quality of each candidate offspring individual.
Additionally, a three-layer adaptive screening strategy (TLAS) is proposed, which sequentially considers
diversity, feasibility, and overall quality. To diversify local searches, this paper introduces a distributed center
region local exploration, and the affinity propagation clustering®® and mathematical modeling are designed to
identify well-distributed center solutions. This significantly reduces redundant local search iterations for similar
solutions or alternatives.

SGDLCO Method

The flow chart of SGDLCO is shown in Fig. 1. In SGDLCO, the global and local surrogate-assisted phases are
collaboratively executed where the global surrogate is employed to provide predictions for the global candidate
solution sets generated by the classification collaborative mutation operation, and the local surrogate is used
to build the distributed local search problems constructed for well-distributed central solutions selected based
on aflinity propagation clustering and mathematical modeling. More importantly, for effectively balancing
feasibility, diversity and convergence, the three-layer adaptive screening strategy is designed to screen high-
promising solutions from global and local candidate sets which are respectively generated in global and local

Selected solution
Optimum

Fig. 4. The tendency of movement of mutant vectors when all solutions are infeasible.
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surrogate-assisted phases. Thus, the proposed algorithm maintains efficient collaborative cooperation between
global and local searches at each generation.

The main framework of SGDLCO is shown in Algorithm 1. The initial population Popis generated by Latin
hypercube sampling (LHS)®. Then, the objective function and constraint functions of all individuals in the
initial population are evaluated, and the obtained results are stored in the database D B. For global surrogate-
assisted collaborative evolution phase, the global RBF model is constructed by using all the individuals in DB.
For each parent solution, the offspring candidate V}, is produced through the classification cooperation mutation
operation (CCMO), as detailed in Sect. 3.2. Gz is selected by applying the three-layer adaptive screening (TLAS)
as described in Sect. 3.3 for candidate set V. Subsequently, Gz is evaluated by the real objective and constraint
functions, and the DB is updated. Pop is updated by selecting the top NP individuals from the merged
population of Pop and Gz. During local surrogate-assisted phase, the candidate set LV is generated by the
distributed central region local exploration (DCRLE) as explained in Sect. 3.4. Similarly, the TLAS is used to
select L, and then update D B and Pop. The above procedure is repeated until the maximum number of fitness
evaluations is reached.

Algorithm 1 SGDLCO method

Input: | Population size: N P. The maximum number of function evaluations: M ax F' E's. The database: D B.

Output: | The optimized solution:Xpest.

1. Generate the initial population,Pop = {x1, X2, ..., XN p }, by Latin hypercube sampling.

Evaluate the initial population and archive them into DB, and set FEs = N P.
WhileFEs < MaxFEs

// The global surrogate-assisted collaborative evolution phase

Construct global RBF models, i.e., f€, gf y s th , for objective and constraints by using all the individuals inD B.

NIl el B

Generate candidate set, i.e., V3, by the classification cooperation mutation operation (CCMO) shown in Algorithm 2.

Conduct Algorithm 3 (called Three-Level Adaptive Screening, TLAS) to obtain the offspring set, i.e., Gx from

7. GU = {ui,...,unp}.

8. Evaluate Gz, and store them into DB, and FEs = FEs + Ngg.//NGs donates the number of individuals in Gz.
9. Select the best N P individuals such as Pop from the merged population based on FR, i.e., M Pop = Pop U Gx.

10. // The local surrogate-assisted phase

11. Generate candidate set, i.e., L'V by the distributed central region local exploration (DCRLE) as explained in Algorithm 4.
12. Conduct Algorithm 3 (called Three-Layer Adaptive Screening, TLAS) to obtain the offspring set, i.e., Lz from LV

13. Evaluate Lz, and store them into DB, and FEs = FEs + Nr..//NL, donates the number of individuals in Lz.
14. Select the best N P individuals such as Pop from the merged population based on FR, i.e., M Pop = Pop U L.

15. End While

16. Select the best solution Xpe s+ from Pop based on FR.

Classification Cooperation Mutation Operation (CCMO)

Most of the existing SAEAs for handling expensive optimization problems with inequality constraints adopt
traditional mutation operations of evolutionary algorithms to generate offspring individuals, which introduces
a significant degree of randomness. Therefore, the classification-collaboration mutation operation designed in*
is adopted in this section to design the mutation operation. For visualizing the search behavior of the designed
CCMO, the classic DE/best/2 in DE is used as an example to illustrate the randomness of classical mutation. The
DE/best/2 primarily generates mutated individuals by adding four random differential vectors to the current best
individual, thereby creating a mutation direction. In this context, x;; represents the current optimal individual
in the optimization process, while x,.1, X2, X3, and x,.4 are four individuals randomly selected from the current
population, F1 and F? are the scaling factors.

