Table 2 Results of construct validity and reliability analysis.

From: Understanding designers’ switching intention to AI painting tools using the PPM framework

Latent variable

Measurement variable

Mean

Std. Dev

Factor loadings

CR

AVE

DIS

DIS1

2.456

0.920

0.788

0.912

0.917

0.788

DIS2

0.968

DIS3

0.898

PLOTC

PLOTC1

3.728

0.869

0.926

0.854

0.859

0.754

PLOTC2

0.806

IE

IE1

2.887

0.865

0.751

0.862

0.864

0.681

IE2

0.875

IE3

0.844

COT

COT1

3.191

0.929

0.746

0.885

0.888

0.728

COT2

0.872

COT3

0.931

SC

SC1

2.768

0.884

0.823

0.851

0.851

0.655

SC2

0.801

SC3

0.804

HAB

HAB1

3.157

0.871

0.800

0.870

0.871

0.693

HAB2

0.836

HAB3

0.860

IN

IN1

2.322

0.941

0.730

0.827

0.837

0.634

IN2

0.911

IN3

0.734

ATT

ATT1

3.854

0.695

0.748

0.870

0.872

0.695

ATT2

0.866

ATT3

0.880

PEOU

PEOU1

3.455

0.794

0.823

0.901

0.902

0.696

PEOU2

0.806

PEOU3

0.833

PEOU4

0.874

PE

PE1

3.700

0.744

0.797

0.851

0.851

0.656

PE2

0.829

PE3

0.803

PP

PP1

3.973

0.744

0.920

0.908

0.911

0.773

PP2

  

0.844

PP3

  

0.873

ITS

ITS1

3.326

0.812

0.649

0.816

0.836

0.561

ITS2

0.814

ITS3

0.740

ITS4

0.783

  1. DIS dissatisfaction with traditional painting tools, PLOTC perceived technology uncontrol, IE inconsistent expectations, COT consumption of time, SC switching cost, HAB habit, IN individual non-innovation, ATT attractiveness of AI painting tools, PEOU perceived ease of use, PE perceived efficiency, PP perceived pleasure, ITS intention to switch to AI painting tools.