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Analyzing biomedical images is vital in permitting the highest-performing imaging and numerous 
medical applications. Determining the analysis of the disease is an essential stage in handling the 
patients. Similarly, the statistical value of blood tests, the personal data of patients, and an expert 
estimation are necessary to diagnose a disease. With the growth of technology, patient-related 
information is attained rapidly and in big sizes. Currently, numerous physical methods exist to 
evaluate and forecast blood cancer utilizing the microscopic health information of white blood cell 
(WBC) images that are stable for prediction and cause many deaths. Machine learning (ML) and deep 
learning (DL) have aided the classification and collection of patterns in data, foremost in the growth of 
AI methods employed in numerous haematology fields. This study presents a novel Computer-Aided 
Diagnosis of Haematologic Disorders Detection Based on Spatial Feature Learning Networks with 
Hybrid Model (CADHDD-SFLNHM) approach using Blood Cell Images. The main aim of the CADHDD-
SFLNHM approach is to enhance the detection and classification of haematologic disorders. At first, 
the Sobel filter (SF) technique is utilized for preprocessing to improve the quality of blood cell images. 
Additionally, the modified LeNet-5 model is used in the feature extractor process to capture the 
essential characteristics of blood cells relevant to disorder classification. The convolutional neural 
network and bi-directional gated recurrent unit with attention (CNN-BiGRU-A) method is employed 
to classify and detect haematologic disorders. Finally, the CADHDD-SFLNHM model implements the 
pelican optimization algorithm (POA) method to fine-tune the hyperparameters involved in the CNN-
BiGRU-A method. The experimental result analysis of the CADHDD-SFLNHM model was accomplished 
using a benchmark database. The performance validation of the CADHDD-SFLNHM model portrayed a 
superior accuracy value of 97.91% over other techniques.
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Blood is generally made of numerous modules with dissimilar types of cells and plasma. Blood transfers nutrients 
and oxygen to organs and tissues while removing waste products like ammonia and carbon dioxide1. Blood 
plays key roles in oxygen transport, temperature regulation, clotting, and immune response while aiding in gas 
exchange and tissue regeneration2. It includes four vital cellular modules: platelets, plasma, WBCs, and red blood 
cells (RBCs)3. WBCs are generally found in blood as well as lymphatic nodes. In the body’s immune response, 
many kinds of WBCs are recognized and perform their particular functions4. Unfortunately, traditional models 
for haematological analysis provide restricted access to the assets of distinct RBCs5. An instance of a classical 
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model is the complete blood count (CBC), which is the present gold standard model to measure RBC properties. 
A CBC is a blood test that delivers valuable information regarding an individual’s health status6.

Usually, WBCs are classified by knowledgeable medical staff who distinguish WBCs visually depending on 
their morphologies in blood samples that are perceived under a microscope7. WBCs are formed in the bone 
marrow and contain cytoplasm and nuclei. All these significantly shield the body by protecting it against foreign 
stuff, infections, and viruses, creating a vital module of the immune response8. DL is a well-known artificial 
intelligence (AI) domain that uses numerous techniques. It has rapidly invaded the area of clinical investigation. 
DL permits you to explain machines without skills and learn the information9. The DL applications have attained 
excellent outcomes and were particularly helpful in disease recognition. Studies show that DL models enhance 
medical reasoning in CT by analyzing image features. With the growth of healthcare data and tools, there is a 
crucial need for more robust data processing capabilities10. Traditional data analysis models could not examine 
vast amounts of data or recognize trends.

This study presents a novel Computer-Aided Diagnosis of Haematologic Disorders Detection Based on 
Spatial Feature Learning Networks with Hybrid Model (CADHDD-SFLNHM) approach using Blood Cell 
Images. The main aim of the CADHDD-SFLNHM approach is to enhance the detection and classification of 
haematologic disorders. At first, the Sobel filter (SF) technique is used for preprocessing to improve the quality 
of blood cell images. Additionally, the modified LeNet-5 model is used in the feature extractor process to capture 
the essential characteristics of blood cells relevant to disorder classification. The convolutional neural network 
and bi-directional gated recurrent unit with attention (CNN-BiGRU-A) method is employed to classify and 
detect haematologic disorders. Finally, the CADHDD-SFLNHM model implements the pelican optimization 
algorithm (POA) method to fine-tune the hyperparameters involved in the CNN-BiGRU-A method.