As shown in Fig. 2(a), the entire area inside the black line represents the overall design domain, FR and IFR
represent feasible and infeasible regions respectively. Within this design domain, the area inside the purple line
is the feasible region, while the remaining areas are infeasible region. The current population consists of 15
individuals, all represented as black dots. Thus, we first carry out the initial step of the DE/best/2 mutation by
randomly selecting four different differential vectors. As shown in Fig. 2(b), the four green dots correspond to
these four differential vectors. After determining the positions of the four differential vectors, it is necessary to
further establish the selection order of these vectors and the values of the scaling parameters to generate mutated
individuals. Due to the randomness of the mutation strategy, there are a total of 24 possible selection orders
based on permutations. For simplicity, we will only show the visualization of the four cases corresponding to
the limited rules, such as the first differential vector term consisting of x,.; and x,.5, and the second differential
vector term is composed of x,.3 and x,.4. Then the four cases are shown as below:

(1) inFig. 3(a), the mutation operation can be rewritten as: v; = Xpest + F1 * (Xr1 — Xr2) + F2 + (X4 — Xr3)
(2) inFig. 3(b), the mutation operation can be rewritten as: v; = Xpest + F1 - (Xr2 — Xr1) + F2 - (X4 — Xp3)
(3) inFig. 3(c), the mutation operation can be rewritten as: v; = Xpest + F1 - (Xr2 — Xr1) + F2 - (Xr3 — Xr4)
(4) inFig. 3(d), the mutation operation can be rewritten as: v; = Xpest + F1 * (Xr1 — Xr2) + F2 - (Xp3 — Xpa)

In Fig. 3, the red dashed arrows indicate the diversity of mutation directions resulting from different values of
the scaling factors. The gray shaded areas correspond to the regions occupied by all mutated individuals. From
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these four subfigures, it can be observed that only the case shown in Fig. 3(d) leads all mutated individuals
into the feasible region, while the mutated individuals in the other three cases are far from the feasible region.
Therefore, in traditional mutation operations, the randomness in the selection of differential vectors leads to
significant blindness in the mutation directions. When the surrogate model has some degree of prediction error,
it becomes inefficient in filtering out a few high-potential individuals from a large pool of candidate offspring.
Therefore, ensuring that each mutation is based on the situation in Fig. 3(d) to produce these high-potential
individuals is the key focus of this section. In summary, this can be achieved by adjusting the selection rules
for the four differential vectors in DE/best/2 to consistently obtain high-potential mutated individuals from the
initial population shown in Fig. 2(b). Based on the visualization and the mutation formula in Fig. 3(d), we can
derive two conclusions:

(1) x,, and x , are relatively close to the feasible region, and they produce a positive guidance effect.
(2) x,and x are relatively far from the feasible region, and they produce a negative guidance effect

Therefore, for fully utilizing the positive guidance information of better solutions and the negative guidance
information of worse solutions, the population is classified into two subpopulations based on feasibility rules
in?!, in which the first subpopulation consists of better solutions and the other is composed of the rest solutions.
After this, the candidate set is generated for each parent solution by collaborative cooperation between the two
subpopulations, and a high-promising candidate individual is selected from this candidate set based on RBF
predictions. The pseudo-code of classification cooperation mutation operation (CCMO) is shown in Algorithm
2.

In Algorithm 2, the advantage of selecting DE/best/2 as the mutation operator is that it combines information
from both the better and worse solutions in the current population. This enables the mutation process to move
towards promising regions indicated by the best solutions while avoiding unfavorable areas. Therefore, DE/best/2
is well-suited to construct the CCMO shown in lines 5-6 of Algorithm 2. Specifically, two different solutions
such as xZ and xZ;, which are randomly selected from B Pop, are utilized to determine the positive guidance
locations of CCMO; while x%% and x%; are selected from W Pop to locate the negative guidance. However,
incorporating massive current greedy information to mutation may lead the algorithm into local optima more
easily. Hence, different cooperative ways are employed to adjust the evolution of the population based on its
current state, which is shown in lines 4-11. Concretely, the current greedy information brought by the better
solutions or the best solutions is gradually diluted when the algorithm presents instability or stagnation, i.e., the
number of failures reaches the predetermined value.

Algorithm 2 Classification Cooperation Mutation Operation (CCMO)

The population: Pop.Threshold for determining which mutation strategy to use: F'v.The count of failed attempts to

Input: update the population’s best solution: ' fal.

Output: | V}: Candidate set.

Divide the Pop into two subpopulations based on FR where the B Pop contains the top half individuals, and the

L. W Pop contains the rest.

Normal APC, FEs=124

14.095214.0956 14.096 14.0964 14.099 14.1

14.0974 14.0978 14.1015 14.102 14.1025 14.103

14.096 14.097 14.098 14.099 14.1 14.101 14.102 14.103

The first dimension: x1

Fig. 5. The situation of normal APC.
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0.8429631

0.8429635

0.8429634 -

0.8429633 -

0.8429632

)

Abnormal APC, FEs=573

14.09500136 14.0950014

14.09500116  14.0950012

14.09500105 14.0950011 14.09500115 14.0950012 14.09500125 14.0950013 14.09500135 14.0950014
The first dimension: x1

Fig. 6. The situation of excessive APC.

Algorithm 2 Classification Cooperation Mutation Operation (CCMO)

2. Fori =1: NP

3. Forj =1: NC

4. IfT"_fail < Fv

5. Randomly select two distinct individuals xfl and xg from B Pop, x‘r/g and x,‘f‘i from W Pop.

6. Wi = Xpest + F1(xB, —x¥%) + Fa(xB, — x¥). /1 F1 = (1 + rand(0,1))/ 2, F» = (1 + rand(0,1))/2

7. Else If " fail > Fv & T _ fail < 2Fv

s Wi = Xpest + F1(Xp1 — Xp2) + F2(Xr3 — Xr4), Xr1, Xr2, Xr3, and X4 are four distinct individuals selected
from Pop.

9. Else IfT"  fail > 2Fv

10. }fgmzp);;)l_ + F1(Xr2 — Xr3) + F2(Xra — Xp5), Xr1, Xr2, Xr3, Xra and x5 are five distinct individuals selected

11. End If

12. Obtain u; by conducting binomial crossover on w; and x;.

13. End For

14 Select the best one such as vy, from Uy, based on FR by using the global RBF predictions on Uy, and
Vi = Vie U{vp }1 Up = {u1,...,unc}.

