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The development of optical sensors for label-free quantification of cell parameters has numerous 
uses in the biomedical arena. However, using current optical probes requires the laborious collection 
of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite 
concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric 
models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical 
manufacturing. Replacing optical probes with contactless short-wave infrared (SWIR) hyperspectral 
cameras allows efficient collection of thousands of absorption signals in a handful of images. This 
high repetition allows for effective denoising of each spectrum, so interpretable linear models can 
quantify metabolites. To illustrate, an interpretable linear model called L-SLR is trained using small 
datasets obtained with a SWIR HSI camera to quantify fructose, viable cell density (VCD), glucose, and 
lactate. The performance of this model is also compared to other existing linear models, namely Partial 
Least Squares (PLS) and Non-negative Matrix Factorization (NMF). Using only 50% of the dataset for 
training, reasonable test performance of mean absolute error (MAE) and correlations (r2) are achieved 
for glucose (r2 = 0.88, MAE = 37 mg/dL), lactate (r2 = 0.93, MAE = 15.08 mg/dL), and VCD (r2 = 0.81, 
MAE = 8.6 × 105 cells/mL). Further, these models are also able to handle quantification of a metabolite 
like fructose in the presence of high background concentration of similar metabolite with almost 
identical chemical interactions in water like glucose. The model achieves reasonable quantification 
performance for large fructose level (100–1000 mg/dL) quantification (r2 = 0.92, MAE = 25.1 mg/dL) and 
small fructose level (< 60 mg/dL) concentrations (r2 = 0.85, MAE = 4.97 mg/dL) in complex media like 
Fetal Bovine Serum (FBS). Finally, the model provides sparse interpretable weight matrices that hint at 
the underlying solution changes that correlate to each cell parameter prediction.
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There exist several biomedical applications for which a contactless sensor for real-time monitoring of metabolites 
would be invaluable1–8. These applications range from cell cultivation inside bioreactors for therapeutics 
manufacture1,4,6–8 to minimally invasive disease diagnosis2,3. For example, The association of fructose with 
Non-Alcoholic Fatty Liver Disease (NAFLD) is well established epidemiologically9–12, yet technologies available 
to measure fructolysis remain limited. The most common methods to study cellular metabolism are mass 
spectrometry (MS) and nuclear magnetic resonance (NMR)13,14. These methods can be destructive, bulky, and 
expensive and do not allow repeated measurements on the same sample. The development of inline optical 
sensors coupled with machine learning analysis of signals to yield metabolite concentrations within bioreactors 
is prevalent in the literature. Examples include NIR probes6,8,15–20, Raman probes4,16,21–25 and even NMR 
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spectrometers26,27. However, these probes are prone to noise, fouling since they must be submerged within the 
cell sample, and sensor drift28.

As an alternative, the use of a short wave infrared hyperspectral camera (SWIR - HSI) allows for fully 
contactless collection of thousands of absorption spectra using a single HSI image. This wealth of signals can 
then be used to efficiently denoise sample spectra28. It can also train interpretable deep learning models using 
a small dataset of ground truth metabolite samples28. These properties enable instantaneous troubleshooting of 
model predictions or automatic filtering of drifting readouts. This HSI sensor setup can also produce sample 
measurements using less than 500 uL of liquid per sample measurement28. A truly multiplex sensor must 
be capable of distinguishing and quantifying similar metabolites since several biological metabolites, such 
as fructose and glucose, share similar chemical structures. Most studies in the literature attempt to quantify 
distinct metabolite relevant to bioprocessing using probes and traditional chemometric models like partial least 
square (PLS)4,6,7. These models tightly couple dimensionality reduction with regression analysis, so it is difficult 
to determine which features are both noise free and relevant to metabolite prediction29. Thus, an alternative 
example of interpretable linear models is explored called L-SLR. The performance of this model is compared 
with both PLS and well known unmixing model Non-negative Matrix Factorization (NMF).