Review of literature
In11, a computer-aided ALL recognition system utilizing a Whale Optimizer Algorithm-based SVM (WOA-
SVM) was developed. Here, color-based K-means clustering is applied to segment WBC. The features are 
achieved by merging the projected and existing features to recognize the set of features. In12, a classification 
method that depends upon the EfficientNetB3 convolutional neural networks (CNNs) technique is developed to 
differentiate ALL as an automatic method, which undoubtedly changes the learning rate. The analysis organizes 
a traditional LR that equates the value of loss and training accuracy at the start of every epoch. Shams et al.13 
propose a huge customized marked blood cell database and blood cell recognition in the peripheral blood 
smear imageries. A particular WBC-based image processing task has been trained to categorize the healthy 
and developed WBCs. An object recognition technique named You Only Look Once (YOLO) is trained on the 
new database to mechanically classify and detect blood cells into WBCs with other openly accessible databases. 
Kumar and Babulal14 developed an image analysis viewpoint. The main aim of the method is to improve an 
initial erythrocyte screening by investigating the colour, textural, and morphological features by the developed 
technique FC-TriSDR (FCM clustering model beside three ensembled classifiers- SVM, DT, and RBFN). In15, 
an Improved Haematological Diseases Classification utilizing the Dthe L (IHDC-DL) model is proposed. In a 
predefined EfficientNet DL method, an enhanced layer upsurges autonomous feature selection and classification 
by decreasing the inadequacy of computational. The technique also executes the IHDC-DL method utilizing 
dual blood cell databases.

Su et al.16 present a new analysis structure named ROI-BMC-DNNet. The study develops a pyramid 
segmentation network to seize patch images in the cell regions depending upon preceding pathological data. A 
simple but effective alignment technique is defined for multi-scale ROI, which is directed to uphold the accuracy 
of the semantics. Besides, a patch sampling technique and a patch quality assessing system are intended to 
certify the efficiency of the sampled patches. The authors17 develop a high-performance CNN attached with a 
dual-attention system, which well perceives and categorizes WBC in microscopic thick smear imageries. The 
proposed model aims to improve medical haematology methods and further medical analytic methods. This 
model employed a deep convolutional generative adversarial networks (DCGANs) technique to overwhelm the 
restrictions enforced by partial training data. A two-attention mechanism was used to improve effectiveness, 
generalization, and accuracy. Yadav et al.18 developed an image-processing model to separate RBCs from other 
blood products. The WBCs are mined utilizing the K-Medoids model, which is resilient to external disturbance. 
The calculation of granulometrics was employed to differentiate between red and WBCs. The extraction of 
features is utilized to obtain significant features, which help in categorization. These outcomes support a fast 
analysis of disorders like Sickle Cell, Iron Deficiency, Normochromic, Megaloblastic, and Hypochromic.

Despite the advancements in blood cell recognition techniques, several limitations remain. Many methods 
rely on specific algorithms or databases that may need to generalize better to diverse real-world data or 
variations in cell morphology. Additionally, some models require significant computational resources and 
complex training procedures, making them less efficient for large-scale deployment. Furthermore, there needs 
to be more integration across different blood cell types and diseases, limiting the comprehensiveness of the 
models. The reliance on specific feature extraction methods also hinders the adaptability of these systems to new, 
unanticipated conditions or data types. Future research could improve generalization, reduce computational 
costs, and address the gaps in multi-disease and multi-cell type classification.

The proposed method
This paper presents a novel CADHDD-SFLNHM approach using Blood Cell Images. The main aim of the 
CADHDD-SFLNHM approach is to enhance the detection and classification of haematologic disorders. The 
CADHDD-SFLNHM method accomplishes that through image preprocessing, a modified LeNet-5-based 
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feature extractor, classification, and POA-based parameter tuning. Figure  1 represents the workflow of the 
CADHDD-SFLNHM method.

SF-based Image Preprocessing
Primarily, the CADHDD-SFLNHM model performs image preprocessing using the SF technique to enhance 
the quality of blood cell images19. The SF is a commonly employed image preprocessing model in recognizing 
haematologic disorders over blood cell images. It improves the limits of cellular structures, making it simpler 
to classify and distinguish numerous blood cell types. By highlighting areas of high-intensity gradient, the 
SF enhances the prospect of features, which is critical for analyzing conditions like leukaemia, anaemia, and 
other blood-related diseases. This edge recognition aids in decreasing noise and emphasizing relevant patterns, 
enabling more precise extraction of features and classification in the following analysis phases. Generally, 
utilizing the SF as a preprocessing step improves the reliability and quality of haematologic disorder recognition.

