Table 2 Results of construct validity and reliability analysis.
From: Understanding designers’ switching intention to AI painting tools using the PPM framework
Latent variable | Measurement variable | Mean | Std. Dev | Factor loadings | ⍺ | CR | AVE |
---|---|---|---|---|---|---|---|
DIS | DIS1 | 2.456 | 0.920 | 0.788 | 0.912 | 0.917 | 0.788 |
DIS2 | 0.968 | ||||||
DIS3 | 0.898 | ||||||
PLOTC | PLOTC1 | 3.728 | 0.869 | 0.926 | 0.854 | 0.859 | 0.754 |
PLOTC2 | 0.806 | ||||||
IE | IE1 | 2.887 | 0.865 | 0.751 | 0.862 | 0.864 | 0.681 |
IE2 | 0.875 | ||||||
IE3 | 0.844 | ||||||
COT | COT1 | 3.191 | 0.929 | 0.746 | 0.885 | 0.888 | 0.728 |
COT2 | 0.872 | ||||||
COT3 | 0.931 | ||||||
SC | SC1 | 2.768 | 0.884 | 0.823 | 0.851 | 0.851 | 0.655 |
SC2 | 0.801 | ||||||
SC3 | 0.804 | ||||||
HAB | HAB1 | 3.157 | 0.871 | 0.800 | 0.870 | 0.871 | 0.693 |
HAB2 | 0.836 | ||||||
HAB3 | 0.860 | ||||||
IN | IN1 | 2.322 | 0.941 | 0.730 | 0.827 | 0.837 | 0.634 |
IN2 | 0.911 | ||||||
IN3 | 0.734 | ||||||
ATT | ATT1 | 3.854 | 0.695 | 0.748 | 0.870 | 0.872 | 0.695 |
ATT2 | 0.866 | ||||||
ATT3 | 0.880 | ||||||
PEOU | PEOU1 | 3.455 | 0.794 | 0.823 | 0.901 | 0.902 | 0.696 |
PEOU2 | 0.806 | ||||||
PEOU3 | 0.833 | ||||||
PEOU4 | 0.874 | ||||||
PE | PE1 | 3.700 | 0.744 | 0.797 | 0.851 | 0.851 | 0.656 |
PE2 | 0.829 | ||||||
PE3 | 0.803 | ||||||
PP | PP1 | 3.973 | 0.744 | 0.920 | 0.908 | 0.911 | 0.773 |
PP2 | 0.844 | ||||||
PP3 | 0.873 | ||||||
ITS | ITS1 | 3.326 | 0.812 | 0.649 | 0.816 | 0.836 | 0.561 |
ITS2 | 0.814 | ||||||
ITS3 | 0.740 | ||||||
ITS4 | 0.783 |