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As the world recovered from the coronavirus, the emergence of the monkeypox virus signaled a 
potential new pandemic, highlighting the need for faster and more efficient diagnostic methods. This 
study introduces a hybrid architecture for automatic monkeypox diagnosis by leveraging a modified 
grey wolf optimization model for effective feature selection and weighting. Additionally, the system 
uses an ensemble of classifiers, incorporating confusion based voting scheme to combine salient data 
features. Evaluation on public data sets, at various of training samples percentages, showed that the 
proposed strategy achieves promising performance. Namely, the system yielded an overall accuracy 
of 98.91% with testing run time of 5.5 seconds, while using machine classifiers with small number of 
hyper-parameters. Additional experimental comparison reveals superior performance of the proposed 
system over literature approaches using various metrics. Statistical analysis also confirmed that the 
proposed AMDS outperformed other models after running 50 times. Finally, the generalizability of 
the proposed model is evaluated by testing its performance on external data sets for monkeypox 
and COVID-19. Our model achieved an overall diagnostic accuracy of 98.00% and 99.00% on external 
COVID and monkeypox data sets, respectively.
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The world has recently faced numerous crises in the medical sector due to the emergence of previously unknown 
viral strains and genetic mutations in known viruses. Monkeypox, a member of the orthopoxvirus family, is a 
rare disease that has been spreading, particularly in Africa-the main source of the virus-and recently in other 
regions, particularly the UK and the USA1,2. Diagnosing monkeypox presents challenges where symptoms 
overlapped with other diseases like smallpox, chickenpox, measles, and psoriasis3–7. These overlapping, non-
specific symptoms make it difficult to identify true signs of the disease. In regions where monkeypox is less 
common, healthcare providers may be less familiar with the disease and its symptoms, leading to delayed 
diagnosis. Access to diagnostic testing may be limited in some areas, especially during outbreaks.

Because the clinical presentation of monkeypox closely mirrors that of smallpox, it is at risk of being 
misdiagnosed8. This underlines the need for precise diagnostic techniques that incorporate artificial intelligence 
(AI), powered by machine learning (ML), and data mining (DM). These advanced methods offer the potential 
for more accurate diagnoses, which in turn will help physicians make better treatment decisions. While current 
diagnostic techniques exist, they often rely on medical images of skin lesions that can be time-consuming 
and resource-intensive8–10. This research gap necessitates the development of novel, efficient, and accessible 
diagnostic tools. Generally, AI-based classification architectures use training data to develop ML predictive tools 
capable of diagnostic decision-making1,2. Recent research has explored the potential of AI and optimization 
algorithms for monkeypox diagnosis. However, existing methods often face limitations, such as reliance on 
large datasets, sensitivity to image quality, and potential for misclassification. This research aims to address these 
gaps by developing a novel AI-based diagnostic approach that leverages advanced optimization techniques to 
improve accuracy, reduce computational cost, and enhance the early detection of monkeypox, ultimately aiding 
in timely and effective disease management.
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Feature selection and weighing play a vital role in enhancing the efficiency of AI systems by identifying 
the most relevant features while discarding redundant ones11,12. This process reduces the dimensionality of the 
dataset, enabling faster model training and improving performance. Traditional feature selection techniques 
such as wrappers, filters, and hybrid methods often struggle in high-dimensional spaces13,14. To address 
these limitations, researchers have turned to evolutionary computation (EC) algorithms, inspired by natural 
behaviors like the social patterns of animals searching for food15–17. Examples of such algorithms include genetic 
algorithm (GA)13,14, particle swarm optimization18, multi-objective optimisation19 colony optimization20,21, 
bat optimization, whale optimization22, and ant lion optimization23. Additionally, various other optimization 
algorithms have been proposed recently for improved convergence speed and global search balance, such as 
multiobjective brown bear optimization24 Hippopotamus Optimizer25 and Aijun et al. hybrid algorithm26. 
Among these, grey wolf optimization (GWO) has gained significant attention27. In addition to feature selection 
and weighing, ensemble classification has emerged as a method to boost classification accuracy by leveraging 
the collective knowledge of multiple classifiers rather than relying on a single model28,29. Typically, an ensemble 
of classifiers (EoC) combines the predictions of various base classifiers to reach a final decision. There are two 
types of ensemble classifiers: homogeneous (which uses the same type of classifiers) and heterogeneous (which 
uses different classifiers). This ensemble approach offers advantages such as improved prediction performance, 
increased robustness, and reduced prediction variance28,29.

The main objective of this study is to introduce an efficient system for monkeypox diagnosis, which is termed 
as, accurate monkeypox diagnosis strategy (ADMS). The proposed pipeline is hybrid and integrates an EoC to 
enhance the accuracy of monkeypox diagnosis. The developed method aims to automatically analyze laboratory-
based tests, enabling rapid and more accurate identification of the disease, thus improving patient outcomes and 
public health response to monkeypox outbreaks. The main contribution aspects of the presented work can be 
summarized as follows.

•	 Introducing a hybrid architecture for automatic monkeypox diagnosis (ADMS: Accurate monkeypox diag-
nosis strategy)

•	 Deploying a modified Gray Wolf optimization technique for feature selection and weighting.
•	 Ensembling the salient features extracted via hybrid approach that uses confusion-based voting (CBV).
•	 Achieving promising performance with a smaller number of parameters compared with alternative approach-

es.The rest of the paper is categorized into the following section. The Introduction section covers and outline 
the problem, significance as well as the overall objectives of this work. literature work for monkeypox diag-
nosis is summarized in the Related Work section. The Methodology section details the proposed learnable 
architecture and the modified GWO-based feature selection. It also covers the machine classifiers integrat-
ed in the learnable ensemble classification. This is followed by experimental results, outcomes, and detailed 
performance comparisons. The associated discussion are presented in the Discussion section and finally the 
findings and future research directions are given in the Conclusions section.

Related work
In literature, previous research work on medical diagnostic models reveal a variety of techniques used for 
monkeypox diagnosis. For example, early diagnosis for monkeypox patients was performed using a neuro-
fuzzy model (NFM)2, a hybrid model that integrates the benefits of both neural network and fuzzy inference 
techniques. The uncertainty handling is provided by fuzzy logic while the learning capability is achieved by 
neural network. Experimental results demonstrated that NFM outperformed other models but it did not 
depend on all input symptoms. Also, NFM did not apply feature selection method before using the diagnostic 
method to improve its results. Another study by Abdelhamid et al.30 introduced two hybrid feature selection 
methods to improve the accuracy of monkeypox diagnosis model using artificial neural networks (ANNs). The 
first method combined PSO and al-biruni earth radius (BER), while the second method integrates sine cosine 
and BER optimization algorithm. The performance of these two algorithms outperformed other algorithms; 
however, it has been performed on small-scale dataset. A deep learning-based study utilizing MobileNetV2 
architecture has been used to accurately diagnose monkeypox patients by Arora et al.31. Despite accurate 
diagnosis results, it depends only on one off-the-self CNN architectures. A hybrid model by Alharbi et al.32 
includes feature extraction using GoogLeNet, feature selection using dipper throated optimization, and decision 
tree for monkeypox diagnosis. Despite their model outperformed other models by providing more accurate 
results, it utilized pertained architectures.

To boost monkeypox diagnosis, five deep architectures (VGG19, ResNet50, VGG16, EfficientNetB3, and 
MobileNetV2) have been evaluated by Jaradat et al.33. Results proved that MobileNetV2 outperformed other 
models where it gave recall of 96%, F1-score of 98%, accuracy of 98.16%, and precision of 99%. However, these 
models pretrained on Image net, thus, it is suggested to conduct fine tuning to learn intricate features of the 
problem at hand. Another deep learning -based monkeypox model utilizing Harris Hawks optimizer has been 
introduced by Almutairi et al.34. After extracting features using optimized deep learning, seven ML models 
(AdaBoost, gradient boosting, histogram gradient boosting, k-nearest neighbors, support vector machine, extra 
trees, and random forest) have been used to provide diagnosis. Although the benefits of using these models, 
it based on limited samples in dataset. Residual networks and SqueezeNet model was also used to diagnose 
monkeypox from measles, chickenpox and healthy patients35. The model use standard camera to capture skin 
images from patients and run it against deep learning models and achieved an average accuracy of 91.19% for 
the monkeypox class. Despite promising performance, the experiments were conducted by utilizing transfer 
learning. Similarly, deep neural networks (DNNs) has been used to diagnose monkeypox using skin images by 
Sorayaie et al.36. They tested seven DNN modules to identify Monkeypox for binary and multi-class classification. 
Their results showed that DenseNet module achieved the best performance (Accuracy = 97.63% and 95.18%, 
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for binary and four-class results, respectively. Additionally, they integrated explainable AI modules (i.e., LIME 
and Grad-Cam) to provide insights into the decision-making process. Although DenseNet offers significant 
advantages in terms of feature propagation and parameter efficiency, it also comes with certain limitations such 
as it has high memory consumption, computational complexity, and it is sensitive to hyperparameters. Another 
study by Hapsari et al.37 used the optimized random forest algorithm that depends on using PSO for providing 
fast and accurate monkeypox diagnosis. Their model has been tested using three classes: monkeypox, health, and 
PulsarStar. Their mode, however, requires large training time and it is sensitive to parameter tuning. Yadav et 
al.9 used modified extreme gradient boosting to diagnose monkeypox cases. Their system integrated a statistical 
loss function and a feature selection method. Better performance against other models was reported, however, 
MXGBoost is a complex model that suffers from overfitting with large datasets.

