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Cost-efficient behavioral
modeling of antennas by means
of global sensitivity analysis and
dimensionality reduction

Slawomir Koziel%2™? & Anna Pietrenko-Dabrowska?

Computational tools, particularly electromagnetic (EM) solvers, are now commonplace in antenna
design. While ensuring reliability, EM simulations are time-consuming, leading to high costs associated
with EM-driven procedures like parametric optimization or statistical design. Various techniques have
been developed to address this issue, with surrogate modeling methods garnering particular attention
due to their potential advantages. One key benefit is the promise of unprecedented acceleration in
handling design problems that require repetitive system evaluations. However, behavioral modeling

of antennas is an intrinsic endeavor. Challenges include the curse of dimensionality and the high
nonlinearity of antenna characteristics. Moreover, design utility necessitates that the models are
defined across wide ranges of frequency, geometry dimensions, and material parameters, posing a
significant bottleneck for existing modeling frameworks. This paper introduces an innovative approach
to constructing design-ready behavioral surrogates for antenna structures. Our methodology involves
arapid global sensitivity analysis (GSA) algorithm developed to determine a set of parameter space
directions that maximize antenna response variability. The latter are obtained from spectral analysis of
the GSA-based sensitivity indicators, and employed to define a reduced-dimensionality domain of the
metamodel. The dependability of the model constructed in such a domain is superior over conventional
surrogates while being suitable for design purposes. These benefits have been conclusively showcased
using several microstrip antennas and illustrated by a number of design scenarios involving antenna
geometry optimization for a variety of performance specifications.

Keywords Antenna design, Behavioral modeling, Global sensitivity analysis, Spectral analysis,
Dimensionality reduction, EM-driven design

Over the years, the technical complexity of antenna systems has increased in response to industry demands
for various functionalities, such as MIMO operation, tunability, circular polarization, and others!'™#, as
well as performance requirements imposed on electrical and field properties (gain®, broadband operation®,
impedance matching’, axial ratio®, radiation pattern’) but also geometry itself (compact size'®'%). Accurate
assessment of complex geometric devices can be effectively conducted through EM simulation, as opposed to
simpler models, which, if available, often overlook critical phenomena like mutual coupling“, feed radiation!®,
substrate anisotropy, or the effects of connectors!®, radomes!”, or proximity of environmental components (e.g.,
human body®). For the same reasons, EM simulation tools have become essential at all antenna design phases
(architecture evolution!®, parametric analysis®®, geometry parameter adjustment?!). Auxiliary representations,
such as equivalent network models, are mainly used to explain antenna operation (having its geometry already
established) rather than to support the design process itself?>"%. Recently, the importance of EM-driven
parameter adjustment using rigorous numerical optimization has grown enormously as a replacement of
interactive methods, such as parametric studies governed by the designer’s insight. This is indispensable as only
formal methods can simultaneously handle multiple parameters, objectives, and constraints, all instrumental in
identifying truly optimum designs. Yet, simulation-based optimization is computationally expensive, the single
most important factor that impedes its widespread employment by antenna designers. Typical search algorithms
require anything from several dozen or hundreds (gradient-based?® or pattern search?” local methods), to

1Engineering Optimization & Modeling Center, Reykjavik University, 101 Reykjavik, Iceland. 2Faculty of Electronics,
Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland. *email:
koziel@ru.is

Scientific Reports | (2025) 15:3778 | https://doi.org/10.1038/s41598-025-87465-y nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-87465-y&domain=pdf&date_stamp=2025-1-30

www.nature.com/scientificreports/

28-32 33-35

many thousands of EM analyses (nature-inspired algorithms , statistical
design®-38).

The cost-related bottleneck of EM-driven design fostered the development of accelerated techniques.
Among a plethora available methods, one can mention utilization of adjoint sensitivities**** (as well as other
approaches reducing the cost of sensitivity evaluation in gradient-based algorithms, e.g., sparse Jacobian
updating schemes*~**, mesh deformation*!), the employment of fast dedicated solvers*’, response feature
techniques?®~48, cognition-driven design?®, or dimensionality reduction methods®, etc. Recent years witnessed a
growing interest in surrogate-assisted methods®!~ that find applications in both local®® and global®’ parameter
tuning, uncertainty quantification®®>?, as well as multi-criterial design®*-. The underlying concept is to replace
expensive EM evaluations by low-cost replacement models, which can be behavioral (e.g., kriging®?, Gaussian
process regression®, support vector machines®, radial basis functions®, neural networks®®%’, polynomial chaos
expansion®, etc.) or physics-based (space mapping®7°, response correction’!~7%). Physics-based methods
construct the surrogate model by enhancing the lower-fidelity representation, such as a parameterized equivalent
circuit. Surrogate models are often employed in iterative frameworks involving sequential sampling strategies’*”>,
where the prediction phase is followed by model refinement using the acquired EM data’®. Procedures of this
sort are often referred to as machine learning algorithms””~7°.

Undoubtedly, replacing expensive computational models with fast surrogates is attractive. However,
constructing design-ready metamodels that accurately represent system outputs across broad ranges of designable
parameters (geometry and material) and frequencies presents significant challenges. The nonlinearity of antenna
frequency responses and the curse of dimensionality®® make broad-range surrogate modeling impractical beyond
simple structures parameterized using a few variables. Indeed, these challenges have driven the development
of iterative procedures outlined in the previous paragraph. However, while machine-learning-type methods
help alleviate cost-related issues by focusing on promising regions of the search space, they often compromise
versatility. Changing design specifications necessitates repetitive algorithm executions and additional costs®!.
In some cases, general-purpose modeling can be enhanced by methods such as high-dimensional model
representation (HDMR)?2, least-angle regression®, or multi-fidelity approaches like two-stage Gaussian process
regression (GPR)% and co-kriging®. Another approach is performance-driven (or constrained) modeling®,
addressing dimensionality-related issues by appropriately defining the model domain. The domain is set up
in the areas encapsulating high-quality designs®’. Several variations of domain-confined methods have been
developed®-, including nested kriging®’, along with generalizations to variable-fidelity regimes®* and deep
learning®. However, a performance-driven surrogate corresponds to a chosen set of performance figures and
the associated optimality conditions®. Changing these necessitates rebuilding the model. Furthermore, defining
the model domain requires a pre-optimized set of reference designs, which compromises the computational
efficiency of model construction. However, this particular issue can be mitigated by the reference-design-free
approaches®***, or exploitation of sensitivity information®”.