This paper addresses the following objectives (Fig. 1): (1) enable contactless, label free rapid quantification 
of fructose and other cell growth parameters using a short-wave infrared (SWIR) hyperspectral camera; (2) 
develop and demonstrate models that easily adapts to varying cell media environments, and (3) develop model 
that allows practitioner to troubleshoot model performance based on sparse weight matrix maps. This leads to 
the development of small but interpretable models that can be extended to quantify any number of metabolites 
important to human health and cell growth alike.

Materials and methods
 Materials
Spent Cell media samples were collected and imaged as described by Hevaganinge et al.28. In order to collect 
the fructose datasets, various weights of Fructose powder (Sigma F0127) were dissolved in solutions of Glucose 
(Sigma 150023-021) and deionized water to produce calibration datasets for fructose. Fructose was also dissolved 
in Fetal Bovine Serum (FBS) (Gibco 2309286) spiked with Glucose to generate further calibration curves. Sugar 
samples were weighed using a precise scale (Mettler-Toledo, ME204). Calibration curves were collected for 
fructose at varying glucose background levels, as shown in Table 1. The ID indicates the dataset number, while 
G denotes background glucose concentration in mg/dL,

Fmin , Fmax  denote fructose concentration range in mg/dL, ∆ F  denotes fructose concentration increment 
in mg/dL, and N is the number of samples collected in each dataset. T represents test data, and V represents 
validation data in the Fold column of Table  1. Lines demarcate combinations of data used to evaluate each 

Fig. 1.  An overview of the contactless, label free rapid quantification system using a short-wave infrared 
(SWIR) hyperspectral camera. (A) Collection of dataset of hyperspectral images and corresponding labels. 
(B) Collection of hyperspectral images in SWIR range for (C) training an encoder and sparse linear regression 
model for metabolite prediction.
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model. Because fructose dataset was collected with varying background levels of glucose in both water and FBS 
(Table 1), it was possible to isolate a single glucose level from water and FBS environments respectively for k-fold 
cross validation and optimization of model components, while the remaining data was divided into k folds and 
treated as test data.

 Fructose model training and analysis
Because fructose dataset was collected with varying background levels of glucose in both water and FBS (Table 1), 
it was possible to isolate a single glucose level from water and FBS environments respectively for k-fold cross 
validation and optimization of model components, while the remaining data were treated as test data. Both 
validation and test data from each respective glucose background were split into k-folds consisting of 2 samples 
to obtain final metrics. 4 separate model sets were trained by partitioning the data as shown in Table 1, with 
model validation datasets bolded and all remaining datasets used as test data. Datasets used as validation data 
are bolded.

Fructose dataset collection
To create the water solutions, glucose and fructose were weighed using a balance (Mettler-Toledo, ME204) 
and placed in 15mL conical tubes. Next, the appropriate volume of water was added to reach the desired 
concentration. The tubes were then thoroughly mixed. Serum solutions were created with heat-inactivated Fetal 
Bovine Serum (FBS) (Gibco, Lot 2309286) using the same procedure as for water solutions. Since glucose is 
present in horse serum at unknown concentrations, the resulting solutions contained concentrations of glucose 
augmented by both fructose and additional glucose. Sample order was randomized before image acquisition. 500 
uL of each sample was loaded into a quartz cuvette (Hellma 110-1-40) and imaged using Hyperspectral sensor 
(Headwall Photonics, Bolton, Massachusetts). The spatial resolution of this system was approximately 0.5 mm, 
which allowed collection of hundreds of transmittance readings from each cuvette photo. Each image pixel 
contains a transmittance spectrum which is collected in the range from 900 to 2500 nm in 8 nm increments. 
The quartz cuvette was washed with a single wash of water and two washes of solution of interest prior to image 
collection.

 Cell data model training and analysis
As detailed previously28, cell permeate dataset was collected and quantified from eight different cell culture 
flasks, such that approximately 30 samples were collected from each flask prior to data cleaning and filtering. 
Further, ground truth labels for cell media samples were kept unfiltered. Only data with cell viability greater than 
80% and lactate levels less than 300 mg/dL were used for model training from spent cell media dataset, resulting 
in approximately 20 samples per flask. The first flask was chosen as the validation flask and used to determine 
minimum number of flasks that could be used for model training while maintaining reasonable metabolite 
quantification results, as well as optimal number of components for all models. Of the remaining flasks, 4 were 
randomly chosen as test flasks, and remaining flasks were used as training data. 20 folds of flask combinations 
were generated for evaluation. To minimize model extrapolation, only data with cell viability greater than 80% 
was used as test data for models trained using spent cell media dataset.