15. End For

As the algorithm progresses, the proportion of feasible solutions in the population gradually increases, while
the proportion of infeasible solutions gradually decreases. The situation in which all the solutions are infeasible
is selected as the example to clearly present the trajectory of mutation vectors, the tendency of movement of
mutant vectors is shown in Fig. 4. In Fig. 4, the population Pop is divided into BPop and W Pop. BPop
includes the top half solutions of Pop, and W Pop is composed of the remaining part. It can be easily found
that the BPop is closer to the feasible region compared to W Pop. This indicates that the generated candidate
solutions should be moved towards the positive directions located by BPop, and the negative directions of
W Pop can be also used as guidance to further move the candidate solutions towards feasible region. Specifically,
Xr1,g and X,3,4 are two randomly selected solutions from BPop, X,2,4 and X4, are two randomly selected
solutions from W Pop. The line connecting X,1,4 to X,2,¢, and the line connecting x,3,4 to X,4, 4 represent the
direction and length of F - (X1, — Xr2,9) and F» - (Xr3,g — Xr4,4) respectively. Hence, All the possible cases
that I - (Xr1,§ — Xr2,9) can be extended are on the red dotted line between xr1,4 and Xr2,4. The red dotted
line between x,3 4 and X,4,4 contains all the gossible cases that F» - (x,3,§ — Xra,9) can be extended. Therefore,
the parallelogram area formed by vertices w; ;, Wf, g W?y g> and W?’ ¢ represents the region where the candidate
offspring solutions are located. Hence, although all the solutions in current population are infeasible, all of the
generated candidate solutions are moved into feasible region. This directly demonstrate that CCMO is capable of
generating high-promising candidate solutions, then the screen pressure of RBF can be greatly deceased.
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Three-layer adaptive screening (TLAS)

During the algorithms iterations, the selection strategy often becomes too stringent and only allows the optimal
solutions to survive, the diversity among different offspring individuals may be ignored to a certain extent. This
excessive selection pressure reduces the population’s diversity, increasing the risk of falling into local optima.
When the population tends to consist of highly similar individuals, the algorithm is prone to getting stuck in
local optima and fails to effectively find global optima. This situation can lead to a homogenized search process,
resulting in premature convergence. Therefore, maintaining a certain level of diversity is crucial to promote a
more comprehensive search and innovation, avoiding premature convergence to local optima. By introducing
diversity maintenance mechanisms, the adaptability of the algorithm can be enhanced, increasing the chances of
finding better solutions. To alleviate the selection pressure on the population, as shown in Algorithm 3, a three-
layer adaptive screening strategy (TLAS), which incorporates the diversity among different offspring individuals
into the screening process, is adopted to progressively select promising candidate offspring solutions.

Specifically, TLAS sequentially considers the diversity, feasibility, and overall quality of each individual, and
selects offspring based on these three indicators.

The first layer of the screening function is shown in lines 2-3 of Algorithm 3. The minimum distance
calculated by Eq. (15) represents the shortest distance between an individual and all other individuals in
TDB. For each individual in the candidate C'S, the minimum distance Dist(x;) from the individual to all
individuals in the total database T'D B except itself is calculated. As the iterations progress, the individuals in
the population gradually become homogeneous. In fact, the individual with the biggest minimum distance to all
other individuals indicates that it is located in a relatively isolated region in the design space. This means that the
individual exhibits greater diversity from other individuals. Therefore, the individual with the biggest Dist(x;)
is selected. It represents relatively unique positions in the design space, which helps prevent the algorithm from
falling into local optima.

Dist(x;) = nin [xi = TDB| (15)

The second layer of the screening function is shown in line 4 of Algorithm 3. After selecting the individual with
diversity as described above, the individual with the best predicted value in the current population is selected
based on FR. Such individual plays a role in guiding the evolution direction of the population, and the region
where the individual resides represents a more promising area in the sample space.

Given the condition that the individual selected based on diversity may not has better quality measured by the
predicted objective and constraints, and the individual selected based on the combined quality of the predicted objective
and constraints cannot reflect the differences between individuals in the population. Therefore, the third layer screening
strategy is designed for selecting the individual with overall quality as shown in lines 7-8 of Algorithm 3.

A mathematical model for screening individuals based on their overall quality is designed, as shown in
Eq. (16):

faiv(xi) = f(xi)/Dist(xi) (16)
Gj.div(Xi) = §j.div(Xi)/Dist(x;)

where f(x;) and §;,aiv (x:) respectively represents the predicted values of objective and j-th constraint functions
for x;. Then fa;, (X ) donates diversity-based objective, which represents the combined quality between objective
and diversity; §;,4:v(x;) donates diversity-based constraint, which calculates the combined quality between
constraints and diversity. Then the FR is employed to select a high-promising solution in terms of the overall
quality of diversity, feasibility and diversity.

In summary, TLAS select individuals from the current population based on their diversity, feasibility, and
comprehensive quality, aiming to maintain the quality of population individuals while generating a more
exploratory population. Consequently, TLAS significantly increases the chances of finding global optimal
solutions in the solution space rather than getting trapped in local optima.

