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TSC complex decrease the
expression of mTOR by regulated
miR-199b-3p

Na Zhao'?, Qiuhong Xiong?, Ping Li%, Guangxin Chen?, Han Xiao'** & Changxin Wu**

The TSC complex formed by TSC1 and TSC2 is the most important upstream negative regulator of
mTORC1. Genetic variations in either TSC1 or TSC2 cause tuberous sclerosis complex (TSC) disease
which is a rare autosomal dominant disorder resulting in impairment of multiple organ systems. In this
study, besides a reported variation, c.2509_2512del (p.Asn837Valfs*11, p.N837fs) in TSC1, we found a
de novo TSC2 variation c.1113delG (p.GIn371Hisfs*18, p.Q371fs), which these two mutation influence
the formation of TSC complex. We found that the decrease of TSC complex with the appearance of

the decreased miR-199b-3p expression. At the same time, the reduction of miR-199b-3p increased the
expression of mTOR and the activation of mTORC1 and mTORC2, the additional miR-199b-3p caused
the decrease the expression of mTOR and the activation of mMTORC1 and mTORC2. In brief, our results
may illustrate a novel mechanism of TSC caused by variations in either TSC1 or TSC2, and a new mTOR
expression regulator, miR-199b-3p.
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TSC (Tuberous sclerosis complex) (OMIM#191100#613254), with a morbidity of near to 1:6,000-1:10,000 in the
world population, is an autosomal dominant disorder that multiple organ systems affected including skin, kidneys,
brain, lung and heart!. The prevalence of TSC is independent of nations, ethnicity and sex, however, some studies
found that female patients with TSC have a higher incidence of renal disease and lymphangioleiomyomatosis
burden than male patients®>. Among patients with TSC, more than 80% patients develop multiple and bilateral
angiomyolipomas in the kidneys which are the leading cause of adult deaths with this disease®. TSC is usually
caused by germline loss-of-function variations in either TSCI or TSC2, encoding hamartin (TSC1) and tuberin
(TSC2), respectively®®. The complex of TSC1 and TSC2 inactivates the small GTP-binding protein Rheb to
negatively regulate mammalian target of rapamycin complex 1 (mTORC1), an important regulator of cellular
biosynthesis®, which is now recognized as a classical model of TSC pathogenesis’. Once activated, mTORC1
phosphorylates the downstream effectors, such as p70S6K and eukaryotic initiation factor 4E-binding protein 1
(4EBP1), to promote translation initiation®. mTOR is a component of two functionally and structurally distinct
complexes, one is rapamycin-sensetive mTOR complex 1 (mTORCI1), the other is rapamycin-insensitive mTOR
complex 2 (mTORC2)?. mTORC?2 is known to control cell survival and proliferation®.

miRNAs are small, non-coding RNA molecules about 19 to 25 nucleotides which involve in the regulation
of gene expression during post-transcriptional stages by pairing to the target mRNA, thereby promoting the
degradation of target mRNA or decreasing its translational efficiency'®. Many miRNAs are also involved in the
pathogenesis of various malignancies that have been evidenced by many studies!!. It has been demonstrated that
miR-199b is associated with the expression of mTOR!213 but the molecular mechanism is unclear. Barbara et
al.reported that TSC2 might regulate the biogenesis of microRNA in mouse embryonic fibroblasts (MEF), which
indicates that the microRNA may play an important role in the pathogenic mechanism of TSC'.

In this study, we reported two variations, include a de novo mutation (c.1113delG) in TSC2 and one reported
mutation (c.2509_2512del) in TSCI that caused TSC in two independent families. Our results showed that
TSC2-p.Q371fs influenced the cell proliferation and apoptosis in fibroblast from the patient. Furthermore, the
TSC complex may regulate the protein level and activity of mTOR through the manipulation of the level of
intracellular miR-199b-3p, which may a novel mechanism of TSC caused by mutation either in TSC1 or TSC2
and expends our understanding of TSC pathogenesis.
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Materials and methods

Patients

This study was approved by the Ethics Committees of Shanxi University and the ethics number is SXULL20190049,
written informed consent was obtained from all patients and healthy volunteers involved in this study.