Modified LeNet-5 feature extractor
Besides, the modified LeNet-5 model is utilized in the feature extractor process to capture the essential 
characteristics of blood cells relevant to disorder classification20. This model was chosen for its proven efficiency 
in image classification tasks, specifically in handling smaller, less complex datasets like blood cell images. Its 
architecture, which comprises convolutional and pooling layers, is effectual at capturing spatial hierarchies and 
local features within images, making it appropriate for detecting and distinguishing blood cell types. Unlike more 
complex models, LeNet-5 is relatively lightweight, mitigating computational demands and training time, which 
is significant for healthcare applications where quick results are essential. Furthermore, LeNet-5’s simplicity 
makes it easier to implement and tune, particularly for datasets with limited diversity, such as the four blood cell 
types. Although more advanced models like ResNet or DenseNet may give higher accuracy, LeNet-5 strikes a 
good balance between performance and efficiency for this specific task. Figure 2 illustrates the workflow of the 
LeNet-5 methodology.

The concatenated LeNet5 method comprises three equal LeNet5 techniques, all handling the input data over 
convolutional sequences and FC layers. The bottom of the framework receives input layer data using a dimension 
of (128, 128, 1), demonstrating grayscale size images of 128x 128 pixels. Every LeNet5 approach follows a 
reliable framework. This method starts using a convolutional layer with activation of ReLU, six filters, and a 

Fig. 1.  Workflow of CADHDD-SFLNHM approach.
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kernel dimension of (5, 5) with similar spatial sizes as the input guarantees that the resultant feature maps 
contain similar spatial sizes for propagating gradients proficiently. The average pooling layer has accompanied 
this through the dimension of pooling (2, 2). Consequently, an additional convolutional layer has been utilized 
using activation of ReLU, 16 filters, and a kernel dimension of (5, 5), succeeded by an additional average 
pooling layer with a dimension of pooling (2, 2). Every LeNet5 method contains the last output layer of two 
neurons with softmax activation, allowing dual classification. This complete layer’s sequence has been repeated 
3 times for every concatenated method.

The resultant of the 3 LeNet5 methods are concatenated with a concatenated state, making a unified depiction 
of the in-between outputs. These concatenated outputs are then reformed with a layer of Reshape to have sizes 
(2, nets), while nets signify the amount of concatenated methods. Lastly, the resultant layer at the maximum of 
the framework gives the last output using a shape of (2, None), representing the dual classifier result. The order 
of processing, output, and input layer particulars are shown under.

•	 Input Layer: This layer demonstrates the input data through the dimensions (128, 128, 1).
•	 LeNet5 Method (Reiterated three Times): For every Concatenated method, the succeeding blocks, reiterated 

3 times (nets = three in the presented method):
•	 Convolutional Layer: six filters, kernel dimension (5, 5), with average pooling (pooling dimension: 2x2).
•	 Convolutional Layer: activation of ReLU, kernel dimension (5, 5), 16 filters, with average pooling (pooling 

dimension: 2x2).
•	 Flattening Layer: Flattening the output.
•	 FC Layer: 120 neurons, activation of ReLU.
•	 FC Layer: 84 neurons, activation of ReLU.
•	 Output Layer: Two neurons with activation of softmax.
•	 Concatenated Input: A-line associates the input layer with every concatenated LeNet5 method, representing 

that a similar input connects with every.
•	 Concatenate Layer: At the top of the LeNet5 blocks, there would be a block demonstrating the concatenated 

layer, merging the concatenated methods outputs.
•	 Reshape Layer: In the top, the concatenate layer would be a block demonstrating the Reshape layer, redesign-

ing the concatenate outcome to take sizes (2 nets).
•	 Output Layer: Above, there would be the last resultant layer by shape (2, None).