Algorithm 3 Three-Layer Adaptive Screening (TLAS)
Input: 'Car'ld'idate.set: CS(GU or L‘V): The Datab‘ase:'DB. The. lower bound: xl. The upper bound: zu. The dimensions of an
individual: #. The number of individuals which is selected: V1.
Output: | Offspring set: OS(Gx or Lx).
L Construct the merged database, i.e., M DB = DB U C'S, and initialize OS = 0.
2 Foreachx; inCS,7ppB = MDB\ {x;} and calculate the minimum distance Djst (xi) = zﬂigs |lx; — TDB].
i
3. Store an individual such as 0xq;s¢ from C'S with the biggest Dist (0xq;is¢) into OS.
4. Archive the best one such as 0Xpes¢ into OS from C'S based on FR by using the RBF predictions on C'S.
5. CS = CS\ {0xpest }» and randomly select an individual such as 0X;-gn 4 from C'S,and OS = OS U {0Xrqnd }-
6 Delete the similar individuals in O.S within the minimum distance threshold Dis __eps
’ /IDis_eps = min(v/0.0012n, 5e " min(zu — xl)).
7. Calculate the diversity-based objective for each x; in C'S, i.e., Faio(x:) = f(x,)/ Dist(x;)
8. Calculate the diversity-based constraints for each x; in C'S, i.e., §j,div (Xi) = §Gj,div(xi)/ Dist(x;),Vj € {1, ..., t}.
0. Select‘the top N1 — Nos individuals from C'S based FR by using the diversity-based objective and constraints and store
them into OS.
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Problem | Dimension | Type of objective (estimate feasibility ratio) | L(N)a
g01 13 Quadratic (0.0111%) 9(0)6
g02 20 nonlinear (99.9971%) 0(2)1
g04 5 quadratic (52.1230%) 0(6)2
g06 2 cubic (0.0066%) 0(2)2
g07 10 quadratic (0.0003%) 3(5)6
208 2 nonlinear (0.8560%) 0(2)0
g09 7 polynomial (0.5121%) 0(4)2
gl0 8 linear (0.0010%) 3(3)6
gl2 3 quadratic (4.7713%) 0(1)0
gl6 5 nonlinear (0.0204%) 4(34)4
gl8 9 quadratic (0.0000%) 0(13)6
gl19 15 nonlinear (33.4761%) 0(5)0
g24 2 linear (79.6556%) 0(2)2

Table 1. The main characteristics of thirteen benchmark problems from CEC2006. Note: a is the number of
active constraints at x, and L and N are the numbers of linear inequality constraints and nonlinear inequality
constraints, respectively.

Distributed Central Region Local Exploration (DCRLE)

As the algorithm progresses, the search scope tends to concentrate on a small range of more promising
regions. Thus, the corresponding local regions or surrogates of many local searches may be extremely similar,
since their corresponding central solutions are closer to each other, resulting in a limited exploration of new
solution spaces. This limitation not only reduces the diversity of the algorithm but also increases the risk of
local optima, as the algorithm may repeatedly evaluate similar solutions while neglecting other potentially high-
quality solutions. As iterations continue, an excessive focus on these similar regions can lead to a decline in the
algorithm’s innovative capacity, making it difficult to escape the current local optimum, thereby affecting the
overall search efficiency and effectiveness. Therefore, designing effective mechanisms to expand the search range
and encourage the exploration of more diverse solution areas will help enhance the algorithm’s performance and
increase the likelihood of finding global optima. Therefore, as shown in Algorithm 4, distributed central region
local exploration (DCRLE) is designed to effectively allocate uniformly distributed local searches. It utilizes
affinity propagation clustering and mathematical modeling to identify uniformly distributed central solutions.
However, we found that during the progression of the algorithm, two different clustering situations are shown in
Figs. 5 and 6. We take g6 from CEC2006 for an example. In these two figures, each point represents an individual
and the different clusters generated by APC are distinguished by points of different colors. The polygons formed
by connecting points of the same color represent the areas covered by each cluster. x and y represent two
different dimensions of the design variables. Figure 5 represents the clustering situation at the initial stage of
the algorithm where affinity propagation clustering divides the population into four clusters, represented by the
four polygons in Fig. 5. However, as the algorithm progresses, the population tends to exhibit over-clustering
due to low diversity, as shown in Fig. 6. When the number of iterations reaches 573, as indicated in the lower left
corner of Fig. 6, each point represents its own cluster, with only one point in each cluster. This occurs because
they lack sufficient similarity or shared features to form larger clustering structures, and they do not have enough
similarity with other points to form larger clusters. At this point, if we directly perform local searches on each
cluster, it will lead to excessive redundancy in the search areas. Then the mathematical modeling method shown
in lines 1-7 of Algorithm 4 is used to reselect the central points for well-distributed local searches. For a detailed
elaboration, the step-by-step introduction is shown below.

Step 1 in line 1, the cluster results of APC provide effective guidance to arrange the well-distributed local
search.

Step 2 in lines 2-8, when the population demonstrates an excessive number of clusters resulting from high
similarity among individuals, three central individuals are selected or generated based on different distributed
information to ensure that the central regions of local searches designed around these individuals are diversified.

Step 3 in line 10, to determine the local search scope for each cluster, the K nearest points to each cluster
center cxj, in the database DB are stored into M X. K is calculated as follows.

K = max((D + 1)(D + 2)/2, 100) (17)
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SGDLCO | C*0ODE | CORCO | FROFI | DeCODE

Prob. | ER ER ER ER ER
g01 100% 0% 8% 0% 8%
g02 100% 100% 100% 100% 100%
g04 100% 100% 100% 100% 100%
g06 100% 100% 60% 100% 60%
g07 100% 8% 12% 8% 0%
g08 100% 100% 100% 100% 100%
g09 100% 100% 96% 100% 100%
gl0 100% 0% 0% 0% 0%
gl2 100% 100% 100% 100% 100%
gl6 100% 60% 8% 80% 0%
gl8 100% 0% 0% 0% 0%
gl9 100% 100% 100% 100% 100%
g24 100% 100% 100% 100% 100%

Table 3. Effective rates among SGDLCO, C20DE, CORCO, FROF]I, and DeCODE on thirteen test problems
from CEC2006.

where D represents the number of dimensions.