This paper presents an innovative method for constructing computationally-efficient design-ready surrogate
models of antenna structures. Our approach entails a rapid global sensitivity analysis procedure, designed to
identify parameter space directions associated with the maximum antenna response variability. A small subset
of these directions, chosen to capture the majority (e.g., 90%) of response variability, defines the surrogate’s
domain. By reducing dimensionality in this manner, it becomes feasible to establish an accurate behavioral
model by utilizing a small subset of the points needed by traditional methods. At the same time, as the parameter
ranges within the region of validity are not formally restricted (compared to full-dimensionality space), and the
domain accounts for most antenna response changes, the surrogate can be effectively used for design purposes.
These properties have been demonstrated using four microstrip antennas. Comparisons with the models set
up is traditional (box-constrained domains) indicate significant predictive power improvement due to the
implemented mechanisms. In contrast, application case studies (antenna optimization) corroborate design
usefulness of the surrogates obtained using the proposed approach.

The novelty and the technical contributions of this study can be summarized as follows: (i) development of a
novel rapid global sensitivity analysis (RGSA) strategy, (ii) development of a dimensionality reduction scheme
based on sensitivity analysis, (iii) development of surrogate modeling procedure employing the aforementioned
mechanisms, (iv) demonstrating superior reliability and remarkable computational savings achievable due to
RGSA and dimensionality reduction, (v) demonstrating that computational savings are not detrimental to design
utility of the surrogate. To the authors’ best knowledge, no modeling framework featuring similar characteristics
has been proposed in the literature thus far.

, multi-criterial optimization

Surrogate modelling by fast global sensitivity analysis and dimensionality
restriction

In this part of the work we introduce the proposed modelling approach. It begins with the formulation of the
modelling problem in Section "Modelling task formulation". Explanation of the rapid global sensitivity analysis
(RGSA) procedure developed to derive an orthonormal set of directions associated with maximum antenna
response variability is elucidated in Section "Rapid global sensitivity analysis". These directions are then applied
to establish the surrogate model’s domain (Section "Model domain definition by means of RGSA"). The entire
modelling workflow is summarized in Section "Modelling procedure".

Modelling task formulation

The modelling process aims at establishing a surrogate (replacement) model R (x). The model is to be valid
within the region of interest, typically, a box-constrained parameter space X. We want to ensure that the
surrogate-predicted antenna characteristics R (x) are well-aligned with those rendered by the high-resolution
EM model Rf(x). Table 1 compiles the relevant notation. The predictive accuracy of the replacement model is
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evaluated through a suitable error metric. In this study, we utilize the relative root mean square (RMS) error,

defined as || R (x) - R j(x)| [/]|R I(x) ||. The model accuracy will be estimated using the average error E_ , computed
for an independent set of testing points {x, ¥}, _ L.y With
N k K
_ L IR (6) — Ry ()]
BEaver = 55 D o (1)
et IRy (=)

The relative error is convenient and intuitive as being independent of the actual values of the model outputs.
In practical applications, a model error level of around five to eight percent is typically acceptable for design
purposes. Further discussions on alternative error metrics are available in the literature (e.g.,**"7).

Rapid global sensitivity analysis

As previously mentioned, the primary challenge in surrogate modeling of antenna systems stems from a
combination of factors, including the curse of dimensionality, excessive ranges of geometry and material
parameters the model must accommodate to ensure its utility in design, and the nonlinearity of antenna
characteristics, both concerning design variables and frequency. Among these challenges, dimensionality-related
issues are particularly critical. Generally speaking, assuming the behavior of antenna responses is relatively
consistent across the parameter space, the predictive accuracy of a data-driven surrogate improves as the average
distance between training data samples decreases. This distance is influenced by both the number of samples N
and the space dimensionality #, and is proportional to (1/N)!'". This relation is an extremely unfavorable one
from the modeling standpoint. For example, reducing the distance twice in three-dimensional space requires
an eight-fold larger training set, whereas doing the same for n=10 requires a set that is over 1000 times larger.

The aforementioned remarks indicate that reducing the dimensionality of the problem is instrumental in
improving the feasibility of surrogate modeling of antenna systems. In the context of global or quasi-global
modeling, one of the possible approaches is variable screening (e.g., the Morris method?®, Pearson correlation
coefficients®, partial correlation coefficients!'?) or global sensitivity analysis (GSA) (e.g., Sobol indices'®!, Jansen
method!??, regression-based methods!'?®), which allows for determining the relative significance of particular
parameters, and to potentially exclude those that are of minor importance. Unfortunately, most of these
techniques are expensive to execute, i.e., require large amounts of samples to compute sensitivity indicators. In
particular, sensitivity analysis uses many random observables and design perturbations around them. The latter
is acquired to obtain local sensitivity data, further incorporated into global analysis schemes. Consequently, the
overall number of observables required by conventional GSA methods is large per se (e.g., many hundreds or
even thousands of samples). It grows quickly with the dimensionality of the parameter space.

The second disadvantage is that GSA techniques normally allow the assessment of the significance of
individual variables (e.g., their effects on the system outputs). It eventually leads to the possibility of removing
the least significant ones from the problem (whether it is optimization or modeling). On the other hand, for most
antenna structures, excluding individual parameters is rarely an option because the vast majority of geometry
(even more material) variables play a certain role in shaping antenna responses, often through interactions with
other parameters.

To address these issues, an alternative technique for global sensitivity analysis is proposed in this work, which
is specifically developed to fulfill the following prerequisites:

o The CPU cost of GSA is low (e.g., not exceeding a hundred of antenna simulations);
o The analysis is carried out to determine important parameter space directions rather than identify important
variables (regarding their effects on antenna response variability).

The second property allows us to determine a low-dimensional subspace of the design variable space, which is
the most important from the point of view of antenna response variability, and to set up the surrogate model
in this very space. Dimensionality reduction is a fundamental factor from the perspective of improving the
computational efficiency of the modeling process or, equivalently, improving the model predictive power

Symbol Description Comments
x=[x1 ... 0] Vector of antenna Independent antenna dimensions to be tuned in the design
! " parameters process
X=[lu] Conventional I=[l ...,  and u = [u; ..., u,)" are lower and upper bounds
parameter space on parameters, i.e., we have  <xy<ufork=1,...,n
Responses of high-fidelity EM simulation model of the antenna
. . at hand. The symbol R/(x) stands for aggregated antenna
Rix) High-fidelity model characteristics (e.g., reflection, gain, etc.) evaluated over the
frequency range of interest F
Ry(x) Surrogate model Responses of the surrogate model of the antenna of interest

Table 1. Surrogate modeling of antenna structures. Notation and terminology.
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while using a considerably smaller training dataset than setting the model in the complete (full-dimensional)
parameter space.
The proposed GSA approach, called rapid global sensitivity analysis (RGSA) works as follows.