Hybrid of CNN-BiGRU-A method
For the classification and detection of haematologic disorders, the CNN-BiGRU-A method is employed21. This 
technique was chosen because it can effectively integrate the merits of CNNs and BiGRUs for feature extraction 
and sequential data processing. CNNs outperform at extracting spatial features from blood cell images, enabling 
the model to capture crucial patterns and characteristics for classification. The BiGRU component improves the 
ability of the model to capture temporal or sequential dependencies, allowing for more robust feature learning 
across diverse blood cell types and conditions. This incorporation enhances the model’s accuracy by leveraging 
local and global data. Additionally, BiGRUs, by processing data in both forward and backward directions, provide 
better context understanding related to traditional unidirectional models, making them ideal for handling 
complex and varied blood cell data. This hybrid model balances computational efficiency and performance, 
providing a practical solution for detecting haematologic disorders. Figure 3 demonstrates the structure of the 
CNN-BiGRU-A method.

CNN is typically a multiple-layered perceptron and one of the characteristic models of DL. It comprises 
input, convolutional, pooling, FC, and output layers.

Input layer: This layer serves as the point of entry for the completed network and typically requires 
preprocessing of the raw data (the preprocessing data will be included in the Third section of this paper).

Fig. 2.  Workflow of modified LeNet-5 model.
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Convolution layer: This layer includes the activation layers and convolution computation. This convolution 
computation contains matrix operations amongst the convolution kernel matrix and consistent location 
matrices of data, with inputs signified as x ∈ RM× N , the convolution kernel as W ∈ RU× V , and described 
by Z = W*X , Here * denotes the convolution operator. The equation is as shown:

	
zij =

∑
U
u=1

∑
V
v=1wuvxi−u+1,j−v+1� (1)

The functions of the activation layer to non-linearly convert the outcome from the convolution computation 
over an activation function:

	 Y = f (z)� (2)

Where f (• ) symbolizes a non-linear activation function by commonly utilized selections with Sigmoid, ReLU, 
tanh, and their differences.

Pooling layer: This layer’s primary function is compressing data and reducing neural network computations 
and parameters while avoiding overfitting. A normal pooling model is Max Pooling, which uses maximal values 
inside pooled areas to underline important features in data. Additional pooling models include spatial pyramid, 
average, random, and overlapping pooling.

FC layer: Neurons in this FC layer started connections with each neuron in previous layers; its part is to 
incorporate distributed feature representations learned by the network and map them into sample label space.

GRU networks characterize an LSTM network’s optimization, which is characterized by modelled structures 
that experience lower computational costs while showing improved convergence rates.

The gated update equation for GRU is as demonstrated:

	 zt = σ (WZ · [ht−1, xt] + bZ)� (3)

	 rt = σ (Wr · [ht−1, xt] + br)� (4)

Fig. 3.  Architecture of CNN-BiGRU-A method.
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∼
ht= tanh (Wh · [rt*ht−1, xt] + bh)� (5)

	 ht = (1 − zt) *ht−1 + zt*
∼
ht

� (6)

Here, xt signifies the input vector at tth time , zt and rt represent the update gate and reset gate. ht refers to 
the state of the hidden layer (HL), while 

∼
ht signifies the candidate state of HL. WZ , W r , and Wh characterize 

the weighted matrix, and bZ , br , and bh are biased vectors.
Nevertheless, GRU networks are restricted to data processing in a solitary direction, depending only on 

previous data to make predictions. Conversely, the BiGRU network contains either forward or backward neural 
networks, permitting it to utilize information from previous or following time steps. It enables more precise 
predictions near the real values.

It includes an input layer, backward HL, and forward HL, the output layer. The input layer concurrently feeds 
input data into either the forward or backward HLs at every time step, allowing bi-directional data flow over the 
GRU network.

At time t, BiGRU’s hidden output has been controlled by dual independent GRUs:

	
−→
h t = GRU

(−→
h t−1, xt

)
� (7)

	
←−
h t = GRU

(←−
h t−1, xt

)
� (8)

	 ht = Wt
−→
h t + Vt

←−
h t + bt� (9)

Here, 
−→
h t and 

←−
h t signify the output condition of the forward and backward GRU at tth time; correspondingly, 

Wt and Vt stand for the weighted matrix, and bt implies the biased vector.
It simulates the human brain’s allocation of resources in concentrating attention on particular areas while 

ignoring or reducing others to obtain related information efficiently without interference from unrelated data. 
The basic idea includes allocating weights depending on input data significance for a complete concentration on 
critical portions, resulting in enhanced method performance and prediction capability.