Step 4 in line 11, to avoid irreversibility of the Gram matrix in constructing RBE, similar individuals within
the distance threshold Dis__eps are removed in each cluster. Then the local RBF models are constructed using
the remaining individuals for each cluster where the compute of Dis__eps is consistent with the formula in line
6 of Algorithm 3.

Step 5 inlines 12-18, the inner optimization problem for conducting local search on each cluster is formulated
as follows.

minimize f(x)

subjectto §;(x) <0j=1,2,--- ,¢q
zL; <x; <zU;,i=1,---,D
Jais(x) <0

(18)

where f(x) and §;(x) are the RBF surrogates built with the K nearest points for the original objective and the
j-th constraint, respectively. U; and z L; respectively represents the upper and lower bounds of i-th dimension
in the current local search scope. §ais(x) donates the distance constraint calculated based on the diversity
threshold which is computed in Eq. (19).

Jais(xi) = Dis_eps — Dist(x;) (19)

Step 6 in lines 19-21, the current population in inner optimization is regenerated when the current population
trapped in a local infeasible region, i.e., all the individuals are infeasible and their constraint violations show
extremely small differences.

Step 7in lines 22-33, based on the recommendation in CoDE®, three different combinations of mutation
operations and parameters are employed to generate diverse offspring solutions.

Step 8 in line 36, the best solution lvy is obtained by completing the inner optimization for each central
solution.
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SGDLCO | C*0ODE | CORCO | FROFI | DeCODE

Prob. | ER ER ER ER ER

Co1 100% 100% 100% 100% 100%
Co7 100% 100% 100% 100% 100%
Co8 100% 100% 100% 100% 100%
C13 100% 12% 0% 0% 0%

Cl4 100% 100% 100% 100% | 92%

C15 | 4% 16% 0% 8% 0%

Table 5. Effective rates among SGDLCO, C20DE, CORCO, FROF], and DeCODE on six 10-D test problems
from CEC2010.

Algorithm 4 Distributed Central Region Local Exploration (DCRLE)
Input: | Pop, DB, N P, total evaluation times: total F Es, K, Dis_eps.
Output: | 1,/
1. The Pop is clustered into np clusters, such as C X1y, ..., C X, based on APC.
2. Ifnp > |0.2N P] // Re-select three individuals based on the distribution of Pop when the clustered number is large.
3 Reset np = 3, for each individual in Pop, calculate the minimum distance Dist (x;) = x:g'}_’nop l|x; — DBJ|.
4. Select an individual such as cx1 and cx2 with the maximum and minimum i.e., Dist (cx1) and Dist (cx2).
NP
5. Obtain the mean individual of Pop, i.e, cx; ; = Z z;; /| NP,¥Yj€{l,..,n}Vz; € Pop-
i=1
6. Else If
NP
7. Obtain the mean individual of C X, for each dimension, i.e., cx5 ; = Z xi; /| NP,Vj€{1,...,n}Vz; € CX}-
i=1
8. End If
9. Fork = 1:np
10. Store the K nearest individuals to cxj, into M X from DB and M X, = M X U N Py.
11 Delete the similar individuals in M X, and construct local RBF models, i.e., f*, §¥, ..., ¥, for objective and constraints
by using the remaining individuals in M X,
12. WhileFEs < total FEs
13. Initialize the population T'X .
14. For each tx;in T'X
15. Calculate the minimum distance Dist (tx;) = txIinein [tx; — DB].
16. Predict the objective and constraints for tx; by local RBF models.
17. Evaluate the distance constraint for tx;, i.e., gais = Dis_eps — Dist(tx;).
18. End For
19. If all the individuals are infeasible and their constraint violations show extremely small differences
20. Regenerate the population such as T'X, and predict them by local RBF models.
21. End If
22. For each tx; in T'X
23. Ifrand(0,1) < 1/3
24. tv; = tx; + F(tXpest — tx;) + F(txr1 — tX,2), tx,1 and tx,.2 are two distinct individuals selected from 7'X,
and F' = 0.6.
25. Else Ifrand(0,1) > 2/3
26. tv; = tx; + F(tx,1 — tx;), tx,1 is a distinct individual selected from 7'X, and F' = 0.8.
27. Else
28. tvy = tx; + F(txr1 — tx2), tx,1 and tx, are two distinct individuals selected from T'X, and F' = 1.0.
29. End If
30. Obtain uv; by conducting binomial crossover on tv; and tx;.
31. Ifuv; is better than tx; based on FR.
32. tx; = uvy.
33. End If
34, End For
35. End While
36. Store the best one 1vy, from T'X, and archive lv, into LV = {lvy, ..., 1lvpp }.
37. End For
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SGDLCO | C*0ODE | CORCO | FROFI | DeCODE

Prob. | ER ER ER ER ER

Co1 100% 100% 40% 100% 100%
Co7 100% 100% 100% 100% 100%
Co8 100% 100% 100% 100% 100%
C13 100% 0% 0% 0% 0%

Cl4 100% 100% 100% 100% | 92%

C15 |28% 16% 40% 20% 0%

Table 7. Effective rates among SGDLCO, C*ODE, CORCO, FROFI, and DeCODE on six 30-D test problems
from CEC2010.