1. Generate N, random vectors x ¥ €X, k=1, ..., N, preferably in a uniform manner. Here, we use modified
Latin Hypercube Sampling (LHS)'%%

2. Acquire EM simulation data R(x (k)) k=1,. o> N

3. Foreachk=1, ..., N, find x ®'=x min) such that

;o (k) _ ()
Jmin = arg min |7 — x| 2
J#k
In other words, xc(k) is the vector closest to xs(k) in the norm sense;
4. Compute (normalized) relocation vectors.
k k
o — xF — x(#
s H (k) _ (k) ‘ @)
Xe ! — Xg
and the corresponding (normalized) response variabilities
k k
0 _ Re(e) — Ry (x)

4
] ‘

for k=1, oo NG

5. Define a N x n relocation matrix § as

ri (v
S = : (5)
TgNs)(vgNs))T

The rows of S represent relocation vectors normalized with respect to their importance in terms of how they
affect the antenna response in the norm sense;

6. Perform spectral analysis of §!%° in order to find its eigenvectors e, (principal components) and the corre-
sponding eigenvalues Aj, j=1, ..., n. The eigenvalues are ordered, so that A, >A,>... A .

The principal components e, form an orthonormal basis and determine the parameter space directions that
have a decreasing impact on the response variability. The underlying idea is to define a reduced-dimensionality
domain of the metamodel, in particular, to span it using a few (most essential) principal vectors. The number N,
of domain-defining vectors is determined as the smallest integer N,€{1, 2, ..., n}, such that

PDROPY
———— 2 Cun (6)
25X

i.e, it is the smallest number of principal components for which the corresponding (joint) relative least-square
variability is not smaller than the user-defined threshold C_, . Here, we set C_. =0.9, meaning that the selected
directions should account for at least ninety percent of the overall variability.

A comment should be made concerning the choice of the threshold factor Cin- AS mentioned earlier, the value
0.9 means that the number of principal components selected to span the surrogate model domain collectively
accounts for ninety percent of antenna response variability. While the number is arbitrary, the 90% threshold is
sufficiently significant: the response variability in the space orthogonal to that spanned by the selected vectors is
only 10%. At the same time, it offers a sizable reduction of the modeling problem dimensionality, as illustrated
in Section "Verification case studies".

Let us consider a few examples. Figure 1 shows a linear function of two variables f(x) f [x, x,]T)=3x, - 2x,.
Here, due to linearity, the function value only changes along the gradient vector g= [3-2]7, which is conﬁrmed
by the RGSA analysis based on twenty random points. Figure 2 shows a slightly more complex situation, with
the function f(x) defined so that the direction corresponding to the largest variability can be readily identified
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Fig. 1. RGSA illustration using a linear function f(x) =f([x,x,]") =3x, - 2x,: (a) surface plot of the function
(gray), twenty random observables x * (circles), and relocation vectors X, (’%) x, (k) (line segments); (b)
relocation matrix vectors rs(k)v ) (th1n lines), the largest principal component e (thick solid line), and the
normalized gradient g=[3-2]7/13"2 (thick dotted line). In this example, all function variability occurs along
the gradient g (the function is constant in the direction orthogonal to g), which is well aligned with the vector
e, obtained using the proposed RGSA.

3
2 2
|
o ()
=
= N
-1
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Fig. 2. RGSA illustration usm% a nonlinear function of two variables: (a) surface plot of the function (gray),
twenty random observables x ) (circles), and relocation vectors x, (k) _ X, ® (line segments), as well as the
principal component e, (thick arrow); (b) relocation matrix vectors r, (k)v ® (thin lines), and the largest
principal component e1 (thick solid line). It can be noticed that the vector e, obtained using RGSA visually
corresponds to the direction of the largest variability of the function f(x).

visually (as the vector perpendicular to the function ‘ripples’). Again, RGSA, based on twenty random points,
correctly identified this direction.

Flgure 3a illustrates an example of a dipole antenna parameterized with six independent variables x=[I, I,

w, w, w,]7. RGSA is executed based on fifty randomly allocated data points in this case.

Figure 3b illustrates antenna’s |S, | at a random parameter vector x and designs perturbed along the principal
components identified using RGSA, x+he,, k=1, ..., n. As expected, the response variability is gradually
reduced for k, increasing from 1 to n. For this example, we also performed statistical analysis by generating
N, random vectors x,®, k=1, ..., N, (here, N =20), along with their perturbatlons x*D=x®+he, j=1,

2 (k) 7
n. Upon acquiring EM 51mulat10n data Rf(x( ) k=1, ..., N, and Rf(x 7), ke{l, ..., N}, ]e{ . n}, the
variability indicators have been computed as

N,
4R, = L 30 Ry () - Ry ()| ”
k=1
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Fig. 3. RGSA illustration using a dual-band antenna: (a) parameterized geometry, (b) |S,,| responses at a
random parameter vector x and designs perturbed along the principal components, x + he, (here, h=0.1) for
the first four vectors (from top left to bottom right) obtained using RGSA, (c) normalized eigenvalues of the
relocation matrix S obtained using RSGA based on fifty random samples, as well as average EM-simulated
variability indicators dR. computed as in (7). It can be observed that response variability is gradually reduced
for increasing k, which demonstrates that subsequent eigenvectors correspond to directions having less and less
effect on antenna responses.

for j=1, ..., n, which correspond to the average response variability in directions e. Figure 3¢ compares the
normalized eigenvalues A;and dR;. It should be noted that both are well aligned, which corroborates the relevance
of RGSA.

Note that the CPU cost of RGSA is low. For many of the previously mentioned GSA methods (e.g., Sobol
indices!?!, regression-based methods!%®) the typical number of samples required to obtain reliable sensitivity
assessment is many hundreds to a few thousands for medium- to large-dimensionality problems. RGSA is
executed using a few dozen random points (more specifically, fifty, in the verification experiments discussed
in Section "Verification case studies"). Clearly, the sensitivity estimation may not be as accurate as for more
expensive methods, yet sufficient for our purposes. Furthermore, RGSA yields principal directions that may be
oriented in an arbitrary manner with respect to the coordinate system axes. Consequently, it does not eliminate
any particular parameter but accounts for possible variable interactions.