Sequencing analysis
Whole-exome sequencing and validation by PCR were performed as described in our previous studies’®.

Cell culture
Skin tissue samples were isolated from a TSC patient (22 years old, female) with the variation ¢.1113delG in
TSC2 and two healthy volunteers (female, 23 years old and female, 25 years old). Fibroblasts of skin tissues
separated and then cultured in DMEM (Boster) with 10% FBS (Gibco), 100 U/mL penicillin and 0.1 mg/mL
streptomycin and grown in 5% CO,at 37 °C as described before'®.

HEK293T cells were maintained in DMEM (Boster) supplemented with 10% FBS (BI). Cells were transfected
with plasmids in this study using Polythermide (PEI) (PolyScience, Cat.N0.23966-2) as described before!”.

The plasmids for overexpression and shRNA

The plasmids pcDNA3-Flag-TSC2-WT and pcDNA3-Myc3-hTSC1-WT were purchased from Addgene. The
plasmids pcDNA3-Flag-TSC2-MT containing mutant TSC2 (c.1113delG) and pcDNA3-Myc3-hTSC1-MT
containing mutant TSCI (c.2509_2512del) were constructed using site-specific mutagenesis. Lentiviral plasmids
expressing shRNA specific to either TSCI (NM_000368.5) or TSC2(NM_00548.5) were constructed using the
targeting sequences 5-AAAGAAGAAGCTGCAATATCT-3!8 and 5-GCTCATCAACAGGCAGTTC TA-3'"
respectively.

Lentiviruses were harvested in HEK293T cells 72 h post co-transfection. The co-transfection of lentiviral
plasmid vectors, psPAX and pMD2.G was performed at the ratio of 5:5:1. The medium containing lentiviruses
was collected and then purified by centrifugation at 1000xg and filtration through 0.22 pm filter. Cells were
transformed with the medium containing the lentiviruses and fresh medium at the ratio of 3:1 and cultured for
72 h, then drug selection with puromycin (1 mg/ml) was performed for 7-10 days to get stable transformed cell
lines.

gRT-PCR analysis

The total RNA of fibroblasts from the patient or the healthy volunteers were extracted using RNAiso Plus (TaKaRa,
Cat#9109) following the instructions of the supplier. First-stand cDNA for evaluated mRNA was generated
using PrimerScript"™RT Master Mix (TaKaRa, Cat.No.RR0-36A) and cDNA for miRNA was generated using
TansScriptmiRNA First-Strand ¢cDNA Synthesis SuperMix (TransGen Biotech, Lot#N10824). Three primer
pairs for qRT-PCR of TSC2 were applied for quantification of cDNA located in either 5" or 3’ terminal and the
middle of the mRNA of TSC2. The primer pairs for mTOR and VEGF were obtained from Primer Bank (https:
//pga.mgh.harvard.edu/primerbank/).

Western blot

The total protein of fibroblasts was extracted by radio-immunoprecipitation buffer (RIPA, Solarbio, R0020) with
1 mM PMSE 1 mM dithiothreitol and phosphatase inhibitors followed the manufacturers” instructions. Total
protein concentration was measured using a PierceTMBCA protein assay kit (Thermo).