Experimental studies

Experimental settings

The performance of the proposed algorithm SGDLCO is verified by using thirteen widely used inequality-
constrained problems from CEC2006, as well as 10-dimensional and 30-dimensional inequality-constrained
problems from CEC2010 and CEC2017. The main characteristics of these thirteen benchmark problems
from CEC2006 are listed in Table 1. And the main characteristics of other test problems from CEC2017 are
listed in Table Al in the Appendix. The maximum number of fitness evaluations MaxzF Es is set to 1000 for
all the test problems. All experimental results are obtained over 25 independent runs in Matlab R2023a. To
systematically evaluate and compare the performance of SGDLCO with other different algorithms in solving
specific optimization problems, the effective rate (ER) metric shown in Eq. (19) is used to measure the ratio of
effective evaluations to total evaluations. If at least one feasible solution is found during one evaluation, then
that evaluation is considered effective. In Eq. (20), Nej fective and Nmax respectively represent the number of
effective evaluations and the total number of evaluations. Additionally, in the following table. “Mean” and “Std”
respectively represent the average and standard deviation of the objective function values obtained among all
effective runs.

Neffective

ER = (20)

Nmax

Comparison with four evolutionary algorithms

Four excellent evolutionary algorithms, i.e., C20DE®’, CORCO%and FROFI®, DeCODE"° are selected for
comparison with SGDLCO. C?0DE utilizes three different trial vector generation strategies to balance diversity
and convergence, while achieving a balance between constraints and the objective function. It performs better or
at least comparably to other state-of-the-art methods on multiple benchmark test functions. CORCO proposes
a new constrained optimization evolutionary algorithm which utilizes the correlation between constraints and
the objective function for the first time, and it balances this correlation through a correlation index. FROFI
introduces a novel replacement mechanism and mutation strategy, and effectively utilizes objective function
information to alleviate the excessive bias of known feasibility rules, thereby enhancing its robustness. DeCODE
utilizes the decomposition-based multi-objective optimization method to solve constrained optimization
problems by transforming them into bi-objective optimization problems and decomposing them into scalar
optimization subproblems.

The experimental results (objective function values) of all these algorithms on the 13 test problems from
CEC2006 are listed in Table 2. The effective rate of all these algorithms on the 13 test problems from CEC2006 are
listed in Table 3. Tables 4 and 5 list the test results of each algorithm on six 10-dimensional and 30-dimensional
problems in CEC2010, respectively, while Tables 6 and 7 list the test results of each algorithm on seven
10-dimensional and five 30-dimensional problems in CEC2017, respectively. In these tables, t-test are employed,
as shown in Table 3, where “Win” indicates the number of test problems where SGDLCO outperforms the
algorithm, “Tie” indicates the number of test problems where SGDLCO performs comparably to the algorithm,
and “Loss” indicates the number of test problems where SGDLCO performs worse than the algorithm.

In Table 2, on nine test problems (g1, g2, g4, g6, g7, g10, g16, g18, g19, g24), SGDLCO is able to achieve
solutions that are significantly better than those of the other four algorithms. This indicates that within 1000
evaluation attempts, SGDLCO is able to find optimal solutions that are significantly better than those of the
other four algorithms. In Table 3, for eight test problems (i.e., g01, g07, gl10, gl6, g18) with smaller feasibility
ratio, SGDLCO is able to achieve a 100% ER on these test problems. This means that, compared to these four
algorithms, SGDLCO is always able to find at least one feasible solution when dealing with these test problems.

As shown in Table 4, SGDLCO performs excellently on the majority of problems, outperforming other
algorithms on the C01, C07, C08, C13, and C14 problems. As shown in Tables 5 and 7, for C13 problem with
a low feasibility rate, SGDLCO consistently finds feasible solutions in every run, whereas other algorithms fail
to obtain feasible solutions. As shown in Table 6, SGDLCO achieved better or comparable results than other
algorithms on all problems. As shown in Table 8, SGDLCO performs excellently on the C01, C02, C04, CO5,
C13, and C22 problems, outperforming other algorithms on these problems. As shown in Table 9, for C13 and
C22 problems with low feasibility rates, SGDLCO consistently finds feasible solutions in every run, whereas
other algorithms fail to obtain a feasible solution. Similar results can also be seen in Tables 10 and 11. Therefore,
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SGDLCO | C*0ODE | CORCO | FROFI | DeCODE
Prob. | ER ER ER ER ER
Co1 100% 100% 100% 100% 100%
C02 100% 100% 100% 100% 100%
C04 100% 100% 100% 100% 100%
Co5 100% 100% 100% 32% 100%
C13 100% 0% 0% 0% 0%
C20 100% 100% 100% 100% 100%
C22 100% 0% 0% 0% 0%

Table 9. Effective rates among SGDLCO, C20DE, CORCO, FROF]I, and DeCODE on six 10-D test problems
from CEC2017.

SGDLCO significantly outperforms the other four algorithms across various test problems, demonstrating its
superiority and stability in handling inequality-constrained optimization problems.

Comparison with four SAEAs

Many SAEAs are developed to solve expensive constrained optimization problems. Seven out of these algorithms,
ie., GLoSADE’, SADE—CVSR37, SADE—CVFR37, SParEA”!, MPMLS®, SA-TSDE’?and SACCDE*’provide
competitive performance than others on solving classical test suites. Therefore, they are employed to compare
with SGDLCO on three widely used test suites, i.e., IEEE CEC2006%!, IEEE CEC2010°%and IEEE CEC2017%.
To be consistent with the three comparison methods, we suppose that both the objective and constraints are
simultaneously evaluated by running one expensive simulation. The comparison results of these algorithms
on benchmark problems from IEEE CEC2006, IEEE CEC2010 and IEEE CEC2017 are respectively shown in
Tables 12, 13 and 14.