Model domain definition by means of RGSA
The eigenvectors generated using RGSA are used here to identify the model’s domain X ;. The latter is spanned by
the first N, vectors € j=1...N, The number of directions is determined according to (5). Formally, we have

Ng
Xdz{xex:xzchrZajej} (8)

j=1

where x_=[I+u]/2 is the center of the original domain X (cf. Table 1), and a, j=1, ..., N, are real numbers.
Figure 4 shows a conceptual illustration of the set X ,.

It is worth noting that while the dimensionality of X, is lower than n, the domain incorporates the parameter
space directions that are most critical for antenna response variability. This ensures that the surrogate model
established within it is useful for design purposes.

After defining the domain, the surrogate model is established using kriging Interpolation!'®®. However,
the specific choice of modeling technique is of secondary importance, as our primary goal is to explore the
computational benefits of dimensionality reduction achieved through RGSA.

Modelling procedure

The entire modeling procedure is encapsulated in Fig. 5 in the form of pseudocode, delineating three distinct
stages: Stage I (rapid global sensitivity analysis, RGSA), Stage II (surrogate model domain definition), and Stage
III (model identification). It should be emphasized that the only control parameter of the modeling process is
the variability threshold C_, , which, in Section "Verification case studies", is set to 0.9. For additional clarity,
Fig. 6 illustrates the flow diagram of the modelling process. The number N, of random observables employed to
conduct the sensitivity analysis is typically set to 50 to ensure the computational efficiency of the RGSA process.
Only for test cases with the parameter space dimensionality exceeding ten or so is it increased to 100. In general,
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X3

Original parameter
space X

Affine subspace
X+ Zjae

Surrogate model domain
X=X ix+ e

X1

Fig. 4. Defining reduced-dimensionality model domain X ,. Here, the original parameter space is three
dimensional, whereas X , is established using two eigenvectors e, and e,. Note that X, is a set theory

intersection of X and the affine subspace x_+ 21298

Input parameters:
e Original parameter space X (interval [I u], where I and u are lower and upper parameter
bounds, respectively;
e EM simulation model R{(x);
e  Variability threshold Cmin (cf. Section 2.2).

Modelling process (Stage |: RGSA, cf. Section 2.2):

1. Generate Ns random vectors xs% e X, and acquire EM simulation data R{xsX)), k=1, ..., Ns;

2. Foreachk=1, ..., Ns, find x.® = xs0M", jmin = argmin{1 <j < Ns, j # k : ||xs% — xs0|[}

3. Compute (normalized) relocation vectors vs® = (xck — xs®)/||x % — xs®|| and response
variability factors rs% = [R{xc¥) — R{xs%)]/||x:% — xs®||, k=1, ..., Ns;

4. Define relocation matrix S = [rs(Mvs(" ... rsNslvs(NST;

5. Find principal components (eigenvectors) e; of S, and the corresponding eigenvalues 4, j =
1, ..., n.

Modelling process (Stage Il: Domain definition, cf. Section 2.3):
6. Determine domain dimensionality Ny using (5);
7. Define domain Xy = {x € X : X = Xc + Zj=1,. nad ajej}, Where xc = [I + u)/2, and &, j= 1, ..., Nq,
are real numbers.

Modelling process (Stage lll: Model identification):
8. Allocate training data in Xy, xs), k=1, ..., Ns;
9. Acquire EM data R{xs"%), k=1, ..., Ng;
10. Identify kriging interpolation model Rs(x) using {xs®,Rf(xs¥)}, k = 1, ..., Ng, as a training
dataset.

Fig. 5. Surrogate modelling of antenna structures using RGSA and reduced-dimensionality surrogates.

N, should increase with the number n of design variables, and setting N =6n seems to be a reasonable rule of
thumb.

The number of training samples Ny, is normally selected based on the available computational budget (note
that EM simulations are generally expensive, and it is not practical to acquire large training sets). Typically, a few
hundred samples are what can be afforded. In this work, we construct the surrogate models using N of various
values, from 50 to 800, to investigate the scalability of the model’s predictive power as a function of the training
dataset cardinality.
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3
g Define domain X;= {x € X:x =x. + L) wae),
5 where x,. = [l + u]/2, and a; are real numbers
2 Y
= N
g ( Allocate training data in Xy x5*, k=1, ..., Ny )
= )
é Acquire EM data R{xs""), k=1, ..., Ny —
2 C )
= Identify kriging interpolation model R (x)

N Wy,

Fig. 6. Operating flow of the suggested procedure for surrogate modeling of antennas using RGSA and
reduced-dimensionality surrogates.

It should be noted that the last stage of the modeling process (Stage III) consists of three steps. The first one
is allocating the training points, which is realized using Latin Hypercube Sampling to yield the normalized set
of samples. These are further mapped into the dimensionality-reduced domain using an affine transformation
defined using the domain-defining quantities, specifically, the center vector x, and the eigenvectors e, (cf.
(8)). Subsequently, EM simulation is performed at the training designs and the kriging interpolation model is
identified (through maximum likelihood estimation!%).

Verification case studies

Here, we present numerical verification of the proposed modeling methodology. The analysis involves four
microstrip structures comprising a ring-slot antenna, a dual-band uniplanar dipole, and two quasi-Yagi
antennas. The modeled characteristics include reflection coefficients and realized gain as functions of frequency.
We compare the reduced-domain approach to conventional modeling using factors such as reliability and the
CPU cost of establishing the surrogate, and the scalability of the modeling error as a function of the training
dataset size. Additionally, we showcase design applications of the models by conducting antenna optimization
across various scenarios.
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Test cases
The antennas used to demonstrate the proposed modeling procedure are shown in Fig. 7. There are four devices:

A ring-slot antenna (Antenna I), Fig. 7a,

o A dual-band uniplanar dipole antenna (Antenna II), Fig. 7b,

A quasi-Yagi antenna with a parabolic reflector (Antenna III), Fig. 7c,
A quasi-Yagi antenna with integrated balun (Antenna IV), Fig. 7d.

Information about material parameters (substrate height and relative permittivity), design variables, and
parameter spaces is included in Table 2. EM models of all antennas are evaluated in CST Microwave Studio
(time-domain solver).