The co-immunoprecipitation was performed as the protocol of IP/Co-IP kit (Absin, Cat. No. abs955). The
antibodies involved in this study were as belows: TSC1 monoclonal antibody (Stanta Cruz, Cat.No.sc-377386),
TSC2 monoclonal mouse antibody (Stanta Cruz, Cat. No. sc-271314), TSC2 monoclonal rabbit antibody (Cell
Signaling. Cat.No.#4308), mouse IgG (Stanta Cruz, Cat.No.sc-2025), mouse anti Myc-tag monoclonal antibody
(ABclonal, Cat.No.AE010), DDDDK tag (flag) mouse monoclonal antibody (Proteintech, Cat.No.66008-3-
Ig), mTOR (phosphor-S2448) polyclonal antibody (Bioworld, Cat.No.BS4706), Beta actin Polyclonal antibody
(Absin, Cat.No.abs132001), 4E-BP1 (53H11) rabbit monoclonal antibody (Cell Signaling, Cat.No.#9644),
Phospho-4E-BP1 rabbit monoclonal antibody (Thr37/46) (236B4) (Cell Signaling, Cat.No.#2855), p70S6 Kinase
(49D7) rabbit monoclonal antibody (Cell Signaling, Cat. No. #2708), Phospho-p70S6 Kinase rabbit monoclonal
antibody (Ser371) (Cell Signaling, Cat. No. #9208), goat anti-rabbit IgG (H + L), AKT mouse monoclonal antibody
(Santa cruz, Cat.No.sc-5298), p-AKT mouse monoclonal antibody(Ser 473)( Santa cruz, Cat.No.sc-293125).
Secondary antibody, HRP Conjugate (BOSTER, Cat. No. BA1054), HRP-conjugated affinipure goat anti-mouse
IgG (Proteintech, Cat.No.SA00001-1).

Running Native gel for the detection of TSC complex was performed using the HEK293T cells. Post-
transfection, cells were collected using non-denature lysis buffer on ice. The soluble fraction was then separated
by centrifugation at 12,000xg for 10 min at 4 °C. The supernatants were harvested and added with 5xprotein
non-denaturation loading buffer. All the running buffers and the native gels were without SDS.

Immunofluorescence analysis

Cells grown on coverslips were fixed by 4% paraformaldehyde at 37 °C for 10 min. After permeabilized with
0.5% Triton and X-100 for 15 min, cells were blocked in 5%BSA (Bull Serum Albumin, Solarbio) for 1 h at
room temperature. Then the cells were incubated in primary antibody overnight at 4 °C. After washing, the cells
were incubated with the secondary antibody for 1 h at room temperature. The cells staining by DAPI (Sigma)
after washing, finally mounted on glass slides using gelatin. Images were acquired using a Delta Vision Image
Restoration Microscope with a x63 objective (DeltaVisionElite, GE).
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Measurement of apoptosis

Cell apoptosis assays were performed by incubation with Fas-ligand (Peprotech, Cat: #310-03 H-10VG) at 1 pg/
ml for 24 h, then extra incubation with 5 ug/ml CHX (Cycloheximide) (MCE, Cat.No. HY-12320) and 50 pg/
ml TNFa (MACS, Lot. No. 51809100455) for 24 h. Finally, cells were treated with trypsin (without EDTA) and
collected for apoptosis analysis by flow cytometry using AnnexinVPE/7-AAD Apoptosis detection Kit (Biotech,
Cat.N0.20180426) according to the manufacturer’s instructions.

Cell proliferation assay

The fibroblast proliferation activity was measured by Cell Counting Kit-8 (CCK-8, BOSTER, Cat.No. AR1160).
Fibroblasts were seeded in 96-well plate at the density of 1,000 cells per well and cultured for 1-7 days depending
assay schedules, at every detection time point of cell proliferation, cells were fed with fresh medium with the
addition of 10 ul CCK-8 solutions for 1 h at 37 °C, optical densities were measured on a micro plate reader at
450 nm.

Luciferase reporter assay

HEK293T cells were seeded into 24-well plates at a density of 1.5x 10° per well. The cells were co-transfected
psiCheck-2 with insertion of the 3’ UTR of mMTOR and miR-199-3p inhibitors or negative control. The analysis of
luciferase activities was using the TransDetect Double-Luciferase Reporter Assay Kit (Transgen, Beijing, China).

Statistical analysis
All the data are showed as mean + SD from independent experiments at least three times. The two-tailed Student’s
t-test was applied for the determination of the p-values. p <0.05 was considered as significant difference.

Results

Family Pedigree/Patient information

All patients included in this study were recruited from two unrelated Chinese families. The blood samples were
obtained for whole-exome sequencing for the detection of the variations in the probands. The information of
all the patients was listed in Table 1. The proband in family I was diagnosed as TSC when she was 16 with facial
angiofibromas and renal angiomyolipoma. Her daugher was suspected as TSC because of cardiac rhabdomyomas
during prenatal ultrasound. The patients in family II were not diagnosed as TSC but the patients in this family
were all with epilepsy.