Recently, various research work has been directed towards diagnosing monkeypox and other diseases based 
on DNA or genes dataset. For example Xia, et. al.38 developed a meta-learning based alternating minimization 
technique for global losses reduction, and train an adaptive strategy to improve performance by replacing 
the handcrafted counterpart. Lin et al.39 provided programmable macrophage vesicle for defending against 
monkeypox virus. This vesicle depends on bionic self-adjuvanting vaccine. The study by Su et al.40 introduced a 
ML-based framework for colon cancer diagnosis and staging using bioinformatics analysis of extracted feature 
genes. Their study identified key biomarkers and integrated gene expression data with predictive models to 
enhance diagnostic accuracy. This approach demonstrates the potential for improving precision medicine in 
colon cancer. Huang et al.41 used self-paced learning strategy to select gene and classify phenotype. For gene 
selection, the suggested approach by Yaqoob et al.42 combined PSO with mutual information. The latter serves 
as an initial filter for locating genes that provide a wealth of information about cancer. In order to identify the 
ideal subset of genes for precise categorization, PSO refines this selection in the second stage. A recent review 
by Fan et al.43 provided the development of functional probes for diagnosing and treating infectious diseases. 
The survey showed that the probes offer potential for advancing diagnostic accuracy and targeted therapies in 
infectious disease management.

Various research studies have been proposed in literature for monkeypox diagnosis with promising results, 
please see Ref.44 for details. Most of the mentioned studies used classical ML and deep architecture which 
are effective at recognizing monkeypox, but they are also have limitations related to the use of off-the-shelf-
architectures aombined with transfer learning. Additionally, the classification of most of the existing approaches 
are based on single classifiers, while ensemble-based methods did not investigate the effect of feature fusion. Some 
studies deployed advanced deep architectures (e.g., CNN and vision transformers), however, contrary to recent 
literature, solo CNN and ViT-based methods exhibit limited performance and require further development. 
This paper extends the existing work for monkeypox diagnosis and introduces a hybrid strategy that include 
optimized feature selection and weighing, and novel confusion-based weighted ensemble classification.

Materials and methods
As illustrated in Fig. 1, the proposed pipeline consists of multiple sequential phases: Reprocessing (i.e., feature 
extraction, selection, and weighting), and classification for the diagnosis using ensemble classification. Generally, 
medical diagnosing process depends on several types of patient-related features, such as blood test or specialized 
analyzes of specific body organs (e.g., the heart) and may also include medical scans (e.g., magnetic resonance 
imaging). Initially, the related features should be extracted from the input data of the case being processed. Then, 
the most relevant and effective features are selected. Finally, the selected features are weighted. Both feature 
selection and feature weighting utilize a new modified technique based on grey wolf optimization (MGWO). In 
the following subsections, the details of MGWO will be discussed. After that, the implemented feature selection 
and feature weighting techniques will be introduced.

Modified grey wolf optimization (MGWO)
Undoubtedly, GWO is one of the most important and famous bio-inspired optimization techniques, that 
simulates the behavior and strategies of wolves in hunting. GWO has demonstrated competitive performance 
across a wide range of applications, including engineering design, image processing, and ML. Many reasons 

Fig. 1.  Blockdiagram of the proposed pipeline for monkeypox diagnosing.
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confirmed that GWO stands out as a robust and efficient optimization algorithm compared to other recent 
optimization algorithms, including its (i) simple structure and few control parameters make it easy to implement 
and adjust; (ii) strong exploration and exploitation capability, allowing it to effectively search for both global 
and local optima; and (iii) population-based nature enables it to handle complex optimization problems with 
multiple decision variables. These factors collectively contribute to the importance of GWO as a valuable tool for 
solving complex optimization challenges.

Generally, GWO predicts the prey’s location based on the location of three leader wolves (Alpha, Beta, and 
Delta), denoted as; W Lα, W Lβ , and W Lδ  respectively. Although GWO assumes that WLα is the closest wolf 
to the prey, followed by WLβ , and then WLδ , it treats the leaders equally when locating the prey. It would be 
better to assign a weight to each of the three leaders based on their importance and then take the assigned weight 
into account when locating the prey. Hence, WLα should be the closest to the prey, followed by WLβ , and then 
WLδ . The weight of a specific wolf WLi, where i ∈ {α, β, δ}, is computed as:

	
Weight(WLi) = ξ(WLi)∑

∀j∈{α,β,δ} ξ(WLj)
, and ξ(WLi) =

{
f(X⃗i) if Target = maximize

1
f(X⃗i)

if Target = minimize � (1)

where f(X⃗i) is the objective function’s value for the agent (wolf) WLi whose location vector is X⃗i. Based on 
the proposed MGWO, locating potential prey’s position is accomplished through the following steps. Initially, as 
WLα and WLβ  are the nearest two agents to the prey, it is assumed that the prey lies between these two wolves, 
but it is closer to WLα than to WLβ . Thus, the initial location of the prey X⃗Prey_in is a point between WLα 
and WLβ . Locating X⃗Prey_in is achieved by dividing the distance between the points X⃗α and X⃗β  based on the 
relative weight of WLα and WLβ  as presented in Fig. 2. Hence, as the weight of the wolf increases, it will be 
much closer to the prey and the initial prey position is expressed as follows:

	
X⃗Prey_in =

(
x

Prey_in
1 , x

Prey_in
2 , x

Prey_in
3 , . . . , x

Prey_in
n

)
� (2)

where x
Prey_in
i = ωαxα

i +ωβx
β
i

ωα+ωβ
. The distance between X⃗α and X⃗Prey_in, denoted as D

Prey_in
α , is then 

calculated using as DPrey_in
α =

√(
xα

1 − x
Prey_in
1

)2
+

(
xα

2 − x
Prey_in
2

)2
+ · · · +

(
xα

n − x
Prey_in
n

)2
.

To identify the prey’s location, the next step is to add the effect of WLδ , which is the third nearest wolf to the 
prey. The distance from X⃗δ  to X⃗Prey_in, denoted as DPrey_in

δ , is calculated using Eq. (3):

	
D

Prey_in
δ =

√(
xδ

1 − x
Prey_in
1

)2
+

(
xδ

2 − x
Prey_in
2

)2
+ · · · +

(
xδ

n − x
Prey_in
n

)2
� (3)

The approximated distance between WLδ  and the actual prey can then be concluded as DPrey_Act
δ = ωδD

Prey_in
α
ωα

. Here, the prey is supposed to lie on the ray connecting the points X⃗Prey_in and X⃗δ . Hence, there are two 
possibilities regarding the actual location of the prey, which is denoted as X⃗Prey_Act. The first possibility is that 
X⃗Prey_Act is located between X⃗Prey_in and X⃗δ . This occurs if DPrey_Act

δ ≤ D
Prey_in
δ . Hence, X⃗Prey_Act can 

be identified in the same manner as depicted in Fig. 2 and Eq. (4), as shown in Fig. 3a.

	
X⃗Prey_Act =

(
x

Prey_Act
1 , x

Prey_Act
2 , x

Prey_Act
3 , . . . , x

Prey_Act
n

)
� (4)

Fig. 2.  Illustration of the initial position of the prey as a point between alpha and beta wolves.
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where x
Prey_Act
i = ωδx

Prey_in
i

+ωinxδ
i

ωδ+ωin
and ωin = ωδD

Prey_in
α

D
Prey_Act
δ

− ωδ . The second possibility is that if 

D
Prey_Act
δ > D

Prey_in
δ , as presented in Fig. 4, the prey is located along the ray connecting X⃗Prey_in and X⃗δ  

and in the direction of the point X⃗Prey_in.

As illustrated in Fig. 4, X⃗Prey_Act can be calculated using Eq. (5) and Fig. 3b.

	
X⃗Prey_Act =

(
x

Prey_Act
1 , x

Prey_Act
2 , x

Prey_Act
3 , . . . , x

Prey_Act
n

)
� (5)

where x
Prey_Act
i = ωδx

Prey_in
i

−ωinxδ
i

ωδ−ωin
and ωin = ωδD

Prey_in
α

D
Prey_Act
δ

− ωδ . Based on the prey’s position, the 

location of the pack wolves can be modified using Eqs. (6) and (7).

