Table 7 Layer wise architecture details of the employed four models along with total trainable and non-trainable parameters.

From: MythicVision: a deep learning powered mobile application for understanding Indian mythological deities using weight centric decision approach

Layer type

MobileNetV2

EfficientNetB0

ResNet-50

Inception V3

Input layer

224 × 224 × 3 RGB image

224 × 224 × 3 RGB image

224 × 224 × 3 RGB image

299 × 299 × 3 RGB image

Base layers (non-trainable)

- Initial Conv2D (3 × 3, 32 filters, stride = 2)

- Bottleneck blocks (MobileNetv2)

- Initial Conv2D (3 × 3, 32 filters, stride = 2)

- MBConv blocks (EfficientNetB0)

- Initial Conv2D (7 × 7, 64 filters, stride = 2)

- Residual blocks (ResNet-50)

- Initial Conv2D (3 × 3, 32 filters, stride = 2)

- Inception blocks (Inceptionv3)

Global pooling

Global average pooling

Global average pooling

Global average pooling

Global average pooling

DenseLayer1

512 units, ReLU

1024 units, ReLU

512 units, ReLU

1024 units, ReLU

DropOut

Rate = 0.5

Rate = 0.5

Rate = 0.5

Rate = 0.5

DenseLayer2

256 units, ReLU

256 units, ReLU

256 units, ReLU

256 units, ReLU

DropOut

Rate = 0.5

Rate = 0.5

Rate = 0.5

Rate = 0.5

Output layer

Dense (10 units, softmax)

Dense (10 units, softmax)

Dense (10 units, softmax)

Dense (10 units, softmax)

Total parameters

Total: ~ 3.4 M

Trainable: ~ 400 K

Non-Trainable: ~ 3 M

Total: ~ 5.3 M

Trainable: ~ 300 K

Non-Trainable: ~ 5 M

Total: ~ 25 M

Trainable: ~ 2 M

Non-Trainable: ~ 23 M

Total: ~ 22 M

Trainable: ~ 2 M

Non-Trainable: ~ 20 M