Let X = [x1, x2, · · · xn] be the input information vector, given a task-related query vector q, and calculate 
the attention distribution (weight coefficient) α i of the input information:

	
α i = soft max (s (xi, q)) = exp (s (xi, q))∑

n
i=1 exp (s (xi, q)) � (10)

Now s (xi, q) denotes attention score function, and softmax is the normalized exponential function. During 
softmax processing, the uniquely designed score has been transformed into a probability distribution through 
the ownership sum weight as one, which emphasizes the weight of significant elements. The Attention score 
function s use techniques like the dot product, addition, bilinear, scaled dot product model, etc. Here, the 
addition model has been selected:

	 s (xi, q) = vT tanh (W xi + Uq)� (11)

W, U , and v are learnable parameters inside the neural network. Lastly, the output of Attention layer y includes 
a weighted summation of input information with weighted coefficients from attention distribution:

	
y =

∑ n

i=1
α ixi� (12)

Hyperparameter tuning using the POA model
Finally, the presented CADHDD-SFLNHM model employs POA to fine-tune the hyperparameters involved 
in the CNN-BiGRU-A method. POA is an effective optimization technique known for its ability to explore an 
ample search space and converge on optimal solutions efficiently, enhancing model accuracy. By integrating 
POA, the model avoids the requirement for manual tuning and accelerates the process of finding the optimum 
hyperparameter combination. This optimization results in an enhanced generalization and robustness of the 
CNN-BiGRU-A model in detecting haematologic disorders. Moreover, POA is computationally less expensive 
than conventional optimization techniques such as grid search, making it more appropriate for real-time 
applications. Overall, the integration of POA with CNN-BiGRU-A confirms enhanced performance, faster 
convergence, and better adaptability to varied datasets. Figure 4 specifies the workflow of the POA technique.

POA attains local exploitation and global exploration of the optimum performance by pretending the 
pelican flock’s managing prey and surface fight behaviour correspondingly and attains a relational balance 
between exploitation and exploration to gain the optimum solution22. The POA’s optimizer search stages are as 
demonstrated.

Stage 1: Initialization of Pelican flock. Every pelican inside the pelican flock signifies a candidate outcome, 
and the mathematic formulation for the pelican flock initialized is as shown:

	
xi,j = lj + rand (uj − lj)

i = 1, 2, . . . , N, j = 1, 2, . . . , m � (13)
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Whereas xi,j  denotes the value of a jth variable of ith candidate performance; rand signifies randomly 
generated number in [0,1] ; uj  and lj  represent lower and upper bounds of the jth variable; N  symbolizes 
pelican group counts, for example, the candidate solution counts; and m refers to variable counts of the 
problem-to-solve:

The primary ith candidate outcome Xi is formulated below:

	 Xi = [xi1, xi2, . . . , xim]� (14)

Stage 2: Approach the prey to attain exploration globally. This POA arbitrarily makes the location of the prey 
within the solution space; in addition, the pelican flock transfers near the prey position using the succeeding 
mathematic representation:

	
x

(1)
i,j =

{
xi,j + rand (pj − Ixi,j)
xi,j + rand (xi,j_pj)

Fp < F i
Fp ≥ F i � (15)

Here, x
(1)
i,j  stands for the upgraded value of the jth variable of the ith candidate solution; pj  denotes the value 

of the jth variable of prey; I  signify an arbitrary value equivalent to 1 or 2; Fp and Fi represent prey’s fitness 
function (FF) values and ith pelican, respectively.

When the FF value of the initial ith candidate outcome has been enhanced after upgrading their location, 
substitute xi,j  with x

(1)
i,j ; otherwise, xi,j  has remained unchanged.

Stage 3: Surface fight to attain local exploitation. POA to additionally estimate the optimum performance, the 
location of the pelican has been updated with the succeeding Eq. (16):

	
x

(2)
i,j = xi,j + R

(
1 − t

T

)
(2rand − 1) χ i,j � (16)

Fig. 4.  Working flow of the POA model.
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Now R means constant, typically 0.2; T  and t correspondingly represent the maximum and present iteration 
count. When the FF value has been enhanced after updating the location, replacing xi,j  with x

(2)
i,j , or xi,j  does 

not vary.
Stage 4: Updating the optimum location. When the locations of each candidate’s performance are upgraded 

to the best outcome for the present iteration count, their FF values are considered. Subsequently, these model 
developments to the following iteration, by these sequences enduring till the iteration stopping condition has 
been achieved. The POA grows a fitness function (FF) for attaining greater classifier proficiencies. It solves a 
positive value by suggesting better results for candidate performances. In this paper, the decrease in classifier 
error ratio is supposed to be FF.