	 D⃗m =
∣∣C⃗ · X⃗Prey_Act(t) − X⃗m(t)

∣∣ � (6)

	

X⃗m(t + 1) = X⃗Prey_Act(t) − A⃗ · D⃗m

a = 2 ·
(
1 − t

Z

)
A⃗ = 2 · a · r⃗1 − a

C⃗ = 2 · r⃗2

� (7)

Where D⃗m is the distance between the mth wolf (the mth solution) and the prey, X⃗Prey_Act(t) is the position 
vector of the prey, r⃗1 and r⃗2 are random vectors where r⃗1, r⃗2 ∈ [0, 1], A⃗ and C⃗  are coefficient vectors, t is the 
iteration number, and Z is the total number of iterations. The complete description of the proposed MGWO is 

Fig. 4.  Locating the prey 
−→
X P reyAct  when D(P reyAct)

δ > D
(P reyin)
δ .

 

Fig. 3.  Locating the prey in the modified grey wolf according to two cases when (a) D(P reyAct)
δ ≤ D

(P reyin)
δ ; 
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depicted in Algorithm 1. The vector A⃗ will be in the range [−1, 1] during the exploitation phase, while it will 
be a vector of random values during the exploration phase (searching for prey). Initially, MGWO begins with 
a population that includes a set of random search agents (solutions). The positions of pack wolves are updated 
after each iteration. In fact, MGWO is a global optimization technique that uses adaptive variation of the search 
vector A⃗ and can easily pass between exploration and exploitation. Additionally, MGWO contains little internal 
parameters to be modified.

Algorithm 1.  Modified gray wolf optimization (MGWO).

Through the modify position equations and allowing the vector A⃗ to be in range [−1, 1] in the prey encircling 
and attacking, high exploitation and convergence are achieved. Thus, during the iterations, high local optima 
avoidance and convergence speed are demonstrated by MGWO. A⃗ decreases when the value of a⃗ decreases, 
hence, the behavior of pack wolves in MGWO is simulated. Generally, A⃗ ∈ [−a, a]. Over the successive 
iterations, a decrease from 2 to 0. A⃗ Value lies in the range [-1,1] during the exploitation. Accordingly, the new 
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position of the MGWO will be between its current position and the position of the prey. On the other hand, A⃗ 
value will be outside the range [−1, 1] during exploration for allowing the search agent (wolf) to move far away 
from the prey for discovering new regions. Using this mechanism, MGWO can perform a global search and can 
get rid of local optima during exploration and exploitation, respectively. Figure 5 illustrates this concept.

Feature selection using binary MGWO
In spite of the effectiveness of the proposed MGWO, it cannot be applied directly to binary search space 
optimization problems. Like traditional GWO, MGWO updates the wolves’ positions in a continuous manner, 
which is unsuitable to work in binary spaces. Here, a binary version of MGWO will be introduced, which is 
called binary MGWO (BMGWO). In m-dimensional binary feature space, each wolf is represented by a binary 
vector of m slots, which represents a set of selected features. Hence, the slots of zero value in the vector indicate 
that the corresponding features are not selected, otherwise, the corresponding feature is selected as illustrated 
in Fig. 6.

The proposed BMGWO will be used to select the feature set maximizing the accuracy of the used classifier, 
while keeping the selected features as minimum as possible. As illustrated in Fig. 7, initially, BMGWO randomly 
distribute the pack wolves across the m-dimensional binary feature space. The location of each wolf in the feature 
space is expressed by a binary vector, and represents a set of features. A basic classifier is trained for each set of 

Fig. 7.  A flow diagram illustrating the use of the proposed BMGWO in feature selection.

 

Fig. 6.  A wolf representation in binary feature space.

 

Fig. 5.  Illustration of the value of A⃗ in exploration and exploitation phases.
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features presented by each wolf, then, the corresponding objective (fitness) function is calculated for each wolf. 
T﻿he employed objective function is illustrated in Eq. (8).

	
Obj_Fn = λ1 × Acc + λ2 × m − u

m
� (8)

where Acc is the classification accuracy calculated for a basic classifier for the given wolf, m is the total number 
of features, u is the number of features selected by the wolf ’s vector (e.g., number of ones in the wolf ’s vector), 
λ1 and λ2 are weighting factors. As it is needed to maximize the fitness function, the alpha wolf is the one 
that presents the maximum objective function, the next best is beta wolf, then the third best is the delta wolf. 
Then, the location of the pack wolves are continuously updated across a set of sequential iterations based on the 
locations of the leader wolves.

After that, binary locations of wolves are concluded, an objective function (after retraining the employed 
classifier) is calculated again for each wolf based on its new updated binary location. The leader wolves (alpha, 
beta, and delta) are identified. These steps are repeated until the termination criteria is valid (either number of 
iterations finished or reaching a specific level of accuracy). Although there are several operators to transform the 
updated continuous positions of the pack wolves to binary, sigmoid function is the most popular one, which is 
used in this paper and described by Eq. (9)13,14.

	
xb

zd(t + 1) =
{ 1 sigmoid(Xzd) ≥ Rand

0 otherwise � (9)

Where b refers to binary, xb
zd(t + 1) is the binary updated value for the zth wolf in dimension d at iteration t, 

xzd(t + 1) is the continuous updated value of the zth wolf in dimension d, Rand is a random number ∈ [0, 1]. 
On the other hand, sigmoid(xzd) can be described by sigmoid(Xzd) = 1

1−e−10(zzd−0.5)

Feature weighting using MGWO
Although NB is considered one of the most important and powerful classifiers, its performance may suffer 
from poor classification accuracy due to its reliance on two assumptions that may not align with reality. These 
problematic assumptions are (i) feature independence and (ii) equal weighting of features. To mitigate these 
primary drawbacks, feature weighting techniques are introduced to enhance the performance of the NB classifier, 
which can relax these harmful and unrealistic assumptions. Assume that it is necessary to classify a new case 
I expressed as F = {f1, f2, f3, . . . , fn} where the target classes are represented as C = {c1, c2, c3, . . . , cm}. 
T﻿hen, NB can be used to calculate the probability that I ∈ cj  using Eq. (10).

	
Target(I) = arg max

cj ∈C
(cj |F ) = arg max

cj ∈C

(
P (F |cj) × P (cj)

P (F )

)
� (10)

where P (cj |F ) represents the conditional probability of cj  given F, P (F |cj) represents the conditional 
probability of F given cj , P (cj) represents the prior probability of cj , and cj  represents the jth class. In the case 
where features are independent, P (F |cj) =

∏n

i=1 P (fi|cj), which yields Eq. (11). In fact, the denominator in 
Eq. (11) can be neglected because it is constant for the input across all target classes.

	
Target(I) = arg max

cj ∈C

(
P (cj) ×

∏n

i=1 P (fi|cj)∏n

i=1 P (fi)

)
= arg max

cj ∈C

(
P (cj) ×

n∏
i=1

P (fi|cj)

)
� (11)

In fact, equal weighting of features cannot satisfy the nature of applications in the real world. Hence, each feature 
has a different weight that indicates the importance of the feature. Unlike classical NB, each feature fi has its 
weight wi in Weighted Naïve Bayes (WNB). This weight can be a positive number as given in Eq. (12).

	
Target(I) = arg max

cj ∈C

(
P (cj) ×

n∏
i=1

P (fi|cj)wi

)
� (12)

The majority of feature weighting methods can be divided into two main categories: filter methods and wrapper 
methods. The former is data driven since it determines the feature weights based on the overall properties of the 
data. Conversely, wrapper techniques are hypothesis driven since they determine the feature weights based on 
the performance feedback received from the classifier itself. Thus, filter techniques employ statistical methods 
to evaluate a set of characteristics, while wrapper approaches use cross-validation. Filter techniques may not 
always identify the optimal set of features, despite being significantly faster than wrapper techniques due to 
the lack of method training. Conversely, wrapper approaches always yield the optimal subset of characteristics 
but come at a high computational cost. Therefore, it is imperative to use novel strategies that provide efficient 
feature weighing with the least amount of computational time, as existing feature weighting approaches suffer 
from a number of issues, including instability and high computational cost. This section will offer a novel feature 
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weighting methodology that is based on the suggested MGWO algorithm, a recently developed bio-inspired 
optimization tool. Wolf-based feature weighting is the name of the suggested feature weighting scheme. It works 
on a similar idea as the wrapper, but instead of taking as long, it aims to cut the time by rapidly convergent to 
the optimal solution, which is the best possible combination of feature weights. Because it is based primarily on 
MGWO, which inherits the advantages of the basic GWO in terms of simplicity, low parameters, and high speed, 
WBFW is able to introduce the best solutions at a high speed. Additionally, it operates on the same principle as 
the wrapper technique, which guarantees finding the best available solutions.