The considered modeling tasks are challenging. On the one hand, the parameter spaces are relatively high
dimensional, from six parameters for Antenna II to fifteen for Antenna IV. Note that substrate permittivity is
also included for three structures as a design parameter. On the other hand, the ranges of design variables are
wide: the ratio between the upper and lower parameter bound is higher than three on average. Also, we are

l .
t — —
¥
J &_S#d ¢W3 ‘ 13
LIt W T TT —r— t w — [, —
S v ’ . /
- [, fwl f 4 e 1 — 0 |
0 wO
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L Wi s
N R W W,
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Lm Lm
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(©)
La Lb Lc Ld
A }Vd‘ t
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Wo ! w

(d)

Fig. 7. Test antennas: (a) Antenna I'", dashed line marks the microstrip feed line, (b) Antenna II'%, (c)
Antenna I1I'? (top and bottom layer shown on the left and right, respectively), (d) Antenna IV!!? (top and
bottom layer shown using dark- and light-grey shades).
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Antenna structure

Parameter
Antenna I [107] Antenna I [108] Antenna III [109] Antenna [V [110]
& — design variable RO4350 & — design variable & — design variable
Substrate
h=0.76 mm (&-=3.5, h=0.76 mm) h=1.5mm h=1.5mm
Design X:[/f/(l WalS Sdq X:[/ b s wy Wy w ]T x=[WL L,,, L,, SdSr Wz Wa X:[La LchL(i WW(, Da Db
parameters®* ogel’ P R Wag &] De Dy Dy Sy Wer Wer &7
wy— adjusted to Di=DyLa, Dy = DrrLa, S =
Other s 56 hm i lo=30, wo =3, W, — adjusted to ensure 50 S, W, wy = wp, W/2, we = we, W,
parameters® ensure OU ohm fine s0=0.15,0=5 ohm line impedance wo = adjusted to ensure 50
impedance o
ohm line impedance
. [=[22.03.5036.53.0 [=[2950170.215 [=[10055101456.010 [=[125517340.75122
C"n"en“fnal 0.53.50.22.01%, 0.5, 2.07.516.30.52.5]7, 0.050.40.50.50.5 2],
arameter
pspaceX u=[27.08.023160 wu=[4212250.652 wu=[13781292821185.0 u=[2113185551.81.84.5
7.05.56.02.35.0]" 3517 2040 1.0 4.517 4.50.50.850.990.75 0.8 51"
Reflection S Reflection S
Modell'ed' Reflection Sy, Reflection Sy € 'ec 1on' " ¢ ‘ec 10n' "
characteristics Realized gain G Realized gain G
Frergr‘z'e‘“y 1 GHz to 7.5 GHz 1 GHz to 8 GHz 1.5 GHz to 6 GHz 1 GHz to 6 GHz

Table 2. Essential parameters of verification antennas.

interested in modeling complex reflection responses and realized gain characteristics (for Antennas III and IV)
all over broad ranges of frequencies as specified in Table 2, e.g., from 1 GHz to GHz for Antenna I or from 1 to
6 GHz for Antenna IV.

Experimental setup

The verification experiments are structured to address two primary inquiries: (i) the extent to which RGSA-
based modeling enhances the predictive capability of the surrogate and (ii) whether dimensionality reduction,
as proposed in Section "Surrogate modelling by fast global sensitivity analysis and dimensionality restriction",
impacts the design utility of the model. The essence of the second question lies in determining whether reducing
the number of dimensions in the domain maintains sufficient flexibility of the metamodel for effective design
purposes. To answer the first question, we compare models built in the conventional parameter space X with those
in the confined domain. Sensitivity analysis uses fifty samples distributed in X via Latin Hypercube Sampling!®‘.
The dimensionality of the restricted domain is adjusted with C_. =0.9 in (5), as discussed in Section "Rapid
global sensitivity analysis", indicating that the domain should encompass at least ninety percent of antenna
response variability. The surrogates are established using datasets of varying sizes, between 50 and 800 samples
(with 1600 samples for Antenna I'V, the most challenging case), allowing for an examination of model scalability.
As for the second question, the RGSA-based surrogate models are utilized for antenna parameter tuning across
different sets of design specifications. Given that the modeling process spans broad frequency ranges, the models
can be applied to optimize antennas for various target operating bandwidths and different substrate materials
(considering substrate permittivity as one of the design parameters, adjustable within a wide range from 2.0 to
5.0).

The surrogate is built using kriging interpolation with Gaussian correlation function and a trend function
implemented utilizing a second-order polynomial. The model accuracy is estimated by means of a relative root
mean square (RMS) error. The latter is defined as ||R (x) - Rf(x)||/ [|R(x)||, where R_and Rstand for the antenna
responses predicted using the surrogate and EM analysis, respectively (cf. Section "Modelfing task formulation”,
Eq. (1)). The error is computed using 100 randomly assigned testing vectors x.

Results
Table 3 encapsulates data on the eigenvalues A, obtained using the RGSA procedure of Section "Surrogate
modelling by fast global sensitivity analysis and dimensionality restriction", and the surrogate model’s
dimensionality N, As mentioned earlier, N, has been determined using the condition (6) with C_. =0.9.
An exception has been made for Antenna III, with N, set to four and the variability factor equal to 0.89. It
should be noted that the eigenvalues reduce quickly as the function of the index so that increasing the domain
dimensionality by one (i.e., using N, incremented by one as compared to that value obtained from (6)) does not
change the antenna response variability significantly. For example, for Antenna I, the variability changes from
0.94 to 0.96 when increasing N, from 4 to 5. For Antenna ITI, the figures are 0.89 (N,=4) and 0.92 (N ,=5).

Table 4 indicates the modelling errors for the surrogates built within the original space X, and the RGSA-
based domain X ,, for five training datasets of cardinalities 50, 100, 200, 400, and 800, respectively. As mentioned
earlier, for Antenna IV, we also include a data set consisting of 1,600 samples. Antenna characteristics rendered
using the metamodel and EM analysis at the chosen testing points are illustrated in Figs. 8, 9, 10, and 11 for
Antennas I through IV, respectively.