The POA fine-tunes hyperparameters more efficiently than conventional optimization methods such as grid 
or random search by balancing local exploitation and global exploration. Unlike grid or random search, which 
exhaustively or randomly search through a predefined set of hyperparameter values, POA intelligently adjusts the 
position of candidate solutions (pelicans) based on prey locations and surface fight behaviour. This allows POA 
to quickly converge on optimal solutions by iteratively refining candidate positions according to fitness values. 
By combining global exploration through the prey approach and local exploitation via surface fight, POA avoids 
getting trapped in local minima, giving faster convergence and enhanced optimization of hyperparameters.

	
fitness (xi) = ClassifierErrorRate (xi) = No. of misclassified samples

T otal no, of samples
× 100� (17)

Result analysis and discussion
The experimental result analysis of the CADHDD-SFLNHM model is performed under a benchmark database23. 
The dataset contains 12,500 augmented images of blood cells, with approximately 3,000 images for each of 
four cell types: Eosinophil, Lymphocyte, Monocyte, and Neutrophil. It also comprises 410 original images 
with subtype labels and bounding boxes, 2,500 augmented images and additional subtype labels for further 
classification tasks. Table 1 describes the dataset. Figure 5 signifies the sample images.

Figure 6 presents the classifier outcomes of the CADHDD-SFLNHM method on 80%TRASE and 20%TESSE. 
Figure  6a and b illustrates the confusion matrices with accurately recognizing and categorizing four classes. 
Figure 6c demonstrates the PR curve, indicating an excellent solution across all classes. Finally, Fig. 6d proves 
the ROC evaluation, displaying capable results with a high ROC curve for all classes.

In Table 2; Figs. 7 and 8, the haematologic disorders recognition results of the CADHDD-SFLNHM method 
with 80%TRASE and 20%TESSE are clearly shown. The experimental value suggested that the CADHDD-
SFLNHM approach has correctly classified and identified four classes. With 80%TRASE, the CADHDD-SFLNHM 
approach reaches average accuy , precn, recal, F 1score, and Gmean of 97.69%, 95.40%, 95.35%, 95.34%, and 
95.36%, respectively. Moreover, with 20%TESSE, the CADHDD-SFLNHM approach obtains average accuy , 
precn, recal, F 1score, and Gmean of 97.91%, 95.81%, 95.86%, 95.83%, and 95.83%, correspondingly.

In Fig. 9, the TRA accuy  (TRAAY) and validation accuy  (VLAAY) outcomes of the CADHDD-SFLNHM 
method under 80%TRASE and 20%TESSE are displayed. The accuy  values are calculated throughout 0–30 
epochs. The outcome highlighted that the TRAAY and VLAAY outcomes depict a rising tendency that notified 
the ability of the CADHDD-SFLNHM method with more excellent outcomes under various iterations. Besides, 
the TRAAY and VLAAY stay closer at epochs, indicating lesser overfitting and displaying the more remarkable 
result of the CADHDD-SFLNHM approach, guaranteeing consistent prediction on concealed instances.

Figure  10 shows the TRA loss (TRALO) and VLA loss (VLALO) outcomes of the CADHDD-SFLNHM 
methodology at 80%TRASE and 20%TESSE. The loss values are computed throughout 0–30 epochs. The TRALO 
and VLALO outcomes represent a reducing tendency, which indicates the ability of the CADHDD-SFLNHM 
approach to balance a trade-off among appropriate and generalized data.

Figure 11 presents the classifier results of the CADHDD-SFLNHM method on 70%TRASE and 30%TESSE. 
Figure 11a and b shows the confusion matrices with the detection and classification of all four classes. Figure 11c 
displays the PR values, indicating maximum performance across all four classes. Lastly, Fig. 11d proves the ROC 
valuation, showing accomplished outcomes with a high ROC curve for various class labels.