The following demonstrates how MGWO can be used for feature weighting: first, a proposed space known as 
the feature weight space (FWS) is employed, and its dimensions correspond to the weights of the characteristics 
that are taken into consideration. For this reason, in the proposed FWS, the weight of each attribute is stated as 
a point. A feature’s weight is represented by a positive real value, wt, where 0 < wt < 1. There are h dimensions 
in FWS, which are labeled fw1, fw2, . . . , fwh, assuming there are h selected features that require weighting. 
As a result, the weight of feature fi, which can be stated numerically as wti, is represented by the axis fwi. If 
not, wti is the weight of feature fi on the FWS axis (dimension) fwi. As a result, each wolf ’s location conveys 
a set of h weights that correspond to the features that are provided on separate weights in every dimension. 
X⃗m = (wtm1, wtm2, . . . , wtmh) if X⃗m is the position vector of WLm in FWS. Assuming that there are 
two selected features (i.e., h = 2), Fig. 8 provides an example. These features are designated as f1 and f2. The 
weights of f1 and f2, respectively, are represented by the dimensions of FWS, which is a two-dimensional space. 
Considering 5 wolves labeled WL1, WL2, WL3, WL4, and WL5, which are represented by the position vectors 
X⃗1, X⃗2, X⃗3, X⃗4, and X⃗5, respectively.

Fig. 8.  The movement of wolves through the successive iterations to calculate the optimal feature weights: 
weights: (A) initial wolves’ positions; and (B) wolves’ positions after 5 iterations.
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Algorithm 2.  Wolf based feature weighting (WBFW).

The sequential processes for calculating the weights of the features used in the machine learning model are 
shown in Algorithm 2. The initial distribution of available wolves in the h-dimensional feature weight space is 
random, assuming h-selected features. In its starting posture, every wolf expresses a series of weights, each of 
which is associated with a distinct trait. The weighted Naïve Bayes (WNB) classifier’s classification accuracy 
equation, represented in Eq. (10), serves as the considered objective function. After the model has been trained, 
the classification accuracy is calculated, taking into account the weights that each wolf has added. Next, W Lα

, W Lβ , and W Lδ-the three leader wolves-are recognized. The suggested MGWO is used to update the pack 
wolves’ locations based on where the leader wolves are. Each wolf reflects one of the recommended solutions 
through a set of suggested weights for the accessible features. These weights are based on the new locations of the 
pack wolves. The objective function (classification accuracy of WNB) is computed for every proposed solution 
(wolf) without the requirement to retrain the model. After that, another iteration is initiated by identifying the 
leader wolves. Until the specified number of repetitions has been reached, this process is repeated. Finally, the 
collection of feature weights that the alpha wolf considers represents the optimal option.

The proposed WBFW is based on the proposed MGWO, which uses fewer computations than the traditional 
GWO with the minimum number of parameters, making it simple, fast, and accurate. Although it operates on 
a similar principle to the wrapper-based model, which continuously calculates the classification accuracy of 
the machine learning model, the proposed WBFW has several advantages over the traditional wrapper-based 
models. These advantages include (i) no need to retrain the model, as required by the traditional wrapper-
based weighting techniques; (ii) unlike traditional wrapper-based techniques, the proposed WBFW does not 
need to make a complete scan to all available solutions, but rather can reach the optimal or at least a semi-
optimal solution with the minimal number of attempts (iterations); and (iii) unlike traditional wrapper-based 
techniques, the proposed WBFW does not have to make a complete scan to all possible solutions.

Classification phase (CP)
Because it provides both a high degree of decision reliability and excellent classification efficiency, EoC has 
demonstrated high efficiency in numerous sectors. In this part, a novel instance of heterogeneous EoC is 
provided, based on three distinct types of base classifiers. Subsequently, the classifiers’ decisions (outputs) are 
suitably amalgamated to generate the ultimate decision. Three classifiers are under consideration: (i) a deep 
learning based classifier (DLBC); (ii) a weighted naive bayes classifier (WNBC); and (iii) a Fuzzified distance-
based classifier (FDBC). DLBC excels at learning complex patterns from large datasets, but it can be prone to 
overfitting and lacks interpretability. FDBC, on the other hand, is adept at handling uncertainty and imprecision, 
but it may struggle with large-scale datasets. Finally, WNBC provides a simple and efficient probabilistic 
classification approach, but it relies on the assumption of feature independence, which may not always hold 
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in real-world scenarios. By combining these techniques, the ensemble can mitigate the weaknesses of each 
individual model and capitalize on their complementary strengths. This results in a more robust, accurate, and 
interpretable classification model capable of handling diverse and complex datasets.

The weighted Naïve bayes classifier (WNBC) is the first classifier integrated in the proposed EoC pipeline. 
Numerous industries have benefited from NB’s excellent classification effectiveness; the field of medical data 
mining (MDM), particularly in the area of disease diagnosis, is probably the most recent and significant45. NB 
has proven to be an effective tool in helping physicians make decisions without hesitation, speeding up diagnosis, 
enhancing treatment quality, and reducing diagnostic errors. In general, NB has several benefits, including (i) 
being a straightforward technique that is simple to use; (ii) requiring less training data; (iii) NB’s insensitivity to 
irrelevant attributes; and (vi) being scalable and quick, making it suitable for real-time prediction applications. 
As a result, NB has been selected to run the ensemble’s second base classifier in this paper. The proposed MGWO 
is utilized to assign a weight for each of the selected features, thereby reducing the shortcomings of the traditional 
NB. Therefore, as the second proposed basis classifier, Wolf-based Weighted Naïve Bayes (WWNB) is developed. 
This new instance of WNB integrates the evidence from both the proposed MGWO and the standard WNB. 
The second classifier employed in the proposed pipeline is the long short-term memory (LSTM), which is a 
development of the recurrent neural network (RNN) to solve gradient vanishing and explosion difficulties46–48. 
LSTM can be used for a wide range of real-time applications, including sequence-to-sequence predictions, 
language modeling, and medical diagnosis. This article handles multi-label diagnostics using a many-to-one 
LSTM structure, as seen in Fig. 9.

As seen in Fig.9, the outputs of the ith LSTM are passed on to the (i + 1)th LSTM, which is the following 
LSTM. To put it another way, the values of the “r′′ features in the input dataset are fed to the “r′′ LSTM cells, 
which in turn pass the cell state (ci) and the current output state (hi) of the ith LSTM as inputs to the (i + 1)th 
LSTM, which finally provides the final diagnosis. The input, forget, and output gates make up each of the 
three gates that make up an LSTM cell, as shown to the right of Fig. 9. These gates serve to update the output 
value, maintain the cell state, and regulate the information flow across cell states. For each of the three gates, to 
accurately determine how to regulate the information flow, sigmoid activation (σ) is used. Information is added 
or deleted through each gate, but it remains unchanged in the cell state. The forget gate’s primary function is to 
eliminate unnecessary data, whereas the input gate’s primary function is to identify the input values needed to 
modify the cell state. The output gate can calculate output46–48. The LSTM structure is constructed in three steps. 
The forget gate first recognizes undesired data and then removes it from the cell. Using the current input (fi) and 
the previous output (hi−1) in the cell state (ci−1), the forget gate’s output (xi) can be given a value between zero 
and one. Zero indicates fully keeping the information, and one indicates forgetting it. Second, by multiplying its 
output (ti) by the output of the tanh activation layer (c̃i), the input gate decides whether to keep the data in the 
current cell state (ci). Finally, the output gate combines its output (oi) with the output of another tanh activation 
layer to produce the flow of a fraction of information (hi) in the present cell state (ci) at the output of the LSTM 
cell. Mathematical depiction of the governing equations can be found in Refs.46–48.

Fuzzified distance-based classifier (FDBC)
In addition to WNBC and DLBC, a new fuzzy inference engine-based classifier is proposed and is integrated in 
the proposed system. The proposed FDBC is implemented through three consecutive processes, namely inputs 
fuzzification, fuzzy rule induction, and defuzzification. Four distinct fuzzy sets are taken into account in FDBC: 
(i) friend support (FS), (ii) number of friends (NF), (iii) average distance to friends (ADF), and (iv) distance to 
class centre (DCC). First, as Definition 1 illustrates, let us define the concept of item friends.

Definition 1  Item Friends The friends of an input item Ij  given a class cm denoted as Friends (Ij , cm) is a set 
of items whose distance to Ij  less than or equal a critical distance denoted as DCrt in the n-dimensional feature 
space and belong to cm.