The data in Table 4 unanimously demonstrate the computational benefits of the RGSA-based dimensionality
reduction. To begin with, modeling in the original parameter space turns out to be extremely challenging. For
Antenna II, the most straightforward case (six parameters), the conventional surrogate managed to secure a
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Antenna
Domain data I II 111 v
Dimensionality # of the original parameter space X | 9 6 11 15
1,=1.00
1,=0.64
1,=1.00 |1,=057
2,=1.00 1,=0.88 | 1,=0.49
L,=074 | oo [ h=069 | A;=037
A,=0.63 | J1_ 1,=0.60 |1.=0.35
X=04g [H=053 1051 | 20=0.29
(Normalized) eigenvalues of the relocation matrix A4* . A,=041 |75~ 7
s 5=0.35 | 132051 | =041 | 1,=027
4g=029 [ 142 0 [ 1,=035 | Ay=0.22
1;=023 | {57 M9 1 1=032 | h =021
Ae=0.17 | AT % 1202023 [ 1),=0.18
1,=0.06 1,,=0.20 | A,=0.17
A, =0.15 | A;=0.13
A,=0.11
,:=0.06
N, 4 3 4 5
Na 2
Reduced-dimensionality domain Z =1
0.94 0.95 0.89 0.91
S
j=1"1J

Table 3. RGSA data: eigenvalues A, and domain dimensionality assuming C_. =0.9
Model error
Nul;lfber Antenna | Antenna II Antenna III Antenna [V
training .. Reduced .. Reduced o Reduced " Reduced
oints Original : Original ) Original : Original )
p space X domain space X domain space X domain space Y domain
P Xy P X, P Xy % Xy
50 56.9 % 49.1 % 21.7 % 11.0 % 61.4% 23.9% 56.2 % 31.9%
100 50.8 % 18.3 % 17.3 % 6.5 % 50.7 % 15.9% 45.8% 28.2 %
200 358 % 6.4 % 12.6 % 3.8% 39.8 % 10.3 % 44.9 % 252 %
400 31.5% 3.9% 9.3 % 3.0% 32.8% 8.0 % 42.7 % 21.3%
800 25.6 % 3.5% 7.2 % 22% 31.8% 6.8 % 40.3 % 14.8 %
1,600 - - - - - - 37.8% 11.2%

Table 4. Modeling results for Antennas I through IV.

*When modeling in the reduced domain, the total cost of model setup also includes the samples generated for

the purpose of RGSA, which are as follows: Antennas I, II, and III: 50 points; Antenna IV: 100 points.

S,,| [dB]

Frequency [GHz]

Fig. 8. Frequency characteristics of Antenna I at the selected test points: EM simulation (—), and the
prediction of the proposed surrogate (o). The metamodel constructed for N, =800.
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Frequency [GHz]

Fig. 9. Frequency characteristics of Antenna II at the selected test points: EM simulation (—), and the
prediction of the proposed surrogate (o). The metamodel constructed for N, =800.
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Fig. 10. Frequency characteristics of Antenna III at the selected test points: EM simulation (—), and the
prediction of the proposed surrogate (o). The metamodel constructed for N, =800.

relative RMS error lower than ten percent, and only for the two largest datasets of 400 and 800 samples. The
remaining structures’ error levels are between sixty percent (for the smallest datasets) and about thirty percent
(for the largest datasets).

It should be noted that RGSA comes with some minor extra costs. As mentioned earlier, the purpose of
developing RGSA was to ensure computational efficiency. The specific number of data samples utilized in our
numerical experiments has been provided in the footnote of Table 4. These costs are 50 random observables for
Antennas I, II, and III, and 100 observables for Antenna IV. It should be noted that Antenna IV is a complex
case with 14-dimensional parameter space and broad parameter ranges therefore a larger number of RGSA
samples were utilized. Nonetheless, these costs are almost negligible whenever the training dataset size exceeds
200. For example, the relative extra overhead for N =800 is only around six percent for Antennas I, II, and IIJ,
and around twelve percent for Antenna IV. These minor expenses are traded for a dramatic improvement of the
modeling reliability, as shown in Table 4.

This predictive power is not sufficient when it comes to design applications of the models. On the other
hand, the proposed approach allows for significant accuracy improvement. The relative errors are as low as a
few percent, which makes the surrogates suitable for solving design tasks, as discussed in Section "Application
case studies". Furthermore, reduced dimensionality of the domain greatly improves the scalability of the model,
i.e., enlarging the training datasets greatly affects the model’s dependability, as opposed to the conventional
approach.

At this point, it should be reiterated that the major factor enabling remarkable reliability of the proposed
modeling procedure is the dimensionality reduction. As mentioned in Section ILB, parameter space
dimensionality plays a fundamental role in constructing reliable data-driven models. Assuming comparable
parameter ranges, the average distance between training points (which determines modeling accuracy)
scales extremely poorly with the number of antenna parameters. This means that reducing the model domain
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Fig. 11. Frequency characteristics of Antenna IV at the selected test points: EM simulation (—), and the
prediction of the proposed surrogate (o). The metamodel constructed for N, =1600.

dimensionality is of fundamental importance to improve the mentioned scalability and to observe the error
reduction when increasing the number of training points. Now, constructing the surrogate model domain as
a reduced-dimensionality subspace embedded in the original parameter space (cf. Fig. 4 and Eq. (8)) achieves
exactly that: a dramatic reliability improvement without compromising the design utility. The latter is because
the domain-defining parameter space directions correspond to the largest antenna response variability. Thus, all
components of the proposed modeling approach work in synergy to enable both computational efficiency and
design suitability.

In terms of scalability, it can be observed that the reduction of the modeling error for conventional models
when increasing the dataset size from 50 to 800 is (in terms of multiplicative factor) between 1.4 for Antenna IV
to 3.0 for Antenna II. At the same time, the error reduction is from 2.2 for Antenna IV to over 14 for Antenna
I. The average improvement is around two for conventional models and over six for the proposed framework.
On top of this, the overall error levels are much lower for our technique, even for the smallest dataset, as already
discussed earlier.

Application case studies

Section "Results" unequivocally illustrated that reducing the domain’s dimensionality has a distinct and positive
impact on the model’s predictive power and error scalability concerning the training dataset size. Here, we
confirm that this reduction does not impair the model’s design utility. It is important to recall that dimensionality
reduction is not aimed at eliminating specific antenna parameters; instead, it identifies directions most relevant
to response variability. Therefore, the domain is expected to encompass regions that provide sufficient flexibility
for shaping antenna characteristics following various design specifications imposed on the structure.

To validate this claim, our test antennas have been optimized in the sense explained in Table 5. For Antennas
I and II, the primary goal is the improvement of impedance matching, whereas, for Antennas III and 1V, it is
the maximization of the average in-band realized gain; furthermore, a constraint is imposed on the in-band
matching. Each antenna has been designed to meet four sets of specifications as specified in Tables 6, 7, 8, and
9. The same tables also contain the results regarding the geometry parameter values of the optimized antennas.
Note that for Antennas I, III, and IV, substrate permittivity has been one of the design variables considered in
the modeling process. This means that the same surrogate model can optimize the antenna for various substrates
featuring permittivity within the prescribed range.

Figures 12, 13, 14, and 15 show the optimized responses of Antennas I through IV, obtained through surrogate
model optimization. The same images depict the EM-simulated antenna responses across the respective designs.
It is evident that all specifications have been consistently fulfilled, ensuring the intended operational bandwidths
are maintained. Furthermore, the correlation between the antenna characteristics generated via the surrogate
model and those acquired through EM analysis is deemed satisfactory. These demonstrate the proposed
model’s practical utility, particularly its ability to design antennas over wide ranges of frequencies and material
parameters (here, substrate permittivity).