Table 3; Fig. 12 depict the haematologic disorders detection outcomes of the CADHDD-SFLNHM model with 
70%TRASE and 30%TESSE. The experimental value suggested that the CADHDD-SFLNHM model has been 
appropriately classified and recognized as having four class labels. With 70%TRASE, the CADHDD-SFLNHM 
approach reaches average accuy , precn, recal, F 1score, and Gmean of 96.17%, 92.41%, 92.34%, 92.35% and 
92.36% individually. Besides, 30%TESSE, the CADHDD-SFLNHM approach achieves average accuy , precn, 
recal, F 1score, and Gmean of 96.56%, 93.15%, 93.15%, 93.15 and 93.15%, respectively.

Cell Types No. of Images

Eosinophil 2000

Lymphocyte 2000

Monocyte 2000

Neutrophil 2000

Total Images 8000

Table 1.  Details on database. Significant values are in bold.
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Figure 13 shows the TRAAY and VLAAY curves of the CADHDD-SFLNHM methodology at 70%TRASE 
and 30%TESSE. The accuy  values are measured throughout 0–30 epochs. The outcome demonstrated that the 
TRAAY and VLAAY outcomes depict a rising trend that informed the competence of the CADHDD-SFLNHM 
model with more remarkable outcomes over distinct iterations. Besides, the TRAAY and VLAAY remain closer 
across the epochs, demonstrating lower overfitting, and display the superior performance of the CADHDD-
SFLNHM model, guaranteeing consistent prediction on unseen instances.

Fig. 5.  Sample images of (a) Eosinophil, (b) Lymphocyte, (c) Monocyte, and (d) Neutrophil.
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Figure  14 depicts the TRALO and VLALO outcomes of the CADHDD-SFLNHM methodology under 
70%TRASE and 30%TESSE. The loss ratio is measured across intervals of 0–30 epochs. The TRALO and VLALO 
values represent a minimizing pattern, which indicates the capability of the CADHDD-SFLNHM approach to 
balance a trade-off among appropriate and generalized data.

In Table 4; Fig. 15, the experimental outcomes of the CADHDD-SFLNHM approach with recent methods are 
specified24–26. The table values demonstrate that the CNN-ResNet50 technique has shown inferior performance 
with accuy , precn, recal, and F 1score of 74.58%, 81.00%, 74.00%, and 73.00%, individually. At the same 
time, the MobileNetV2 approach has gained moderately increased outcomes with accuy , precn, recal, and 
F 1score of 78.47%, 78.00%, 78.00%, and 78.00%, correspondingly. In addition, the CNN-Inception V3, RCNN, 
SRGAN-EfficientNetB7, GoogleNet, and VGG16 methodologies have achieved moderately closer performance. 
Meanwhile, the InceptionV3 method has resulted in substantial results with accuy , precn, recal, and F 1score 
of 97.20%, 92.58%, 93.23%, and 93.88%, respectively. But the CADHDD-SFLNHM model outperforms the 
other methods with the highest accuy , precn, recal, and F 1score of 97.91%, 92.81%, 95.86%, and 95.83%, 
individually.

Fig. 6.  80%TRASE and 20%TESSE (a,b) Confusion matrices and (c,d) Curves of PR and ROC.
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Fig. 8.  Average of CADHDD-SFLNHM method under 20% TESSE.

 

Fig. 7.  Average of CADHDD-SFLNHM method under 80%TRASE.

 

Classes Accuy Precn Recal F1Score GMean

TRASE (80%)

Eosinophil 96.58 95.90 90.03 92.87 92.92

Lymphocyte 98.28 95.76 97.44 96.59 96.60

Monocyte 98.16 94.42 98.51 96.42 96.45

Neutrophil 97.73 95.50 95.44 95.47 95.47

Average 97.69 95.40 95.35 95.34 95.36

TESSE (20%)

Eosinophil 97.12 95.34 93.51 94.42 94.42

Lymphocyte 98.50 96.99 96.99 96.99 96.99

Monocyte 98.44 95.23 98.44 96.81 96.82

Neutrophil 97.56 95.70 94.50 95.09 95.10

Average 97.91 95.81 95.86 95.83 95.83

Table 2.  Haematologic disorders detection outcomes of CADHDD-SFLNHM method under 80%TRASE and 
20%TESSE. Significant values are in bold.
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The computational complexity of the proposed CADHDD-SFLNHM model is compared to baseline models 
using the processing times (PT) in Table 5; Fig. 16. The results indicate that models such as VGG16, SRGAN-
EfficientNetB7, and InceptionV3 portray higher PT values of 54.24 min, 50.58 min, and 47.87 min, respectively. 
Meanwhile, CNN-ResNet50, GoogleNet, and RCNN models illustrate similar PT values around 47.34  min, 
46.35 min, and 43.38 min. MobileNetV2 and CNN-Inception V3 also report significant PTs of 38.46 min and 
35.42 min. On the contrary, the CADHDD-SFLNHM approach attains superior performance with the lowest PT 
of just 20.46 min. Therefore, the CADHDD-SFLNHM approach is appropriate for the automated recognition of 
haematologic disorders.