Data pre-processing
 Hyperspectral images were processed as described by Hevaganinge et al.28 for all datasets. First, min-max 
normalization of each transmission signal was conducted against respective dark and white background 
reference hyperspectral images that are taken at the start of each experiment. Next, transmittance spectra are 
converted to polynomial basis30 based on Eq. (1), where ϕ ∈ RNxP , with N samples and P terms, represents 
set of linear and 2nd order cross terms and xi, xj  represent transmittance values from ith and jth wavelength 
respectively. Also, B is the total number of wavelengths. All terms undergo min-max normalization based on 
extreme features of respective training dataset.

	 ϕ = x1 + x2 + xi + . . . + xB + x1x2 + . . . + xixj + . . . + xB−1xB � (1)

ID G Fmin Fmax ∆ F Bkg N Fold

1 0 0 0 0 Water 1 T

2 25 100 500 50 Water 16 T

3 250 100 500 50 Water 16 V

4 500 100 500 50 Water 16 T

5 78 6 60 6 Water 9 T

6 95 6 60 6 Water 9 V

7 112 6 60 6 Water 9 T

8 112 0 60 0.4 FBS 150 T

9 50 0 1000 100 FBS 10 T

10 500 0 1000 100 FBS 10 T

11 1000 0 1000 100 FBS 10 V

Table 1.  Summary of experimental conditions used to collect fructose datasets.
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Data analysis and model training
 Three models were explored for contactless quantification of various cell parameters. The respective validation 
dataset was used for model hyperparameter tuning, and validation data was omitted from test data evaluation as 
needed. Scikit-Learn implementation of Partial Least Squares with 10 components29,30 and polynomial features 
( ϕ ) was used as a baseline model to compare against the performance of two source separation models. The first 
alternative model used a blind source separation model, specifically Scikit-Learn implementation of Non-negative 
Matrix Factorization (NMF)30,31 as the encoder which takes ϕ  as input and returns compressed signal with 10 
components for subsequent linear regression. Nonnegative Double Singular Value Decomposition (NNDSVD) 
was used as the initialization method, and the solver was Multiplicative Update Solver. The architecture of the 
proposed L-SLR model is shown in Fig. 2. First, the transmittance signal, T ∈ RNxB , with N samples and B 
wavelengths, was converted to a polynomial basis (2 A). Concurrently, the matrix of metabolite concentrations, 
Y ∈ RNxM  from the training dataset with M metabolites was converted into a single integer index via Hilbert 
transformation32 (2B). Specifically, each metabolite label was divided by maximum concentration in training 
dataset, multiplied by 100 and rounded to the nearest integer. Each resulting number was treated as an index in 
M degree space which can be spanned using a Hilbert curve using the Hilbert curve package in python33. These 
integer labels were used to pretrain an Scikit-Learn implementation of Orthogonal Matching Pursuit sparse 
regression model (OMP)30,34 (2 C) which output a sparse feature mask that was used to mask out noisy terms in 
original feature space that were not relevant to metabolite prediction, as shown in Eq. (2), where Hi is the sparse 
cross terms feature vector of sample i from ϕ  after masking, and s is the sparse feature mask.

	 Hi = ϕ i [s]� (2)

Next, these integer labels and corresponding masked features were used to pre-train a Linear Discriminant 
Analysis (LDA) encoder35 (2E). The LDA model forms a compressed latent space which helps to separate very 
redundant metabolite spectra from a variety of metabolite environments. Test signals were masked using the 
OMP method (2 C) then dimensionality reduction was done by pretrained LDA according to Eq. (3), where Z is 
the compressed signal, Hi ∈ RNxP +

, with N samples and P + terms, is the masked cross terms signal, and W 
is the basis matrix of n = 10 highest eigenvectors obtained via optimization of LDA cost function (2E).