In Table 12, SGDLCO is capable of obtaining near-optimal solutions for the majority of relatively simple
problems in IEEE CEC2006 and outperforms these comparison algorithms on most functions. This indicates
that SGDLCO has the ability to quickly locate the global optimum for simple problems. Furthermore, in
Table 13, for relatively complex problems such as those in IEEE CEC2010, SGDLCO also significantly
outperforms these comparison algorithms on most functions, which indicates that SGDLCO has a significant
performance advantage on CEC2010 test suites. In Table 14, SGDLCO has a significant advantage over only
four of the seven algorithms such as GLoSADE, SADE-CV,, SADE-CV ,, and MPMLS, and SGDLCO has
comparable performance with the other three algorithms. This indicates that the performance of SGDLCO
varies across different test suites and the performance of SGDLCO on CEC2017 does not seem to be significant.
In order to analyze the overall performance of the SGDLCO algorithm on the three test suites more clearly, the
statistical results of the overall performance of the algorithm against the three test sets are presented in Sect.4.4.
In addition, the detailed comparative analysis results with each algorithm are as follows:

(1) For GLoSADE, in CEC2006, SGDLCO achieves better results on seven out of thirteen problems. In
CEC2010, SGDLCO outperforms GLoSADE on six problems and achieves comparable results on two prob-
lems. Additionally, in CEC 2017, SGDLCO achieves better results on ten out of twelve problems.

(2) For SADE-CV, and SADE-CV g, in CEC2006, SGDLCO achieves better results on eleven out of thirteen
problems. In CEC2010, SGDLCO outperforms both SADE-CV, and SADE-CV ,, on ten problems. Addi-
tionally, in CEC 2017, SGDLCO achieves better results on eleven out of twelve problems compared to both
algorithms.

(3) For SParEA, in CEC2006, SGDLCO achieves better results on six out of thirteen problems and had similar
results on five problems. In CEC2010, SGDLCO outperforms SParEA on six problems. Additionally, in
CEC 2017, SGDLCO achieves better results on three out of twelve problems and had similar results on
seven problems with SParEA. It is worth noting that while the t-test results were similar on some problems,
such as C22 in Table 15 and C04 in the six row of Table 14, SGDLCO consistently obtained significantly
better average values for these specific problems compared to SParEA.

(4) For MPMLS, in CEC2006, SGDLCO achieves better results on seven out of thirteen problems. In CEC2010,
the performance of SGDLCO is significantly better than MPMLS on five problems, and SGDLCO obtains
comparable results than MPMLS on five problems. In CEC2017, SGDLCO outperforms MPMLS on six
problems, and SGDLCO obtains comparable results than MPMLS on four problems.

(5) For SA-TSDE, in CEC2006, SGDLCO achieves better results on eight out of thirteen problems and obtains
similar results on four problems. In CEC2010, the performance of SGDLCO is significantly better than
SA-TSDE on six problems and SGDLCO obtains comparable results than SA-TSDE on four problems. In
the twelve problems tested in CEC2017, SGDLCO outperforms SA-TSDE on four problems, and SGDLCO
obtains comparable results on another four.

(6) For SACCDE, in CEC2006, SGDLCO achieves better results on five out of thirteen problems, and SGDLCO
has similar results than SACCDE on five problems. In the twelve problems tested in CEC2010, SGDL-
CO achieves better results on six problems, and SGDLCO obtains comparable results on six problems. In
CEC2017, SGDLCO outperforms SACCDE on three problems, and SGDLCO obtains comparable results
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SGDLCO | C*0ODE | CORCO | FROFI | DeCODE
Prob. | ER ER ER ER ER
Co1 100% 100% 100% 100% 100%
C02 100% 32% 24% 8% 16%
C04 100% 100% 100% 100% 100%
Co5 100% 0% 0% 0% 0%
C20 100% 100% 100% 100% 100%

Table 11. Effective rates among SGDLCO, C2ODE, CORCO, FROFI, and DeCODE on five 30-D test problems
from CEC2017.

than SACCDE on six problems. This indicates that in the three test suites, SGDLCO outperforms or per-
forms comparably to SACCDE in most problems.

Wilcoxon signed rank test for comparison
To further compare the overall performance of SGDLCO with these classical algorithms on the aforementioned
test problems, we employed the Wilcoxon signed rank test’> to comprehensively assess their performance
differences. All Wilcoxon signed rank test results are listed in Table 15. Here, different dimensions of the same
function (e.g., 10D C01 and 30D CO01) are considered as distinct problems.

In Table 15, it can be observed that SGDLCO shows a significant improvement over SADE-CV,, SADE-
CVyp with a level of significance level @ = 0.01, over GLoSADE with o = 0.02, over SA-TSDE with oo = 0.05,
over SACCDE with o« = 0.10, over SParEA with a = 0.20, and over MPMLS with o = 0.25.

Effectiveness of some strategies in SGDLCO

In this subsection, five 10-D problems in CEC2017 are chosen to discuss the effectiveness of several strategies
proposed in this paper. The maximum number of fitness evaluations MaxF E's is set to 1000, and the rest
parameters about SGDLCO are set the same as that suggested in subsection 4.1.