The proband (II-1) of family I (Fig. 1A) showed the typical symptom of TSC-facial angiofibromas (Fig. 1B),
however, epilepsy was not present in the proband but in her daughter (III-1). A de novo mutation in TSC2
(c.1113delG, p.GIn371Hisfs*18) was detected in this patient as well as her daughter (III-1) (Fig. 1C). The deletion
of one base pair caused amino acid change at GIn371, and resulting in frameshift and premature truncation of
the protein at the highly conserved region imply that this mutation is very likely to be the major pathogenic
cause of TSC (Fig. 1D).

The proband of family II (Fig. 1E) was detected a reported variation (c.2509-2512del, p.Asn837Valfs*11)
in TSCI, his mother and his son also detected the same variation in TSCI by sanger sequencing (Fig. 1F). This
variation caused a translational frame shift, resulting in premature truncation at the highly conserved domains
of TSC1 (Fig. 1G).

TSC2-Q371fs influence the TSC2 expression and the phenotype of fibroblasts

The heterozygous variation in TSC2 (c.1113delG) resulted in frameshift and a truncated protein (Fig. 2A). The
mRNA and protein level of endogenous wild type TSC2 in TSC2-Q371fs fibroblasts were much lower than
TSC2-WT fibroblasts (Fig. 2A, B and C). The proliferation assays showed that the proliferation of the fibroblasts
with the mutation TSC2-Q371fs from patient was significantly increased compared to TSC2-WT fibroblasts
from healthy volunteers (Fig. 2D). The apoptosis analyses revealed that the apoptosis was declined in TSC2-
Q371fs fibroblasts (Fig. 2E).

TSC1-N837fs and TSC2-Q371fs impairs the function of TSC complex
The results of qRT-PCR showed that the VEGF and HIF-1a which were regulated by mTOR signaling pathway in
fibroblast with mutation TSC2-Q371fs were elevated as reported before?, suggesting that variation (c.1113delG)

Gene Mutation Mutation | Reference Mutation reported
Family ID | Patient ID | gender | (nucleotide) | (nucleotide) (protein) | transcript previously symptom
Il F o No | el ansemyolipora
Family T TSC2 c.1113delG P'Gl“37le“fs 18, NM_00548.5
I1I-1 F pQ7IS No | cPilepsy
cardiac rhabdomyoma
I-1 F Yes | epilepsy
>t
Family T |11 M T5C1 €2509_2512del gﬁ;‘;ﬁzv“lfs 11, NM_000368.5 Yes | epilepsy
1I1-1 M Yes | epilepsy

Table 1. The information of the patients involved in this article. The patient symptoms listed in the table are
limited to the patient symptoms we have collected and may not be all of the patient’s clinical symptoms.
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Fig. 1. Family pedigree and sequencing results. (A, E) Family pedigree, the families involved in this study.
Squares indicate males, circles indicate females, the patients are shown as filled symbols. The proband is
indicated by arrows(,/"), the individual showed no genotype under the squares or circles indicate the genotype
was not tested during this study. (B) The facial angiofibromas of the proband in family I. (C, F) Sanger
sequencing analysis, the gene variation is shown by red arrows. (D, G) Evolutionary conservation of amino
acid residues altered by the variations across different species.

in TSC2 impairs the function of TSC complex in fibroblast from patient(Fig. 3A). Western blot results revealed
that phosphorylation of p70S6K and 4EBP1 were increased, indicating that mTOR was over activated in
mutant cells. Supply of TSC2-WT in mutant cells restored the activity of TSC complex, thus less active mTOR
subsequently decreased the p70S6K and 4EBP1 phosphorylation (Fig. 3B).