	 Z = HW� (3)

After, simple linear regression30 was used to quantify metabolite levels using compressed signal from LDA 
model, according to Eq. (4) (2 F) where ŷ is the predicted metabolite reading, Θ  is the sparse weights, and z is 
the LDA latent space signal. All ground truth labels are normalized by corresponding maximum training label 
prior to fitting linear regression model.

	 ŷ = Θ z� (4)

Fig. 2.  Architecture of L-SLR. First, absorbance signal is converted to a polynomial basis (A), then masked 
based on weights from pretrained sparse linear regression model (C). Next, masked signal is passed into 
pretrained LDA model (E). LDA forms compressed latent space which is used to generate metabolite 
predictions via linear regression (F). Coefficients from LDA and SLR are then used to form weight matrix 
visuals (G). Models used in (C) and (E) are pretrained using a labeled dataset consisting of integer labels 
computed via Hilbert curve (B) that represent unique metabolite combinations.
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Finally, the sparse weight visualizations were formed by taking the weighted average of LDA weights (W) 
based on linear regression weights ( Θ ) before replacing nonzero elements of sparse feature mask si with the 
corresponding weight value. All terms used to construct weight map are highlighted in red (Fig. 2). These steps 
are summarized in Eq. (5), where sp is the pth term in the sparse feature mask, wp is the pth column of LDA 
eigenvector matrix, and Θ  is the weight matrix used for metabolite quantification.

	
sp = 1

n
wpΘ � (5)

L-SLR weight matrix map generation
Because L-SLR is a fully linear model, the weight matrix may be visualized and analyzed similar to an attention 
map. The weight matrix not only reveals which features are excluded from metabolite prediction36, but also 
reveals which features are combined to generate final metabolite predictions. Therefore, the cumulative sum of 
all weight matrices generated across folds for each dataset was used as an approximation of the stable weight 
matrix.

Model evaluation and statistics
Predicted cell parameter concentrations were compared to ground truth readings via r2, root mean squared error 
(RMSE), mean absolute error (MAE), and relative mean absolute percentage error (MAPE) metrics. All metrics 
were calculated using Scikit-Learn implementations30. MAE, and RMSE are reported in units of mg/dL, while 
the relative MAPE decimal is reported in all tables. Number of latent space components used for each model is 
listed as n, with 10 components used for all models.

 Results and discussion
Three linear models were evaluated using a series of datasets collected in house using labeled HSI images of not 
only fructose solutions but also spent cell media from eight CHO cell culture flasks. Tables 2, 3 and 4 summarize 
validation and test performance when fructose samples in various glucose backgrounds are partitioned into 
k-folds each containing 2 unique fructose concentrations as test samples. In dataset number 8, 5 unique fructose 
concentrations are sampled for each test fold since it contains a higher number of unique fructose concentrations 
compared to the other fructose datasets collected. The dataset number corresponds to data which was collected 
under conditions listed in Table 1.

Figures 3, 4 visualize PLS-R and L-SLR correlation to fructose ground truth for test datasets in all datasets of 
interest for a variety of fructose solution in glucose solutions (Fig. 3) and Horse Serum solutions (Fig. 4). r2 and 
MAE are listed in the top left corner of each graph. All measurements are reported in units of mg/dL.

Across all folds, PLS-R exhibits better test performance when compared to L-SLR, with better scoring 
performance across all metrics assessed. Nevertheless, the accuracies of both L-SLR and PLS fall within the range 

Validation in dataset 6 Testing in dataset 5, 7 Testing in dataset 8

MAE MAPE RMSE R2 MAE MAPE RMSE R2 MAE MAPE RMSE R2

L-SLR (n = 10) 4.78 0.21 5.85 0.82 5.84 0.34 6.79 0.81 4.97 0.38 6.88 0.85

NMF Regression (n = 10) 21.46 0.73 25.42 0 12.05 0.56 19.75 0 5.55 0.39 7.66 0.81

PLS–R (n = 10) 2.46 0.11 3.29 0.94 7.35 0.46 8.07 0.73 4.17 0.28 6.28 0.87

Table 4.  Quantification of small fructose concentrations in glucose solutions and horse serum.