Conclusion
This study presents a novel CADHDD-SFLNHM approach using Blood Cell Images. SF model performed the 
preprocessing. Furthermore, the LeNet-5 model was employed for feature extraction. Moreover, the CNN-
BiGRU-A method was employed to classify and detect haematologic disorders. Also, the POA-based model 
was utilized to fine-tune the hyperparameters involved in the CNN-BiGRU-A method. The experimental result 
analysis of the CADHDD-SFLNHM model was accomplished using a benchmark database. The performance 
validation of the CADHDD-SFLNHM model portrayed a superior accuracy value of 97.91% over other 
techniques.

Fig. 10.  Loss curve of CADHDD-SFLNHM method with 80%TRASE and 20%TESSE.

 

Fig. 9.  Accuy  curve of CADHDD-SFLNHM method with 80%TRASE and 20%TESSE
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Fig. 11.  70%TRASE and 30%TESSE (a,b) Confusion matrices and (c,d) Curves of PR and ROC.
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Fig. 12.  Average of CADHDD-SFLNHM method under 70%TRASE and 30%TESSE.

 

Class Accuy Precn Recal F1Score GMean

TRASE (70%)

Eosinophil 95.96 91.17 92.86 92.01 92.01

Lymphocyte 94.75 87.96 91.26 89.58 89.60

Monocyte 96.86 94.89 92.63 93.75 93.75

Neutrophil 97.11 95.62 92.59 94.08 94.09

Average 96.17 92.41 92.34 92.35 92.36

TESSE (30%)

Eosinophil 96.71 92.76 94.16 93.45 93.46

Lymphocyte 95.13 90.55 90.41 90.48 90.48

Monocyte 97.33 94.44 94.44 94.44 94.44

Neutrophil 97.08 94.85 93.61 94.22 94.23

Average 96.56 93.15 93.15 93.15 93.15

Table 3.  Haematologic disorders detection of CADHDD-SFLNHM method under 70%TRASE and 
30%TESSE. Significant values are in bold.
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Fig. 13.  Accuy  curve of CADHDD-SFLNHM method with 70%TRASE and 30%TESSE
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Model Accuy Recal F1Score GMean

SRGAN-EfficientNetB7 89.97 92.71 90.69 86.06

CNN-Inception V3 85.41 88.85 89.70 89.58

CNN-ResNet50 74.58 81.00 74.00 73.00

GoogleNet Model 90.86 86.39 89.33 89.61

RCNN Classifier 86.82 86.44 92.58 91.17

MobileNetV2 Model 78.47 78.00 78.00 78.00

InceptionV3 Method 97.20 92.58 93.23 93.88

VGG16 Algorithm 96.09 91.11 92.60 92.39

CADHDD-SFLNHM 97.91 95.81 95.86 95.83

Table 4.  Comparative outcome of CADHDD-SFLNHM approach with other methods.

 

Fig. 14.  Loss curve of CADHDD-SFLNHM method with 70%TRASE and 30%TESSE.
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Model PT (min)

SRGAN-EfficientNetB7 50.58

CNN-Inception V3 35.42

CNN-ResNet50 47.34

GoogleNet Model 46.35

RCNN Classifier 43.38

MobileNetV2 Model 38.46

InceptionV3 Method 47.87

VGG16 Algorithm 54.24

CADHDD-SFLNHM 20.46

Table 5.  PT outcome of CADHDD-SFLNHM approach with recent methods.

 

Fig. 15.  Comparative outcome of CADHDD-SFLNHM approach with other methods.
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Data availability
The data that support the findings of this study are openly available in Kaggle repository at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​
c​o​m​/​​d​a​t​a​s​e​t​s​/​p​a​u​l​t​i​m​o​t​h​y​m​o​o​n​e​y​/​b​l​o​o​d​-​c​e​l​l​s​.​​
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