Table 1 Performance comparison of CGS-Net models vs. baseline models for cancer segmentation. The CGS-Net models outperformed their single-input baseline models. These results were seen across AUC and cancer Dice scores for all model sizes and architectures.

From: Context-guided segmentation for histopathologic cancer segmentation

Model

Parameters

AUC

CGS-Net Improvement

Cancer Dice score

CGS-Net Improvement

Single MiT-B1

15.14 M

\(0.976 \pm 0.0008\)

-

\(0.6677 \pm 0.108\)

-

CGS-Net MiT-B1

30.08 M

\(\mathbf {0.9806} \pm \mathbf {0.0002}\)

0.47%

\(\mathbf {0.7004} \pm \mathbf {0.1228}\)

4.09%

Single MiT-B2

26.18 M

\(0.972 \pm 0.002\)

-

\(0.5719 \pm 0.0326\)

-

CGS-Net MiT-B2

52.17 M

\(\mathbf {0.979} \pm \mathbf {0.0006}\)

0.72%

\(\mathbf {0.6036} \pm \mathbf {0.0098}\)

5.54%

Single SwinV2 Tiny

29.56 M

\(0.971 \pm 0.0009\)

-

\(0.5735 \pm 0.04\)

-

CGS-Net SwinV2 Tiny

60.81 M

\(\mathbf {0.974} \pm \mathbf {0.0015}\)

0.31%

\(\mathbf {0.6126} \pm \mathbf {0.0035}\)

6.81%

Single SwinV2 Small

50.92 M

\(0.967 \pm 0.0097\)

-

\(0.5631 \pm 0.029\)

-

CGS-Net SwinV2 Small

103.54 M

\(\mathbf {0.976} \pm \mathbf {0.0008}\)

0.93%

\(\mathbf {0.5936} \pm \mathbf {0.0066}\)

5.42%

  1. The bold denotes the best performing model within each pair.