 

Validation in dataset 3 Testing in datasets 2, 4

MAE MAPE RMSE R2 MAE MAPE RMSE R2

L-SLR (n = 10) 29.74 0.14 37.44 0.86 25.1 0.16 32.75 0.92

NMF Regression (n = 10) 47.6 0.21 53.6 0.71 78.25 0.52 108.51 0.1

PLS–R (n = 10) 25.62 0.12 33.1 0.89 19.7 0.12 24.81 0.95

Table 3.  Quantification of large fructose concentrations in glucose solutions.

 

Validation in dataset 11 Testing in datasets 9, 10

MAE MAPE RMSE R2 MAE MAPE RMSE R2

L-SLR (n = 10) 34.38 0.08 53.4 0.96 28.37 0.13 33.69 0.98

NMF Regression (n = 10) 94.05 0.24 116.01 0.8 76.7 0.19 109.62 0.82

PLS–R (n = 10) 36.31 0.11 47.03 0.97 19.43 0.11 28.94 0.99

Table 2.  Quantification of large fructose concentrations in horse serum and glucose solutions.
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of usability for biological studies of fructose2,12 and bioprocess monitoring16,23. The performance gap between 
PLS-R and L-SLR widens as the fructose concentration decreases, suggesting that LDA has trouble defining 
discrete clusters for small fructose samples, especially in the presence of relatively high glucose backgrounds. 
It is also clear that folds sampled at the extreme concentrations tend to exhibit higher levels of drift compared 
to concentrations in the center of the fructose concentration data distribution. Perhaps more concentrations 
beyond the extremes of interest need to be sampled and placed as fixed training data points across all folds. In 

Fig. 3.  Correlation Visualization between ground truth fructose and fructose predicted by PLS-R (A, C) and 
L-SLR (B, D) for test data collected in dataset conditions 2 and 4 (A, B) and conditions 5 and 7 (C, D). r2 and 
MAE are listed in the top left corner of each graph.
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Fig. 4C and D, there are a few outlier points that have high test error for both PLS-R and L-SLR, while most of the 
other datapoints are quantified with relatively smaller error. The misclassification of these points may stem from 
the fact that background glucose concentration is more than twice the fructose concentrations imaged, so signal 
differences caused by fructose concentration changes are small, subtle, and difficult to differentiate properly. 
Further, the performance of unmixing regression model based on nonlinear matrix factorization (NMF) is 
shown in Tables 2, 3 and 4, since this is a well established model in the literature for analysis of spectroscopic 

Fig. 4.  Correlation Visualization between ground truth fructose and fructose predicted by PLS-R (A, C) and 
L-SLR (B, D) for test data collected in dataset conditions 9 and 10 (A, B) and condition 8 (C, D). r2 and MAE 
are listed in the top left corner of each graph.
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signals37,38. However, the performance of the NMF regression is worse when compared to PLS and L-SLR, most 
likely since NMF is an iterative model whose performance is dependent on initialization31. Next, to evaluate 
model performance on cell culture flask dataset quantification, all models were trained and evaluated on 20 
folds of 4 randomly sampled flasks for training data, while using remaining cell culture flasks as test data. The 
validation flask was omitted from test data evaluation as needed. Tables 5, 6 and 7 summarize average viable cell 
density (VCD), glucose and lactate quantification performance across 20 cross validation folds when four cell 
culture flasks (50% of dataset ) are randomly reserved for model training. This number was determined as the 
minimum number of flasks required to achieve comparable validation performance as using 75% (6 randomly 
sampled flasks) as training data and flask 1 as validation data. The use of 50% of the dataset rather than 75% of 
the datasets highlights the powerful generalizability and training efficiency of linear models.

 
Figure 5, 6, 7 visualize PLS-R and L-SLR correlation to VCD, glucose and lactate ground truth labels 

respectively for randomly selected test dataset folds. r2 and MAE are listed in the top left corner of each graph. 
All measurements are reported in units of mg/dL.