(1) Effectiveness of classification cooperation mutation operation

To verify the effectiveness of the classification cooperation mutation operation (CCMO) proposed in SGDLCO,
a variant called SGDLCO_noCCMO is introduced for detailed comparison. SGDLCO_noCCMO replaces the
classification cooperation mutation operation (CCMO) in SGDLCO with the DE/best/2 method as shown in
Eq®.

Figure 7 lists the comparison results of SGDLCO and SGDLCO_noCCMO on the five 10-D test problems
from CEC2017. From Fig. 7, it can be seen that SGDLCO achieved better or comparable results to SGDLCO_
noCCMO except for C05. This demonstrates that CCMO effectively utilizes information from all individuals to
obtain more accurate solutions. Figure 8 lists the standard deviations of the operational results of SGDLCO and
SGDLCO_noCCMO on the five 10-dimensional test problems from CEC2017. From the table, we can see that
SGDLCO exhibits more stable results than SGDLCO_noCCMO on most problems.

(2) Effectiveness of three-layer adaptive screening

To maintain population diversity during the selection process and avoid the population getting trapped in local
optima, this study constructs a variant of SGDLCO called SGDLCO_noTLAS. SGDLCO_noTLAS replaces
TLAS in SGDLCO with FR.

Figure 9 presents the experimental results of SGDLCO and SGDLCO_noTLAS on five selected problems
from CEC2017. From Fig. 9, we can see that SGDLCO achieves better results than SGDLCO_noTLAS. These
experimental results indicate that TLAS effectively maintains the diversity of the population, enabling effective
exploration of the solution space and enhancing the quality of individuals within the population. Therefore,
TLAS significantly increases the chances of finding the global optimum in the solution space, rather than
getting stuck in local optima. Figure 10 lists the standard deviations of the operational results of SGDLCO and
SGDLCO_noTLAS on the five 10-dimensional test problems from CEC2017. From the table, we can see that
SGDLCO exhibits more stable results than SGDLCO_noTLAS in 3 out of the 5 problems.

(3) Effectiveness of distributed central region local exploration

To verify the effectiveness of the DCRLE proposed in this paper, a variant of SGDLCO, called SGDLCO_
noDCRLE, was introduced. SGDLCO_noDCRLE replaces the DCRLE in SGDLCO with the local surrogate-
assisted search phase detailed introduced in GLoSADE. The core difference between the local surrogate-assisted
search phase in GLOSADE and the DCRLE is that the first approach performs complete local search processes
for each population individual, while the DCRLE only performs local searches for selected individuals with well-
distribution and potentiality.

Figure 11 lists the test results of SGDLCO and SGDLCO_noDCRLE on five problems from CEC2017. It can
be seen that SGDLCO achieved better results on 4 out of 5 tested problems, with C20 achieving comparable
results between the two. And from Fig. 12 we can observe that SGDLCO achieves more stable results than
SGDLCO-noDCRLE on all problems except C20. This indicates that SGDLCO has a stronger search capability
compared to SGDLCO_noDCRLE. This suggests that DCRLE can effectively allocate uniformly distributed local
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Comparison Num | P-value

SGDLCO vs. GLoSADE | 37 1.77E-02
SGDLCO vs. SADE-CV, | 27 6.74E-06
SGDLCO vs. SADE-CV, | 27 1.90E-04
SGDLCO vs. SParEA 37 1.60E-01
SGDLCO vs. MPMLS 37 2.07E-01
SGDLCO vs. SACCDE 37 7.90E-02
SGDLCO vs. SA-TSDE 37 2.14E-02

Table 15. The Wilcoxon signed rank test results for mean value comparison.
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searches, concentrating the search range on a smaller, more promising area, thereby making more efficient use
of limited computational resources.

Conclusion

This paper introduces a surrogate-assisted global and distributed local collaborative optimization algorithm
for expensive constrained optimization problems, named SGDLCO. The algorithm operates in two phases
during each iteration: global surrogate-assisted collaborative evolution and distributed local surrogate-assisted
search. In the global surrogate-assisted collaborative evolution phase, to fully utilize the positive guidance
information from better solutions and the negative guidance information from poorer solutions, and to
alleviate the pre-screening pressure on the surrogate model, the global candidate set is generated through
classification cooperative mutation operation. In the distributed local surrogate-assisted phase, to effectively
allocate uniformly distributed local searches, this paper designs a distributed central region local exploration
method that uses affinity propagation clustering and mathematical modeling to identify uniformly distributed
central solutions. For different clustering situations, targeted mathematical modeling methods are used to
reselect central points for well-distributed local searches. Additionally, distance constraints are considered
during the local search process to maintain search diversity and prevent the algorithm from getting trapped
in local optima. To alleviate the selection pressure on the population, this paper designs a three-layer adaptive
selection strategy. Two diversity-based fitness functions are formulated to screen candidate solutions from global
or local candidate sets. This approach ensures the quality of the population while generating a more exploratory
population, thereby significantly increasing the probability of TLAS finding the global optimum in the solution
space and avoiding local optima. Compared to other algorithms, SGDLCO demonstrates significant advantages
in handling expensive constraint optimization problems. It reduces the blind exploration in the global search
stage and effectively avoids excessive redundancy in the local search. This significantly increases the likelihood
of finding the global optimum and prevents the algorithm from getting trapped in local optima.

Furthermore, the design philosophy and methodology of SGDLCO provide a solid foundation for future
algorithm extensions and improvements, particularly in addressing multi-objective and high-dimensional
problems, where it is expected to achieve superior performance. Therefore, how to effectively extend the current
proposed SGDLCO for solving these problems is an important future work.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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