To investigate whether the TSC1-N837fs and TSC2-Q371fs influence the interaction with each other, we
constructed plasmids containing with the variations. After the transfection, the co-immunoprecipitation assays
suggested that TSC1-N837fs and TSC2-Q371fs can’t detected a TSC complex, unlike the overexpressed TSC1-
WT and TSC2-WT formed detectable TSC complex respectively, (Fig. 3C and E), and native PAGE showed that
the TSC1-N837fs and TSC2-Q371fs failed the formation of TSC complex with the endogenous TSC2 and TSC1
respectively (Fig. 3D and F).

miR-199b-3p directly regulate the expression of mTOR

We found that the expression of mTOR was significantly increased in TSC2-Q371fs fibroblasts compared with
TSC2-WT fibroblasts whether in mRNA or protein level (Fig. 4A, B). It has been reported that miR-199b is
associated with lower expression of mTOR, we predicted miR-199b-3p at miRbase (http://www.mirbase.org/),
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Fig. 2. Expression of TSC2 and phenotypes of the fibroblasts with or without TSC2-Q371fs, the WT was
present as the average of all healthy volunteers. (A) Linear schematic of the protein structure of TSC2-

WT, TSC2-Q371fs and the location of the primes and the qRT-PCR results, relative expression levels were
normalized with GAPDH. (B) Immunofluorescence analysis using TSC2 (red) antibody and DAPI (blue) in
Bar 15 um. (C) The western blot of the endogenous TSC2 and the statistics, the originals gels can be seen in
the supplementary figure S1. (D) Proliferation rate of fibroblasts. (E) Apoptosis assay of fibroblasts and the
statistics.

which may bind to the 3 UTR of mTOR and then promote the mRNA degradation of mTOR (Fig. 4C). We
performed qRT-PCR to test miR-199b-3p expressing in fibroblasts from either patient or healthy donors. The
results indicated that the expression of miR-199b-3p was dramatically decreased in TSC2-Q371fs fibroblasts
compared with that in the TSC2-WT fibroblasts (Fig. 4D). To confirm whether miR-199b-3p directly target
the 3’>-UTR of mTOR, we co-transfected with miR-199b-3p inhibitor N.C. and mTOR 3’ UTR, the luciferase
activity had no obvious difference with that transfected with mTOR 3’ UTR, but the luciferase activity was
significantly increased when co-transfected with miR-199b-3p inhibitor and mTOR 3’ UTR (Fig. 4E), These
results showed that miR-199b-3p directly target the 3’-UTR of mTOR. Furthermore, the expression of mTOR
and phosphorylation proteins level of AKT, and p70S6K was significantly decreased in HEK293T cells after
the transfection with miR-199b-3p mimics and was significantly increased upon treatment with the inhibitor
specific to miR-199b-3p (Fig. 4F, G, H and I). Taken together, these results suggest that miR-199b-3p may
directly regulate the expression of mTOR, and the influence the activation of mTORC1 and mTORC2.

TSC complex regulated the expression of miR-199b-3p

The expression of miR-199b-3p was decreased in TSC2-Q371fs fibroblasts (Fig. 4D). To evaluate whether the
TSC complex regulates the expression of miR-199b-3p, we knockdown the expression of either TSC1 or TSC2
for the reduction of TSC complex (Fig. 5A and D), then we performed RT-PCR and found that the expression of
miR-199b-3p were down-regulated significantly (p <0.01) in HEK293T-shTSC2 and HEK293T-shTSCl cell lines
(Fig. 5B and E). However, the expression of miR-199b-3p was significantly up-regulated in HEK293T cells with
over-expression TSC1-WT or TSC2-WT (p<0.001) whereas the expression of miR-199b-3p was significantly
decreased in HEK293T cells with overexpression of TSC1-N837fs or TSC2-Q371fs compared to overexpression
of TSC1-WT or TSC2-WT (Fig. 5B and E). These results suggest TSC complex regulates the expression of miR-
199b-3p. Opposite with the expression of miR-199b-3p, the expression of mTOR was increased in shTSCI-
HEK293T and shTSC2-HEK293T cell lines while decreased in TSC1-WT or TSC2-WT overexpressed cell
lines (Fig. 5C and F). Taken together, these results indicated that the content of endogenous miR-199b-3p was
regulated by TSC complex.
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Fig. 3. Functional analysis of the variations (A) Quantification of mRNA level using qRT-PCR, the