Across all folds, L-SLR exhibits similar performance to PLS-R, although PLS-R tends to display higher 
performance across all metrics evaluated on the test datasets. Both models achieve best test performance with 
lactate, test r2 values above 0.9, and MAE less than 20 mg/dL. This suggests that signals correlated to lactate 
are robust and bi-linear. Performance metrics are lowered slightly when evaluating glucose quantification, but 
r2 values are still close to 0.9. After analyzing Fig.  6, it is clear that a few cell permeate images exhibit high 
glucose quantification error, while most of the points have relatively low error. It is important to note that SWIR 
spectra mainly reflect the absorbance of water, and the subtle shifts of the water peak are used as a “molecular 
mirror” of substrates dissolved in the hydrogen bonding matrix of water39. Thus, signal shifts caused by glucose 
are not always linear, or even bi-linear40. This may explain the spurious misclassification of certain glucose 
images by both models. Further, PLS-R exhibits significant overfitting when compared to L-SLR performance 
for glucose and lactate. This is highlighted by the relatively large reduction in all metrics between training and 
testing performance for PLS-R when compared to L-SLR. Finally, both models achieve r2 values less than 0.9 
for VCD. Since cell free permeate is imaged, perhaps hyperspectral images lack concrete signals that correlate to 
VCD. Most likely, the model is forced to correlate signals belonging to other cell parameters with VCD instead. 
It was hoped that linear unmixing methods like NMF with the help of 2nd degree cross term features could help 
uncover interpretable signals that directly correlate to VCD. In practice, NMF regression models display the 
worst performance of the models evaluated, most likely since NMF is an iterative model whose performance is 
dependent on initialization. Of course, L-SLR might be thought of as a unmixing model as well, since it does 
factor the input matrix X into eigenvectors and eigen values that best explain the variance correlated to ground 
truth label separation35. In the future, perhaps the Fischer’s Discriminant ratio can be modified so that chosen 
components group similar environment samples close together.

Training Validation in flask 1 Testing across 20 folds

MAE MAPE RMSE R2 MAE MAPE RMSE R2 MAE MAPE RMSE R2

L-SLR (n = 10) 12.83 0.09 15.89 0.95 19.69 0.18 23.00 0.94 15.08 0.11 18.89 0.93

NMF Regression (n = 10) 16.25 0.13 20.63 0.92 20.74 0.23 24.08 0.93 20.58 0.16 26.07 0.86

PLS–R (n = 10) 10.62 0.08 13.59 0.96 19.66 0.22 23.30 0.93 14.42 0.10 18.95 0.92

Table 7.  Quantification of lactate in spent cell media.

 

Training Validation in flask 1 Testing across 20 folds

MAE MAPE RMSE R2 MAE MAPE RMSE R2 MAE MAPE RMSE R2

L-SLR (n = 10) 28.55 0.22 37.26 0.93 41.10 0.24 58.85 0.87 36.73 0.26 49.57 0.89

NMF Regression (n = 10) 42.98 0.40 53.76 0.86 67.34 0.37 78.96 0.76 57.17 0.43 79.48 0.70

PLS–R (n = 10) 19.68 0.18 26.08 0.97 58.11 0.36 76.10 0.78 30.92 0.22 45.55 0.90

Table 6.  Quantification of glucose in spent cell media.

 

Training Validation in flask 1 Testing across 20 folds

MAE MAPE RMSE R2 MAE MAPE RMSE R2 MAE MAPE RMSE R2

L-SLR (n = 10) 7.06E + 05 0.22 9.53E + 05 0.87 1.03E + 06 0.37 1.24E + 06 0.84 8.60E + 05 0.30 1.17E + 06 0.81

NMF Regression (n = 10) 7.72E + 05 0.26 1.02E + 06 0.85 1.22E + 06 0.29 1.50E + 06 0.76 9.88E + 05 0.33 1.29E + 06 0.76