Fig. 9.  Illustration of the multi-label many-to-one LSTM-based diagnostic structure and internal LSTM cell 
structure.
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As an example, consider a two-dimensional feature space, as shown in Fig. 10, with two target classes, denoted 
by the set C = {c1, c2}, where f1 and f2 are the features under consideration. Within a circle of radius DCrt, a 
new item Ij  has two sets of friends: Friends (Ij , c1) = {x, y, z} and Friends (Ij , c2) = {m, n}. It is observed 
that the item buddies are situated inside a circle in two-dimensional feature space and inside a ball with a radius 
of DCrt in three-dimensional space. The sets of friends assigned to the new item are directly impacted, making 
it difficult to determine the appropriate value for DCrt.

Three distinct approaches to DCrt assignment are discussed here: (i) nearest class assignment (NCA), 
represented by the symbol DN

Crt; (ii) furthest class assignment (FCA), represented by the symbol DF
Crt; and (iii) 

average class assignment (ACA), represented by the symbol DA
Crt. For example, DN

Crt represents the distance 
from the item to the center of its nearest class, DF

Crt represents the distance from the item to the center of its 
furthest class, and DA

Crt represents the average distance between the item and the nearest and furthest classes, 
according to NCA. An example of a two-dimensional feature space with two target classes is presented in Fig. 11.

The DCC, which shows the distance between the new item Ij  and the class center under examination, is the 
first fuzzy set that is taken into consideration.Given a class ci in n-dimensional feature space with t samples, 

the center of ci can be identified as: Center(ci) =
{∑t

q=1
V 1

q

t
,

∑t

q=1
V 2

q

t
, . . . ,

∑t

q=1
V n

q

t

}
 Where t is the 

number of examples within ci, V i
q  is the value of the ith dimension of the qth example, and Center(ci) is the 

center of class ci in the studied n-dimensional feature space. An accurate indicator of the degree of Ij ’s affiliation 

with class ci is the Euclidean distance, DCC (Ij , ci): Dis(px, py) =
√∑n

i=1 (pi
x − pi

y)2 in the n-dimensional 

feature space, wher pi
x and pi

y  represent the ith dimension values of the points px and py , respectively. The NF 
of the new item Ij , which belongs to each of the considered classes, is the second fuzzy set that is taken into 
consideration to categorize the new item Ij  into one of the target classes. The number of objects belonging to ci 
within the distance DCrt away from Ij  is the number of friends of Ij  that belong to class ci, and is represented 
as NF(Ij , ci). As an example, look at Fig. 13a, where NF(Ij , A) = 3 and NF(Ij , B) = 2. In general, this 
supports Ij ’s belonging to ci as NF(Ij , ci) rises. The Average Distance to Friends (ADF) is the third fuzzy set 

Fig. 11.  Different methodologies for assigning the critical distance: (A) nearest class assignment; (B) furthest 
class assignment; and (C) average class assignment.

 

Fig. 10.  The concept of item friends according to its distance to other items.

 

Scientific Reports |         (2025) 15:3819 12| https://doi.org/10.1038/s41598-025-87455-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


that is taken into account. The average distance from item Ij  to its friends that belong to class ci, denoted as 
ADF(Ij , ci), is defined as the average distance from Ij  to all of its friends that belong to class ci. Assuming 
Friends(Ij , ci) = {frj

i1, frj
i2, . . . , frj

ik}, it is calculated by Eq. (13).

	
ADF(Ij , ci) =

k∑
r=1

Dis(Ij , frj
ir)

k
� (13)

where the number of Ij ’s friends who are members of class ci is denoted by k = NF(Ij , ci). The Euclidean 
distance between the new item Ij  and the rth friend in class ci is represented by the expression Dis(Ij , frj

ir). 
Friends support is the fourth fuzzy set. Besides the other fuzzy sets, considering the number of friends without 
paying regard to the weight or strength of the friend wouldn’t be correct. The strength of those friends also 
influences the item’s classification, potentially increasing the possibility that a new element will be classified into 
one class rather than another, particularly if the number of friends of the new item is equal to that of two different 
classes. The strength of a friend expresses the belonging degree of the friend to the class it belongs to. Assuming a 
new item Ij  whose rth friend frj

xr  belongs to class cx while three different target classes are available expressed by 
the set C = {cx, cy, cz}. Generally, the strength of the friend frj

xr  given the class cm in which m ̸= r, denoted 
as Strength(frj

xr, cm)m̸=r = 0. Hence, Strength(frj
xr, cy) = Strength(frj

xr, cz) = 0. On the other hand, the 

strength of the friend frj
xr  belonging to class cx is calculated as Strength(frj

xr, cx) =
(

1
Dis(frj

xr,cx)

)
. Based on 

their respective strengths, the group of friends of the new case Ij  that are members of ci support the claim that Ij  
is a member of ci. Therefore, the probability that Ij ∈ ci increases as the strengths of the items Strength(Ij , ci) 
increase.b The set Friends(Ij , ci) = {frj

i1, frj
i2, . . . , frj

ik} provides Ij  with the support of belonging to ci. This 

support is computed as FS(Ij , ci) =
(∑k

r=1 Strength(frj
xr, cx)

)
. The four fuzzy sets considered are clarified 

in Definitions 2–5.

Definition 2  Distance to class center (DCC) is the distance from the new item Ij to the center of the class under 
consideration in the m-dimensional feature space.

Definition 3  Number of friends (NF) of Ij  given the class ci, denoted as NF(Ij , ci), is the number of items that 
belong to ci within the distance DCrt away from Ij .

Definition 4  Average distance to friends (ADF) from item Ij  to its friends given the class ci, denoted as 
ADF(Ij , ci), is defined as the average distance from Ij  to all of its friends that belong to ci.

Definition 5  Friends Support (FS) that Friends(Ij,  ci) give to Ij , denoted as; F S(Ij , ci) is the sum of the 
strengths of all items∈ Friends(Ij, cm).

Although fuzzy logic addresses the fuzziness in the data, it is not fuzzy in and of itself. The fuzzy membership 
function (FMF) can achieve this fuzziness in the data. The initial stage of any fuzzy inference system is 

Fig. 12.  The considered four input membership functions.
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fuzzification. It is a procedure that uses a FMF of the related fuzzy set to convert the input crisp values into grades 
of membership for linguistic terms, “Low”, “Medium”, and “High” of the used fuzzy sets49. For the considered 
four fuzzy sets, the employed membership functions are depicted in Fig. 12.

Setting the proper values of the membership parameters, A, B, and C, for the various input fuzzy sets is a 
challenging issue, as Fig. 12 illustrates. Initially, for ADCC, BDCC, and CDCC, assume that Center(cn) and 
Center(cf ) are the centers of the nearest and farthest classes to the input item Ij , respectively. Locating ADCC
, BDCC, and CDCC can be accomplished by following the next restrictions: (i) ADCC < BDCC < CDCC, (ii) 
ADCC ≥ Dis(Center(cn), Ij), (iii) Center(cn) is the nearest class center to the input item Ij  in the feature 
space, (iv) CDCC ≤ Dis(Center(cf ), Ij), (v) where Center(cf ) is the farthest class center to the input item Ij  
in the feature space, (vi) BDCC = ADCC+CDCC

2 .
In this paper, it is assumed that ADCC = Dis(Center(cn), Ij) and CDCC = Dis(Center(cf ), Ij). For ANF

, BNF, and CNF, assume Friends(Ij) to be the set of Ij ’s friends that are located within a distance less than 
or equal to DCrt from Ij  in the considered feature space, while Friends(Ij , ci) = Friends(Ij) ∩ items(ci) 
is the number of Ij ’s friends that belong to class ci. Hence, Num_Friends(Ij) = |Friends(Ij)| is 
the number of all friends associated with Ij , while Num_Friends(Ij , ci) = |Friends(Ij , ci)|. Let 
NFmax(Ij) = max∀ci∈C [Num_Friends(Ij , ci)] , andNFmin(Ij) = min∀ci∈C [Num_Friends(Ij , ci)] . 
Similarly, locating ANF, BNF, and CNF can be accomplished by following the next restrictions: (i) 
ANF < BNF < CNF, (ii) ANF ≥ NFmin(Ij), (iii) CNF ≤ NFmax(Ij), and (iv) BNF = ANF+CNF

2 . In this 
paper, it is assumed that ANF = NFmin(Ij) and CNF = NFmax(Ij).