The discrepancy between surrogate model prediction and EM analysis is larger for Antennas IIT and IV than
for the first two structures. This is because Antennas III and IV are extremely challenging test cases (eleven and
fifteen parameters including substrate permittivity), much more complex than what is typically presented in the
literature. Considering this, the accuracy of the surrogate models constructed using our approach is remarkably
good (6.8% and 11.2% for Antenna III and IV, when using 800 and 1,600 training samples, respectively). The
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Design
optimization
problem

Antenna

I

I

v

Characteristics

Reflection response

Reflection response

Reflection response

Reflection response

X y Su(xf) Suxyf)
of interest Su(x,f) Su(x,f) . . . .
Realized gain G(x.f) Realized gain G(x.f)
. Maximize average gain Maximize average gain
. Mlnlmzze ISl Minimize [S11(x,/)| over frequency band of over frequency band of
D'esng'n over Irequency B at target frequencies interest I = [fi f2]; interest ' = [fi f2];
objective band of interest ' = o o
Ifi £l Jiand f> Maintain [S11(x,/)] <10 Maintain [S11(x,f)] <10
’ dB over F/ dB over F/
. Antenna Antenna implemented Antenna implemented on
Other implemented on . .
S . - on substrate of relative substrate of relative
conditions substrate of relative

L s
permittivity & $ permittivity & permittivity &

Table 5. Application case studies for the considered test antennas.

Design specifications Geometry parameter values [mm]

F[GHz] P Iy

la Wa r s Sd 0 g
[4.34.7] 35 23.4 6.5 0.32 13.5 42 2.2 5.8 1.74
[2.93.1] 4.4 26.9 5.3 2.02 11.5 3.6 2.5 5.3 0.22
[3.45 3.75] 2.5 22.0 5.5 0.74 12.3 3.0 33 5.2 1.80
[5.76.1] 2.5 22.0 5.6 0.67 12.6 3.0 33 5.4 1.92

Table 6. Antenna I: optimization results.

Design specifications Geometry parameter values [mm]

£ [GHzZ] # [GHz] I h I wi w2 W
2.0 4.0 38.3 8.1 22.2 0.50 3.7 2.7
2.5 53 33.2 9.8 18.3 0.31 34 1.8
3.0 4.8 29.0 10.6 20.1 0.24 2.9 1.3
3.0 6.0 29.7 10.9 17.3 0.22 32 1.4
Table 7. Antenna II: optimization results.
Design specifications Geometry parameter values [mm]
F[GHz] & W L Ln I, S S, W W, Wy g
[2.93.1] 3.5 109.1  65.6 19.3 22.9 14.5 16.7 3.5 15.9 30.2 0.75
[3.43.8] 3.0 1155 58.0 19.0 20.9 17.9 17.6 3.5 13.4 27.8 0.69
[2.42.8] 4.3 1146 804 20.1 24.5 8.5 11.1 3.7 17.5 31.3 0.87
[4.55.0] 3.5 118.0  68.6 24.7 19.2 8.6 13.0 34 9.0 17.1 0.66

Table 8. Antenna III: optimization results.

misalignment between model prediction and EM analysis for the mentioned error values is good and practically
acceptable. At the same time, it should be stressed that conventional modeling methods (represented by models
constructed in the original parameter space X, cf. Table 4) are dramatically worse (31.8% and 40.3% for Antenna
III and IV, respectively, when using 800 and 1600 training samples), therefore entirely useless as design tools.
Consequently, the results presented in Figs. 14 and 15 can be considered as highly successful.
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S, | [dB]

S| [dB]

Design

specifications Geometry parameter values [mm]
F[GHz] & La Ly Le La W ws Dis Dy D. Dy Dy S Wy W
[293.1] 25 147 97 64 225 512 1.1 14 35 26 032 051 092 0.69 0.70

]

[4045] 25 167 6.8 138 21.7 359 15 1.1 34 35 0.10 054 066 0.60 0.59

[4753] 20 149 75 145 259 375 15 13 34 38 007 0.72 067 052 0.55
]

[333.6] 35 198 69 109 196 396 13 1.1 28 3.0 030 051 061 0.69 0.65

Table 9. Antenna IV: optimization results.
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Fig. 12. Antenna I: model-predicted |S, | at the design found by optimizing the proposed metamodel (o), and
EM-evaluated characteristic (—) at the same design; model constructed for N;=800. The designs generated
assuming the following specifications (bandwidth and substrate permittivity): (a) F=[4.3 4.7] GHz, ¢,=3.5, (b)
F=[2.93.1] GHz, ¢,=4.4, (c) F=[3.453.75] GHz, ¢,=2.5, (d) F=[5.7 6.1] GHz, ¢ =2.5. Horizontal line marks
the target operating bandwidth.

Domain dimensionality analysis

The threshold parameter C_, has been set to the value of 0.9 in this study, meaning that the surrogate
domain is spanned directions that are collectively responsible for at least 90% of antenna response changes.
Clearly, increasing the value of C_. corresponds to a more strict condition, which would lead to increasing
the domain dimensionality and, consequently, make the modeling process more challenging. Effectively, the
model accuracy is expected to be reduced given the same number of training samples. When C_, is reduced,
so is the dimensionality of the domain. The result would improve the model predictive power (again, given the
same number of training samples). This has been illustrated in Table 10 for Antenna I. Note that because the
eigenvalues is a discrete set, the value of \/ Z;le A2 / \/ Z;L:I A? does not change continuously. The table