PLS–R (n = 10) 6.25E + 05 0.20 8.26E + 05 0.91 1.19E + 06 0.32 1.42E + 06 0.79 8.45E + 05 0.27 1.14E + 06 0.82

Table 5.  Quantification of viable cell density (VCD) in spent cell media.
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L-SLR interpretability
Unlike Mid-Infrared (MIR) absorption, SWIR absorption reflects weak signals caused by overtones and 
combination vibrations39,41–43. These signals are difficult to simulate and interpret, but linear weight matrices 
help the practitioner correlate high weights with known functional group harmonics in the literature41. Linear 
models afford weight matrices which directly show both which features are omitted and which features are 
used as well as how these features contribute to the final metabolite predictions. In contrast, attention maps 
formed to summarize complex non linear models only afford a glimpse of which features are omitted for model 
prediction36. Summary visualizations of all weight matrices produced across all folds evaluated are shown in 
Figs. 8 and 9.

It is well known that hydrogen bonding within the solution matrix impacts SWIR absorption spectra41. 
This phenomenon is reflected in the distinct differences between weight matrices for models trained to identify 
fructose within glucose solutions vs. horse serum solutions spiked with glucose (Fig. 8A–D). For example, the 
model trained using glucose solutions pays more “attention” to absorption signals below 1400 nm, whereas the 
model trained using horse serum pays more “attention” to absorption signals between 1600 and 1800 nm. The 
former region is dominated by overtones related to O-H stretch, whereas the latter region is dominated by C-H 
stretch vibrations41. This implies that the correlation between fructose concentration and SWIR absorption can 
be related to both changes in the hydrogen bonding matrix of water and interactions of fructose with organic 
compounds dissolved in the horse serum. Further only cross terms in region between bands less than 1400 and 
bands from 1600 to 1900 or region between 1600 and 1800 are heavily used for all models other than those 
used to quantify small quantities of fructose in FBS (Fig. 8B). According to Fig. 4, the corresponding model 
displays the largest extremes in model prediction error compared to the other models. Perhaps this distribution 
of weights suggests that the model was not able to clearly distinguish linear or bi-linear cross term signals that 
correlate with fructose concentrations, which leads to overfitting to noise in the training dataset instead. The 
misclassification of these points may stem from the fact that background glucose concentration is very high 
compared to the incremental fructose concentration changes in this dataset, so feature changes are small, subtle, 
and difficult to differentiate properly. A similar analysis is less clear in the PLS-R weight matrices, since non-
zero weights are much less sparse compared to equivalent L-SLR model. However, points of distinction are 
highlighted in Fig. 8E–H.

Although three distinct cell culture parameters were predicted using the cell culture flask dataset, the weight 
profile of all three models is quite similar (Fig. 9A–C). In fact, the weight matrices formed by PLS-R (Fig. 9D–F) 
are virtually indistinguishable, so weight matrices formed by L-SLR will be analyzed for the remainder of the 
discussion. Notably, both the VCD model and the lactate model share similar regions of high weight, implying 

Fig. 5.  Correlation visualization between ground truth VCD and VCD predicted by PLS-R (A) and L-SLR (B) 
respectively in spent cell media are shown for randomly selected test fold. r2 and MAE are listed in the top left 
corner of each graph.
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Fig. 7.  Correlation visualization between ground truth lactate and lactate predicted by PLS-R (A) and L-SLR 
(B) respectively in spent cell media are shown for randomly selected test fold. r2 and MAE are listed in the top 
left corner of each graph.

 

Fig. 6.  Correlation visualization between ground truth glucose and glucose predicted by PLS-R (A) and L-SLR 
(B) respectively in spent cell media are shown for randomly selected test fold. r2 and MAE are listed in the top 
left corner of each graph.
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Fig. 9.  Cumulative sum weight matrices produced by L-SLR (A–C) and PLS-R (D–F) for bands and cross 
terms across all models evaluated for quantification of VCD (A, D), glucose (B, E), and lactate (C, F) in spent 
cell media. All weights are normalized by the respective maximum of each cumulative matrix to facilitate 
comparison of weight matrices across models and datasets alike.