The same procedure is followed to locate AADF, BADF, and CADF. Let ADFmax(Ij) = max∀ci∈C [ADF(Ij , ci)] 
and ADFmin(Ij) = min∀ci∈C [ADF(Ij , ci)]. Consider the following restrictions: (i) AADF < BADF < CADF
, (ii) AADF ≥ ADFmin(Ij), (iii) CADF ≤ ADFmax(Ij), (iv) BADF = AADF+CADF

2 . In this paper, it is 
assumed that AADF = ADFmin(Ij) and CADF = ADFmax(Ij). Finally, for locating AFS, BFS, and CFS
, let FSmax(Ij) = max∀ci∈C [FS(Ij , ci)] and FSmin(Ij) = min∀ci∈C [FS(Ij , ci)]. Consider the following 
restrictions: (i) AFS < BFS < CFS, (ii) AFS ≥ FSmin(Ij), (iii) CFS ≤ FSmax(Ij), (vi) BFS = AFS+CFS

2 . In 
this paper, it is assumed that AFS = FSmin(Ij) and CFS = FSmax(Ij). After that, fuzzy rule induction will be 
used to conclude thencorresponding output given the input variables via fuzzy rules using max-min49. Finally, 
Defuzzification will be used using the Center of Gravity (COG) method to extract a single, sharp value from the 
output of the combined fuzzy sets49.

Merging the predictions of EoC
Combining the predictions of EoC is a true challenge as it directly affects the final model decision. Majority 
voting (MV) and weighted MV (WMV) are the most commonly used methods. Considered the predicted class 
for a new item I of 10 classifiers as illustrated in Table 1, with the corresponding predictive accuracy of each 
classifier on its validation dataset during the ensemble creation process, expressed as a proportion from 0 to 1. If 
MV is used, class A gained 4 votes, class B gained 3 votes, and class C gained 3 votes. Hence, class A is the target 
class for the new item, even though only 4 out of 10 classifiers made that prediction. On the other hand, if WMV 
is used, class A gains 0.66 + 0.66 + 0.71 + 0.66 = 2.69 votes. Also, B gains 0.91 + 0.86 + 0.96 = 2.73votes 
and C gains 0.71 + 0.91 + 0.81 = 2.43 votes. Hence, the target class will be class B since it gained the votes 
of three of the best classifiers, judged by their performance on their validation datasets which vary from one 
classifier to another. On the other hand, A gained the votes of four relatively weak classifiers.

Although it seems reasonable that N classifiers ‘working together’ can give better predictive accuracy than 
a single classifier, EoC has several drawbacks such as; (i) prediction using EoC is slower than single classifier 
prediction, (ii) there is no guarantee that the performance of EoC is always better than the performance of a 
single classifier. However, the first drawback can be eliminated by using parallel ensemble classification (PEC), 
which is a relatively new research field50. On the other hand, the second drawback of EoC can be eliminated by 
precisely generating the classifiers, accurately choosing the employed types of the classifiers, and putting strong 
rules for combining the predictions of the contributing classifiers.

This study presents a newly proposed method for merging ensemble classifiers, called confusion-based 
voting (CBV). Based on the validation dataset, the confusion matrices (CMs) of the three basic classifiers used 
in the ensemble. For example, Fig. 13 illustrates the CM representation for the three binary employed classifiers 
(FDBC, WNBC, and DLBC) separately depending on two class category (A and B). The Figure shows that 
FDBC, WNBC, and DLBC have general accuracy rates of 71%, 59%, and 3%, respectively. However, Table 2 
shows the results of classifying a new object using the three base classifiers that were taken into consideration. 
Class B will be the target class if the majority vote holds, as it will receive two votes to Class A’s one vote. On the 
other hand, class B increases 0.55 + 0.32 = 0.87 in weight, while class A gains 0.92 based on CBV. Class A will 
therefore be the input item’s target class.

Classifier

Total1 2 3 4 5 6 7 8 9 10

Accuracy 0.66 0.91 0.66 0.86 0.71 0.71 0.91 0.66 0.81 0.96 7.75

Predicted Class A B A B A C C A C B

Table 1.  Illustrative example of the ensemble of classifier (EoC) with predictive accuracy information.
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Experimental results
To diagnose patients with monkeypox, the proposed AMDS strategy with the proposed MGWO is used for 
feature selection and feature weighting. To give a more precise diagnosis, the informative features are passed 
to EoC, integrating FDBC, WNBC, and DLBC diagnostic techniques and utilizing CBV as a weighted voting 
method. Two scenarios will be used to implement and test AMDS. Firstly, the BMGWO will be tested and its 
outcomes compared with other current selection techniques and other of versions of GWO will be assessed. 
Secondly, the AMDS strategy will be implemented and evaluated on two datasets. The outcomes will be compared 
with those of other contemporary strategies. The effectiveness of the employed strategies is determined through 
the application of confusion matrix metrics13,14 and fractional dataset training is utilized. Namely, the proposed 
model is trained five different times using different percentage of the training data, selected randomly every 
time. Particularly, the system will be trained using 70, 140, 210, 280, and 350 samples of the training samples and 
accuracy is assessed each time using the performance metrics. This procedure evaluates the system sensitivity to 
dataset size and helps identify trends in performance. This approach also assesses data sufficiency, determining 
if additional samples significantly impact the overall performance. Furthermore, varying the data size explores 
bias-variance trade-offs, with smaller datasets exposing high variance and larger ones highlighting potential 
biases. This analysis provides practical insights into the minimum data required for effective training, particularly 
in scenarios where data collection is costly or challenging, ensuring model robustness. Typical values of the 
systems’ parameters utilized for the two independent ransom numbers r1 and r2: 0 ≤ r1, r2 ≤1; the Uniform 
distribution value in BMGWO: 0 ≤ Rand () ≤ 1); the maximum number of iterations for MGWO: Z = 100; 
and a ∈ [2, 0]. Additionally, the population’s size (number of solutions) is 30 and the number of runs is 50. To 
implement the proposed model, MATLAB R2021b win64 running on a 2.4 GHZ Core i-9 Dell computer with 
Windows operating system, 8GB of RAM, and 1 TB hard drive.

This research uses the monkeypox dataset to confirm that the suggested AMDS approach works51. Patients in 
this dataset were categorized as “positive” or “negative”. People between the dates of June 5, 2022, and September 
19, 2022, provided data for the Monkeypox dataset, which was compiled online51. The Monkeypox dataset 
consists of blood test results gathered from various parts of various nations, including UK, Nigeria, Spain. 
In actuality, 500 cases of various ages and sexes were included in this dataset and assigned to the “positive” 
and “negative” classifications. This dataset has six class groups, based on which patients were categorized into 
numerous infectious diseases. These include alopecia, acne, psoriasis, monkeypox, smallpox, and normal, see 
Table  3. This dataset has 47 features, including both demographic and laboratory blood test features. These 
characteristic features are used to characterize each patient’s status in the dataset based on blood tests. Following 
BMGWO implementation, 32 features were chosen. Figure 14 represents the importance of the selected features 
and their effects on diagnosis using the Shapley additive explanations (SHAP) method. Table 3 shows that 296 of 
the 500 cases in the sample are considered to be monkeypox “positive” cases. The monkeypox dataset has been 
divided into two subsets: 350 and 150 cases making up the training and testing dataset, respectively.

Classifier Predicted class

Voted 
class

A B

FDBC A 0.92 0.40

WNBC B 0.62 0.55

DLBC B 0.37 0.32

Table 2.  The ensemble of classifier (EoC) with confusion-based voting (CVB) using the three classifiers in 
Fig.13. Here, FDBC, WNBC, and DLBC stand for fuzzified distance-based classifier, weighted Naïve bayes 
classifier, and deep learning-based classifier, respectively. Bold values indicate the classfied class for each 
classfier.

 

Fig. 13.  Confusion matrices–from left to right– for the fuzzified distance-based classifier (FDBC), weighted 
Naïve bayes classifier (WNBC), and deep learning-based classifier (DLBC).
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Fig. 14.  Features importance emphasized using Shapley additive explanations (SHAP).

 

Criteria Value/description

Total # of cases Monkeypox patients Normal people Other diseases

Other diseases

297 95 108

Acne Alopecia Psoriasis

18 9 15

Small pox Other

29 37

Sex

Male Female

Monkeypox 152 145

Normal 48 47

Others 57 51

Table 3.  Monkeypox dataset distribution based on infection.
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At first the efficiency and of the proposed BMGWO feature selection algorithm is demonstrated by testing 
it against original and other improved versions of GWO proposed in Refs.52–54 using the above mentioned data 
set. The results of the comparisons is presented in Table 4. According to results, the proposed algorithm showed 
enhanced performance when compared with other versions of GWO based on the accuracy, precision, F1-score, 
and other metrics. The results also revealed that the modified GWO versions showed enhanced performance 
over the original algorithm.

Secondly, the proposed BMGWO has been compared against modern feature selection approaches. The latter 
include, GA28, the enhanced genetic algorithm (EGA)14, the modified brain storm optimization (MBSO)55, the 
hybrid selection method (HSM)13, and the binary GWO (BGWO) methods52. Following the implementation of 
these selection techniques, an NB classifier is created, employing the chosen set of features from each selection 
algorithm independently to be trained on a valid dataset empty of irrelevant features56. The measurements of the 
performance metrics–precision, recall, accuracy, and F1-score–are shown in first column of Fig. 15. Additional 
evaluation is conducted using the receiver operating characteristic (ROC). This is demonstrated in Fig. 16. The 
results shows enhanced performance as compared with other methods.