WT represents the mixture of the equal amount total RNA from the three healthy fibroblasts. Relative
expression levels were normalized with GAPDH. (B) Evaluation of the rescue experiment by western blot
(the WT group was the WT2). the originals gels can be seen in the supplementary figure S2. (C) The co-ip
experiment of TSC1-WT and TSC1-N837fs. The originals gels can be seen in the supplementary figure S3.
(D) The measurement of TSC complex using non-denaturing PAGE. The originals gels can be seen in the
supplementary figure S3 (E) The co-ip experiment of TSC2-WT and TSC2-Q371fs. The originals gels can be
seen in the supplementary figure S4 (F) The measurement of TSC complex using non-denaturing PAGE. The
originals gels can be seen in the supplementary figure S4.
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Fig. 4. miR-199b-3p regulate the expression of mTOR (A) Quantitative analysis of mTOR in fibroblasts using
qRT-PCR. (B) Quantitative analysis of mTOR in fibroblasts using western blot and the statistics. The originals
gels can be seen in the supplementary figure S5. (C) Predicted miR-199b-3p target sequence of the mTOR
3’UTR using miRBase. (D) Quantification of miR-199b-3p and mRNA using qRT-PCR, the WT represents

the mixture of the equal amount total RNA from the two healthy fibroblasts. Relative expression levels were
normalized with GAPDH. (E). Luciferase reporter assay. (F) Quantitative analysis of mTOR in HEK293T cells
at 48 h post-treatment with miR-199b-3p mimics (low panel) and the statistics (up panel). The originals gels
can be seen in the supplementary figure S5. (G) Western bolt analysis of p-AKT, AKT, p-p70S6K, p70S6K in
HEK293T cells at 48 h post-treatment with miR-199b-3p mimics,B-actin served as a control of total protein.
(H) Quantitative analysis of mTOR in HEK293T cells at 48 h post-treatment with the inhibitor specific to miR-
199b-3p (low panel) and the statistics (up panel). (I) Western bolt analysis of p-AKT, AKT, p-p70S6K, p70S6K
in HEK293T cells at 48 h post-treatment with the inhibitor specific to miR-199b-3p, B-actin served as a control
of total protein. The originals gels can be seen in the supplementary figure S5.

Discussion

mTORCI1 is an important downstream node of TSC complex and the continuous activation of mTORCI has
been reported as the main cause of the disorder Tuberous Sclerosis Complex (TSC). The complex signaling
network of mTOR kinase plays a crucial role in cell growth, replication, survival, aging, and metabolism?!.

In this study, we investigated two variations that involved in TSC. The variation ¢.2509_2512del in TSCIwhich
involved in TSC were reported previously??. But the variation in TSC2 (c.1113delG) was a de novo germline
variation which was detected in the proband (II-1) of family 1. Unfortunately, her daughter inherited this
variation from her and even showed more serious symptom of TSC. The proband in family I have a severe renal
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Fig. 5. TSC complex regulates the endogenous content of miR199b-3p, *p <0.05, **p <0.01,***p <0.001
comparison with WT. (A) The efficiency of knockdown TSC1 in shTSC1-HEK293T cell line. The originals gels
can be seen in the supplementary figure S6. (B) The expression of miR-199b-3p in shTSC1-HEK293T cells

and overexpression TSC1-WT or TSC1-N837fs in HEK293T cell line. (C) Quantitative analysis of mTOR in
shTSC1-HEK293T cell line and overexpression TSC1-WT or TSC1 N837fs in HEK293T cell line using western
blot (low panel) and the statistics (up panel). The originals gels can be seen in the supplementary figure S6.