 

Fig. 8.  Cumulative sum weight matrices produced by L-SLR (A–D) and PLS-R (E–H) for bands and cross 
terms across all models evaluated for fructose quantification via datasets 9–11 (A, E), dataset 8 (B, F), datasets 
2–4 (C, G) and datasets 5–7 (D, H). All weights are normalized by the respective maximum of each cumulative 
matrix to facilitate comparison of weight matrices across models and datasets alike.
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that changes in lactate concentration correlate with VCD changes. While both VCD and lactate models share 
a high weight band around 2200 nm, the glucose model does not weigh this band region quite as heavily. This 
region corresponds to overtone stretches caused by carboxylic acid41, which is the main functional group on 
lactic acid. Still, all three models pay “attention” to absorption signals below 1400, implying that changes to the 
hydrogen bonding matrix of water correlate with changes in all three cell parameters investigated. Still, SWIR 
spectra exhibit broad, overlapping peaks with non-linear relationships to dissolved molecules. Similar absorption 
spectra may correspond to very different solution matrix profiles, so the model confuses distinct cell parameter 
predictions. Because LDA is already designed to maximize separation of data points based on class35, it was 
assumed that LDA would be able to treat different sets of metabolites as distinct classes and find an appropriate 
lower dimensional latent space that facilitates metabolite quantification. In the future, the cost function of 
LDA should be modified to distance points from different environments based on environment similarity. This 
smooth latent space would also allow for identification and removal of ambiguous absorption spectra which 
overlap multiple metabolic profiles. In contrast, it is difficult to imagine how PLS-R latent space may be modified 
to ensure continuous latent space, since dimensionality reduction and regression are highly coupled29. Across 
all datasets tested, the NMF model performed the worst, most likely due to dependence on weight initialization. 
Unlike PLS-R and L-SLR, NMF is a blind source separation model, so it cannot take advantage of the supervised 
labeled dataset available. It is reasonable and arguably essential in the bioprocessing and therapeutics realm for 
labeled datasets to be collected prior to model training for metabolite quantification. Based on remarks in the 
literature, an interpretable chemometrics model in the bioprocessing and therapeutics realm should (1) produce 
reduced dimensionality latent space that separates spectra based on corresponding metabolite environment, (2) 
easily adapts to varying cell media environments, and (3) allows practitioner to troubleshoot model performance 
based on sparse weight matrix maps and the prediction of confidence intervals28,36. So far, L-SLR has produced 
a reduced dimensionality latent space coupled with sparse weight matrices that highlight which bands and cross 
terms are used for final prediction. Both L-SLR and PLS demonstrate reasonable metabolite quantification 
accuracy, and the ability to generalize to test datasets using 50% of the dataset available. This implies that these 
models can generalize training data environments to test environments with the same cell type and media using 
a 1:1 ratio of train to test data. In the future, this sensor framework may be used to quantify other valuable cell 
parameters such as pH, amino acids, and even antibody glycosylation5,6,20,44.

Conclusion
Herein, we presented the development of a contactless label free sensor coupled with an interpretable model 
for the quantification of fructose and other key cell parameters. This SWIR sensor system has succeeded in (1) 
contactless, label free rapid quantification of fructose and other cell growth parameters, and (2) easily adapts 
to varying cell media environments using (3) interpretable models that shed light on how the bands of the 
nonlinear absorption spectra contribute to metabolite quantification. Further, the accuracies of both L-SLR and 
PLS fall within the range of usability for biological studies of fructose2,12 and bioprocess monitoring16,22.Because 
the HSI camera is capable of recording thousands of absorbance spectra within a single image, this sensor system 
can efficiently train and adapt to new metabolites using relatively small calibration datasets. Currently, existing 
invasive time consuming quantification methods like high performance liquid chromatography (HPLC) and 
mass spectrometry (MS) remain the gold standard measurement devices in biomedical arena. There are several 
biomedical applications for which real-time monitoring of cell parameter levels coupled with intermittent ground 
truth readings will enable both rapid diagnosis of diseases like NAFLD, and precise control of bioprocesses.

Data availability
Raw data were generated at University of Maryland, College Park. Derived data supporting the findings of this 
study are available from the corresponding author Dr. Yang Tao on request.
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