BMGWO outperforms GA, EGA, MBSO, HSM, and BGWO. The method attains the highest accuracy, 
precision, recall, F1-score, and AUC-ROC, values-98.70%, 90.01%, 91.11%, 93.05%, and 96.12% respectively-
at the maximum number of training data sets-350. The GA yields the lowest results when compared to other 
techniques, giving 62.25%, 62.02%, 85.21%, 37.75%, 60.00%, and 85.00% outcomes, respectively, at the maximum 
number of training data. Additionally, the accuracy values of GA, EGA, MBSO, HSM, BGWO, and BMGWO at 
the maximum quantity of training data are 62.25%, 64.65%, 75.05%, 83.54%, 91.00%, and 98.70%, respectively, 
as shown in Fig. 15a. Figure 15c illustrates the precision values of different methods at the maximum number of 
training data sets: 62.00%, 65.36%, 72.50%, 82.50%, 85.02%, and 90.01%, respectively. From these measurements, 
it is noted that BMGWO is superior to other recent optimization algorithms.

At the maximum number of training data, Fig. 15d shows that the recall values of these selection methods, 
in the same order, are 85%, 65%, 78.25%, 86.01%, 89.16%, and 91.11%, respectively. Figure 15g illustrates that 
the F1-score values of these selection methods, in the same order, are 60%, 67%, 80%, 88%, 91%, and 93%, 
at the maximum number of training data. According to Fig.16a, the AUC of the ROCof GA, EGA, MBSO, 
HSM, BGWO, and BMGWO at the maximum quantity of training data are 85%, 86%, 84%, 93%, 94%, and 96% 
respectively. These measures show that, whereas GA provides the least desirable set of features that restrict the 
NB model’s ability to learn, BMGWO can provide the best features that enable the NB model to learn effectively. 
With the highest number of training data sets, shows that BMGWO provides the least execution time and GA 
provides the maximum time, with values of 2 and 8.2 seconds, respectively. The execution times of GA, EGA, 
MBSO, HSM, BGWO, and BMGWO are 8.2, 5, 4.25, 3.99, 2.9, and 2 seconds, respectively.

To confirm the AMDS strategy’s efficacy and show that it can produce accurate results, it has been tested 
against other contemporary diagnostic strategies, including NFM3, distance based classification (DBC)13, 
CPE14, ensemble diagnosis based genetic algorithm (EDGA)28, ensemble diagnosis method (EDM)29, optimized 
random forest algorithm (ORFA)37, and extreme gradient boosting (XGBoost)57. The second column of Fig. 15 
illustrates the obtained accuracy, precision, recall, and F1-Score metrics based on the confusion matrix. As the 
figure indicates, the AMDS outperforms other techniques by providing the best performance values across all 
metrics. Fig.  15b shows that at the number of training data = 350, AMDS provides the maximum accuracy 
value and NFM provides the minimum, with values of 98.91% and 88.12%, respectively. Moreover, the accuracy 
percentages for DBC, CPE, EDGA, EDM, ORFA, and XGBoost are, in order, 92.30%, 94.25%, 90.90%, 95.00%, 
90.00%, and 92.25%. It can be shown in Fig. 15d and f that AMDS provides the maximum precision and recall 
values, which are 92.01% and 89.91%, respectively. Also, the NFM provides the minimum precision and recall 
values, which are 64.50% and 65.00%, respectively. At 350 training data sets, the precision values obtained 
from DBC, CPE, EDGA, EDM, ORFA, and XGBoost are 75.25%, 83.00%, 70.00%, 90.00%, 88.00%, and 90.00% 
respectively. Moreover, the recall values for these techniques are in the same order: 73%, 80%, 68%, and 87%, 
89%, and 89% respectively. Fig. 15h summarizes the F1-score values of the compared methods which are 66.00%, 
74.00%, 81.00%, 69.00%, 88.00%, 90.00%, 90.35%, and 90.91%, respectively. According to Fig. 16b, the AUC-
ROC of the NFM, DBC, CPE, EDGA, EDM, ORFA, XGBoost, and AMDS at the maximum quantity of training 
data are 95.84%, 96.00%, 94.45%, 92.28%, 99.29% and 99.54%, respectively. These measures show that the NFM 
provides the least desirable results and AMDS provide the best.

In addition to the above results, statistical analysis is conducted to prove the efficiency of the proposed method 
against other models. Namely, various statistical measures, including mean, median, standard deviation (STD), 
and variance (VAR) are calculated. Table 5 includes the maximum (Max), minimum (Min), mean, median, STD, 

Method

Metric Proposed GWO52 Modified GW153 Modified GW254

Accuracy (%) 97.70 91.00 93.00 92.50

Percision(%) 90.01 85.02 88.00 87.23

Recall (%) 91.11 89.16 91.25 91.00

F1-Score (%) 93..0 94.00 93.50 93.05

AUC-ROC (%) 96.00 94.00 94.85 93.00

Table 4.  Comparative accuracy of the proposed MGWO algorithm compared with enhanced versions of 
GWO algorithm.
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and VAR values of the accuracy of the proposed methods against other models after running 50 independent 
runs. Additionally, the Boxplot of the objective function across independent runs is shown in Fig. 17. According 
to Table 5, it is noted that the best results have been obtained from AMDS and the second best method is EDM 
while the worst method is NFM. The convergence graph for the proposed AMDS compared to other strategies 
is also illustrated in Fig. 18.

Fig. 15.  System accuracy for the feature selection techniques using NB (first column) and the proposed 
monkeypox diagnostic strategy compared with other methods (second column). The rows show the accuracy, 
precision, recall, and F1- score, top-to-down, respectively.
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Moreover, a series of ablation studies have been conducted to test how various system components contribute 
to the overall performance. Thus, the proposed AMDS is first evaluated using three different voting scenarios, 
MV, WMV, and CBV. The accuracy of AMDS based on CBV showed better results compared with MV and 
WMV with values 98.91%, 94.02%, and 96.23% respectively, as shown in Table 6. Secondly, ablation studies 
using a combination of the modified BMGWO, EOC, and CBV are conducted. According to Table 6, it is noted 
that the accuracy of the integration of MGWO, CBV, and EOC is better than other scenarios of ablated modules.

To ensure the generalizability of the proposed strategy, the AMDS is trained on the monkeypox data set, then 
the trained model is tested on an external COVID data set51. The results comparing our analysis framework with 
to others strategies are presented in Table 7. It is clearly observed from the results of the second experiment that 
when our model is tested on external datasets it still provided the best results.

Discussion
This work introduces a comprehensive strategy, the AMDS, for Moneybox detection. Sequentially, three 
fundamental operations are carried out. The first is feature extraction followed by the proposed novel MGWO 

Fig. 17.  The Boxplot of the objective function across independent runs for proposed monkeypox diagnostic 
strategy against other methods. the “X” indicates the mean.

 

Model

Statistical measures

Max Min Median Mean±STD VAR

NMF3 88.12 84.00 84.00 82±0.2 0.04

DBC13 92.30 88.01 90.00 89±0.4 0.05

CPE14 94.25 87.21 89.00 88±0.3 0.02

EDGA28 90.90 89.98 89.02 87±0.2 0.04

EDM29 95.00 90.00 91.02 90±0.1 0.2

ORFA37 90.00 87.01 90.00 88±0.25 0.03

XGBoost57 92.25 88.02 91.00 88±0.3 0.09

Proposed (AMDS) 98.91 91.00 92.00 91±0.05 0.02

Table 5.  Statistical measures of the proposed AMDS accuracy against other models using run= 50. The “STD”, 
“VAR”, “NMF”, “DCB” ,“CPE”, “EDGA” ,“EDM”,“ORFA”, and “XGBoost” indicate standard deviation, variance, 
distance based classification, ensemble diagnosis based genetic algorithm, ensemble diagnosis method, 
optimized random forest algorithm, and extreme gradient boosting (XGBoost), respectively.

 

Fig. 16.  Receiver operating characteristics comparing (a) various feature selection techniques using NB; (b) 
the proposed monkeypox diagnostic strategy against other methods.
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for feature selection and feature weighting. To give a more precise diagnosis, the informative features are passed 
to EoC as a monkeypox diagnostic model. The FDBC, WNBC, and DLBC diagnostic techniques are integrated, 
utilizing a weighted voting method to create the hybrid ensemble of classification model. Two scenarios were 
used to test and evaluate the proposed AMDS. First, the BMGWO was tested and its outcomes compared with 
other current selection techniques with a conventional classifier56.