= J

considers three choices of the domain dimensionality, N =34, and 5, the middle one corresponding to what
was presented in Tables 3 and 4. The first and the third values are smaller and larger than the dimensionality
associated with C_, =0.9. As can be observed, reducing the dimensionality improves the surrogate’s predictive
powers, whereas increasing it makes the RMS error larger. At this point, it should be noted, however, that reducing
the dimensionality also reduces the domain volume, which is detrimental to the design utility of the surrogate.
In particular, the optimum designs corresponding to particular specifications might not be allocated within the
domain. On the other hand, increasing the dimensionality also compromises design utility, this time due to the
inferior quality of the surrogate. This has been illustrated in Fig. 16 for one of the design scenarios considered in
Section "Application case studies” (F=[4.3 4.7], &, =3.5). Either increasing or decreasing the dimensionality leads
to a slightly degraded optimization outcome. At the same time, it should be noted that the modeling process is
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Fig. 13. Antenna II: model-predicted |S, | at the design found by optimizing the proposed metamodel (o), and
EM-evaluated characteristic (—) at the same design; model constructed for N;=800. The designs generated
assuming the following specifications (lower and upper operating frequency): (a) f, =2.0 GHz, f,=4.0 GHz, (b)
f1 =2.5 GHz,f2 =5.3 GHz, (c)f1 =3.0 GHz,f2 =4.8 GHz, (d)f1 =3.0 GHz,f2 =6.0 GHz. Vertical lines mark the
target operating frequencies.
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Fig. 14. Antenna III: model-predicted S, | (black) and realized gain (gray) at the design found by optimizing
the proposed metamodel (0), and EM-evaluated characteristic (—) at the same design; model constructed for
N,=800. The designs generated assuming the following specifications (lower and upper operating frequency):
(a) F=[2.93.1] GHz, ¢,=3.5, (b) F=[3.4 3.8] GHz, £,=3.0, (c) F=[2.4 2.8] GHz, ¢, =4.3, (d) F=[4.5 5.0] GHz,
€,=2.5. Vertical and horizontal lines mark the target operating band.

|S1 1|, Realized gain [dB]
|S1 1|, Realized gain [dB]
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Fig. 15. Antenna IV: model-predicted |S,,| (black) and realized gain (gray) at the design found by optimizing
the proposed metamodel (0), and EM-evaluated characteristic (—) at the same design; model constructed for
N,=800. The designs generated assuming the following specifications (lower and upper operating frequency):
(a) F=[2.93.1] GHz, ,=2.5, (b) F=[4.0 4.5] GHz, ¢,=2.5, (c) F=[4.7 5.3] GHz, ¢, =2.0, (d) F=[3.3 3.6] GHz,

€,=3.5. Vertical and horizontal lines mark the target operating band.

Modeling error (reduced domain X ,)
Number of training points | N,=3 [C_. =0.88] | N,=4[C_, =0.94] | N,=5[C_. =0.0.97]
50 19.7% 49.1% 53.1%
100 10.2% 18.3% 27.3%
200 5.3% 6.4% 9.1%
400 3.5% 3.9% 6.8%
800 3.2% 3.5% 5.5%

Table 10. Antenna I: modeling results in RGSA-confined domain vs domain dimensionality.

S, [dB]

Target bandwidth
1

4.5

Frequency [GHz]

5.5

Fig. 16. Optimization results of Antenna I for the first design scenario considered in Section "Application case
studies” (F=[4.3 4.7], &,=3.5). Note that the EM-simulated antenna responses obtained for N,=3 and N,=5
are noticeably worse than those obtained for N,=4.
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Normalized eigenvalues
Noo(A (A, (A (A, (A (A (A, Ay (A

50 |1.00 | 0.74 | 0.63 | 0.48 | 0.35 | 0.29 | 0.23 | 0.17 | 0.06
100 | 1.00 | 0.60 | 0.52 | 0.42 | 0.30 | 0.27 | 0.19 | 0.16 | 0.11

200 | 1.00 | 0.58 | 0.46 | 0.34 | 0.28 | 0.25 | 0.19 | 0.16 | 0.10

Table 11. Normalized eigenvalues of the relocation matrix § for different values of N,.

relatively insensitive to the selection of C_. . For example, for Antenna I, N,=4 is obtained for any C_, within
the range 0.88 to 0.97.

An additional analysis is carried out for Antenna I concerning the number N, of random observables utilized
to carry out the sensitivity analysis (cf. Section "Rapid global sensitivity analysis"). The verification part of the
paper was executed using N =50. Table 11 shows the spectral analysis results of the relocation matrix S obtained
using N =100 and N =200. As can be observed, the progression of the normalized eigenvalues is quite similar
in all cases. This suggests that RGSA is relatively insensitive to the choice of N.. Nonetheless, as mentioned in
Section "Modelling procedure’, it is generally recommended to increase N, with the number of design variables,
which is also suggested in the literature concerning GSA (e.g.%%-1%%)

Conclusion

This article introduces an innovative approach to computationally efficient behavioral modeling of antennas. Our
methodology leverages a rapid global sensitivity analysis (RGSA) procedure to identify the essential directions
within the design variable space, significantly impacting antenna response variability. The surrogate model’s
region of validity is then determined using a limited subset of these critical directions, determined through
appropriate response variability indicators. This dimensionality reduction substantially enhances predictive
power and enables achieving acceptable error levels even when using a restricted number of training points.
Importantly, the surrogate maintains sufficient flexibility in representing antenna characteristics variability,
ensuring that the model’s design utility remains intact. The efficiency of the introduced method has been
comprehensively validated across four antenna structures, considering modeled responses such as reflection
coeflicient and realized gain over wide frequency ranges (typically between 1 and 7 GHz) and relative permittivity
of the substrate (typically between 2.0 and 5.0). The RGSA-based domain definition results in remarkably accurate
predictive power (relative RMS error within a few percent) despite challenging parameter space configurations
where conventional modeling methods fail. Moreover, the proposed models are successfully employed for
antenna optimization across various scenarios, including matching improvement over target frequency bands,
gain maximization, and different combinations of target bands and substrate permittivity values. These findings
suggest that the presented approach provides an attractive alternative to available modeling methods, especially
for building low-cost, design-ready replacement models. The procedure is generic compared to some recently
proposed methods, such as performance-driven modeling approaches, and is relatively straightforward to
implement.

The proposed technique can be used to model input characteristics of array antennas such as microstrip
patch arrays, MIMO antennas, and so on. From the perspective of the modeling process, the only difference is
that the number of responses to be modeled would be larger (i.e., equal to the number of array excitation points),
similarly as modeling of Antennas IIT and IV involved representing of the reflection and realized gain responses.
This does not bring any fundamental limitations to the proposed methodology. At the same time, modeling of
other types of responses is also possible (e.g., directivity as a function of array geometry parameters), although
direct modeling of radiation patterns is a considerably more complex matter, which will be addressed in future
work. It should be mentioned that although the proposed methodology has been applied to microstrip antennas,
it is more generic. The reason is that none of the modeling steps (including sensitivity analysis, dimensionality
reduction, surrogate model definition, or model identification) are related to the specific properties of antenna
responses. Thus, the method can be applied to other types of high-frequency systems or even components/
devices within other engineering disciplines. One of the topics of future work will be to demonstrate our
approach’s applicability to other microwave and antenna structures classes.
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able request.
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