(D) The efficiency of knockdown TSC2 in shTSC2-HEK293T cell line. The originals gels can be seen in the
supplementary figure S6. (E) The expression of miR-199b-3p in shTSC2-HEK293T cell line and overexpression
TSC2-WT or TSC2- Q371fs in HEK293T cell line. (F) Quantitative analysis of mTOR in shTSC2-HEK293T
cell line (low panel) and overexpression TSC2-WT or TSC2- Q371fs in HEK293T cell line using Western blot
(low panel) and the statistics analysis (up panel). The originals gels can be seen in the supplementary figure S6.

angiomyolipoma, this may be because of the abnormal growth of cells. The results of cell proliferation suggested
that increased cell growth in TSC2-Q371fs fibroblast was via reduction of cell apoptosis (Fig. 2).

We found that the expression of mTOR in TSC2-WT fibroblasts was less than in TSC2-Q371fs fibroblasts
(Fig. 4). It was reported that micro199b might influence the expression of mTOR'2. Online analysis through
miRBase (http://www.mirbase.org/), we predicted that miR-199b-3p potentially targets 3> UTR of mTOR so that
regulates the expression of mTOR post-transcription. To evaluate our hypothesis, we detected the expression of
miR-199b-3p in fibroblast, and the results indicated that the expression of miR-199b-3p and mTOR had negative
correlation in fibroblasts, at the same time, the activation of the mTORC1 had negative correlation with the
expression of miR-199b-3p. The results of dual-luciferase reporter assay suggested that miR-199b-3p directly
regulates the expression of mTOR (Fig. 4).

TSC2 regulates mTOR signaling to control cell growth and survival. To test if this process is mediated by
miR-199b-3p, we detected the expression of miR-199b-3p and found that TSC1-N837fs and TSC2-Q371fs
overexpression could decrease the expression of miR-199b-3p compared with overexpression TSC1-WT or
TSC2-WT, respectively. Furthermore, knockdown of either TSCI or TSC2 also decreased the expression of miR-
199b-3p (Fig. 5). These results from both overexpression and knockdown of TSCI or TSC2 suggest there is an
axis that TSC complex regulates the expression of miR-199b-3p, and the low level of miR-199b-3p introduces
the higher level expression of mTOR, causing abnormally active mTOR signal pathways which involves many
cellular biological processes, in this axis miR-199b-3p acts a regulator for mTOR expression and then mTOR
signaling pathway (Fig. 6).

It seems that the expression of miR-199b-3p was decreased more when knockdown TSCI than knockdown
TSC2. As the same time, the expression of mTOR was increased more when knockdown TSC1(Figure 5). These
results may suggest that TSC1 has a larger effect on the expression of miR-199b-3p and mTOR. But in fact, the
efficiency of knockdown is the determining factor of this question. The efficiency of knockdown TSCI was
higher than knockdown TSC2 in Fig. 5. The difference in effect of regulation the expression of miR-199b-3p and
mTOR by TSCI and TSC2 can't get a clean conclussion. But from the difference in Fig. 5, it confirmed further
that the negative relationship between miR-199b-3p and mTOR, when miR-199b-3p decreased the expression
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Fig. 6. The molecular mechanism model of TSC complex regulate mTOR signal pathway through miR-199b-
3p.

of mTOR is increase, when miR-199b-3p increased the expression of mTOR is decrease. The results showed
that overexpression of TSC2 has a larger effect on the expression on miR-199b-3p, but not on the expression
of mTOR in Fig. 5. It’s very funny to see these phenomenons, but we can’t get a certain conclusion about the
difference between TSCI and TSC2 in the regulation on miR-199b-3p just according to few experiments. We
will further explore the difference regulation between TSC1 and TSC2 on miR-199b-3p to get a confirmed
conclusion in future.

In summary, our studies revealed a novel molecular mechanism of TSC that the failure of the formation of
physiological functional TSC complex causes the decrease of miR-199b-3p expression by which introduces the
increase of mTOR expression and changes of mTOR signal pathway, followed the effects of changed pathway
on all related cellular biological processes (Fig. 6). The significance of our studies on variations in TSC1 and
one de novo variation in TSC2 is that we not only defined pathogenesis of those two variations in either TSCI
or TSC2, we also elucidated a novel molecular mechanism of TSC, and discovered the therapeutic potentials of
miR-199b-3p for TSC.
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All primary data are available upon reasonable request from the corresponding author.
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