The first set of experiments for evaluating the proposed pipeline with the proposed BMGWO to alternative 
methods. As indicated by the measurements of the performance metrics in Fig. 15, the suggested BMGWO 
produces more accurate findings. Namely, BMGWO outperforms other methods and attains the highest accuracy, 
precision, recall, F1-score, and AUC-ROC values-98.70%, 90.01%, 91.11%, 93.05%, and 96.00% respectively, 
with only 1.3% minimal error value. Following BMGWO, BGWO presents the greatest results (91.00%, 85.02%, 
89.16%, 91.00%, and 94.00% for accuracy, precision, accurate findings. Namely, BMGWO outperforms other 
methods and attains the highest accuracy, precision, recall, F1-score, and AUC-ROC, respectively). Furthermore, 

Metrics (%) Dataset

Compared methods

Proposed XGBoost57 ORFA37 EDM29 EDGA28 CPE14 DBC13 NMF3

Accuracy
COVID51 98.00 91.69 88.05 94.05 89.00 93.58 91.23 87.65

MPV58 99.00 92.03 88.98 95.00 90.85 94.02 92.98 89.65

Precision
COVID51 91.00 89.80 87.00 89.25 69.00 82.32 74.00 63.40

MPV58 91.65 90.25 88.65 90.25 71.00 83.00 75.98 63.99

Recall
COVID51 89.00 88.00 72.00 79.25 67.88 79.23 72.00 64.00

MPV58 91.00 90.00 74.65 80.95 69.00 80.52 73.65 64.89

F1-score
COVID51 89.58 89.23 89.52 87.69 68.00 80.69 73.69 65.00

MPV58 90.52 91.28 90.00 89.95 70.21 81.95 74.00 65.25

AUC-ROC
COVID51 98.26 98.52 91.00 93.85 95.85 94.00 92.00 91.85

MPV58 98.69 98.85 92.63 93.89 96.00 94.85 93.01 92.36

Table 7.  Additional validation of the proposed system using two external COVID and monkeypox virus 
(MPV) datasets compared with other techniques.

 

MGWO CBV Classifier Accuracy (%)

✓ ✓ 90.00

✓ ✓ 91.92

✓ 88.00

✓ ✓ DLBC 89.02

✓ ✓ WNBC 87.01

✓ ✓ FDBC 80.00

✓ ✓ ✓ 98.91

Table 6.  Ablation studies of key components of the proposed AMDS model.

 

Fig. 18.  The convergence curves for monkeypox diagnosis strategies for proposed monkeypox diagnostic 
method against other methods.
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with the highest number of training data sets, its error value is 9%. The BMGWO, however, is slower than 
BGWO, but is quicker than GA, EGA, MBSO, and HSM. BMGWO can quickly and precisely identify a subset 
of attributes from these readings to diagnose patients. Further investigation of the results in Fig 15 shows that 
the BGWO method is the second-best approach after BMGWO. As a result, MBGWO is better than BGWO 
at improving diagnostic performance. Ultimately, the most optimally chosen features from MBGWO will 
advance to the following phase, when the suggested EoC model will be trained and tested on a valid dataset 
containing informative features. Further evaluation is performed to demonstrate the efficiency of the proposed 
MGWO against other versions of GWO for binary classification probelms. The results in Table 4 documents the 
superiority of MGWO compared to other GWO versions. The results also showed that the modified versions of 
the GWO generally yielded improved performance over the original algorithm.

Additional comparison with other methods reveals that the suggested AMDS method outperforms the NFM, 
DBC, CPE, EDGA, EDM, ORFA, and XGBoost strategies. This is confirmed by the results shown in Fig. 15, 
second column. The proposed method produces the best results when the maximum number of training data 
sets (350) is used. It can be seen from these measurements that AMDS produces the best results, while NFM 
produces the worst ones. This can be explained in part by the fact that NFM is used on the original dataset 
without utilizing the feature selection approach, whereas AMDS starts by removing unnecessary features before 
learning the EoC model. At the maximum number of training data, Fig. 15k demonstrates that AMDS takes a 
lengthy time to implement, while NFM takes a short time-5.5 and 4 seconds, respectively. Furthermore, after 
AMDS, EDM produces the best outcomes and requires a lengthy implementation period. As a result, AMDS 
takes a lengthy time to diagnose patients accurately; however, this delay is overlooked in favor of a precise 
diagnosis. Ultimately, AMDS is found to be more effective than NFM, DBC, CPE, EDGA, EDM, ORFA, and 
XGBoost methods. Additional statistical measures confirmed that AMDS outperformed FM, DBC, CPE, EDGA, 
EDM, ORFA, and XGBoost methods after running 50 independent runs where it provides the best values across 
all measures. Generalizability of the proposed AMDS is also evaluated, i.e., how well the proposed framework 
trained on one dataset performs on a new, unseen dataset. Here, the model is trained on the original monkeypox 
dataset and tested on the two additional data sets for binary classification problems; the MPV and COVID 
dataset51. The results shown in Table 7 suggest that the model was better able to generalize and correctly classify 
cases in different datasets.

Further robustness analysis has been conducted using the ROC analysis, as shown in Fig. 16. According to 
Fig. 16a, the AUC of the associated ROC of BMGWO feature selection method shows enhanced performance 
compared with other algorithms with value reach to 96.00% at the maximum number of training data. Figure 16b, 
on the other hand documents that the proposed AMDS strategy is better than other algorithms with value reach 
to 99.54%. Further analysis of the metaheuristics algorithm is conducted by motioning the objective function 
across independent runs, as this is an important visual measurement of the performance of the optimization 
algorithm. The results of such analysis is demonstrated using Boxplot in Fig. 17. The figure shows that the the 
proposed pipeline has the highest accuracy and the smallest spread of the objective function across independent 
runs. This is also is consistent with the results in Table 5.

Moreover, the convergence of the proposed modified GWO is visually analyzed by depicting the value of the 
objective function over the course of iterations. As demonstrated in Fig.18 the proposed BMGWO offers faster 
convergence with fewer parameters. This can be explained in part by the fact that it achieves better local optima 
avoidance through dynamic weighting of leader wolves, which is also highlighted in Fig.8. This is confirmed with 
the statistical measures after running 50 independent runs in Table 5. Finally, the conducted ablation studies in 
Table 6 prove the efficiency of AMDS be demonstrating how MGWO, ensemble classifiers, and CBV interact for 
better performance.

The current work introduced a viable technique for Monkeypox diagnosis, which achieved promising accuracy. 
Nonetheless, certain limitations exist and there is a room for additional research for future improvement. First, 
the available dataset consists of a single modal data binary samples and only contains structured data. In the 
future, a large dataset of monkeypox having multiple classes, as well as multimodal data will be explored for 
enhanced robustness and predictive power. Moreover, the model mainly considers the fusion of classifier-based 
architecture, which primarily focuses on selected features through BMGWO. Despite the results demonstrated 
the potential of the proposed prediction pipeline; however, it lacks explainability and interpretability of the 
machine’s decisions. Different weighing schemes should be explored. Future research addressing these 
limitations could improve the system’s classification performance and offer insightful information for clinical 
decision-making.

Conclusions and future directions
This paper has introduced an integrative monkeypox diagnostic strategy, so-called AMDS. The pipeline is hybrid 
and integrates a modified grey wolf-based approach for feature selection and weighting with an ensemble machine 
classifier. The latter is integrates a confusion based voting strategy combining three learnable machine classifiers 
to introduce the best diagnostic results. Quantitative and qualitative results documented that proposed hybrid 
method offers an efficient solution for fast and accurate monkeypox diagnosis, addressing a critical need in 
public health. Furthermore, the suggested AMDS performed better than alternative approaches. At 350 training 
data points, the AMDS yielded results for accuracy, error, precision, recall, F1-measure,and ROC-AUC, and run-
time of 98.91%, 1.09%, 92.01%, 89.91%, 90.91%, 99.54%, and 5.5 seconds, respectively. Further, the strength and 
generalizability of AMDS were proved by testing it against other models using a different data sets. Despite better 
diagnostic capabilities, AMDS was trained and tested on a single modal data and introduced the largest run-
time value. In the future it is planned plan (1) guide the implementation and testing of AMDS on multimodal 
inputs, i.e., structure clinical data and imaging data to increase the system capability via the inclusion of deep 
features; (2) incorporate RNA-seq and gene dataset to verify the robustness and ability of AMDS to diagnose 
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monkeypox using different types of datasets; (2) enhance methodological pipeline by incorporating outlier 
rejection procedures, investigate other learnable modules and voting strategies to boost AMDS performance.

Data availibility
The dataset used and analyzed during the current study are available from Nile Lab for Artificial Intelligence (AI) 
repository http://covid​19.nilehi.ed​u.eg/Availab​le_datasets​.php
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