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In response to the current issues of one-sided effective feature extraction and low classification 
accuracy in multi-class motor imagery recognition, this study proposes an Electroencephalogram (EEG) 
signal recognition method based on multi-domain feature fusion and optimized multi-kernel extreme 
learning machine. Firstly, the EEG signals are preprocessed using the Improved Comprehensive 
Ensemble Empirical Mode Decomposition (ICEEMD) algorithm combined with the Pearson correlation 
coefficient to eliminate noise and interference. Secondly, multivariate autoregressive (MVAR) model, 
wavelet packet decomposition, and Riemannian geometry methods are used to extract features from 
the time domain, frequency domain, and spatial domain, respectively, to construct a joint time-
frequency-space feature vector. Subsequently, kernel principal component analysis (KPCA) is employed 
to fuse and reduce the dimensionality of the joint features, resulting in a reduced-dimensional fused 
feature vector. Finally, these feature vectors are input into a Radius-incorporated multi-kernel extreme 
learning machine (RIO-MKELM) for classification. The experimental results indicate that through multi-
domain feature fusion and the incorporation of radius in a multi-kernel extreme learning machine, 
feature selection can be performed more effectively, eliminating redundant or irrelevant features and 
retaining the most useful information for classification. This approach enhances classification accuracy 
and other evaluation metrics, with the final classification accuracy reaching 95.49%, sensitivity at 
97.88%, specificity at 98.12%, recall at 97.88%, and F1 Score at 96.67%. The findings of this study are 
of significant importance for the development and practical application of brain-computer interface 
(BCI) systems.
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Motor Imagery (MI) is a psychological process that involves the mental simulation or imagination of a movement 
without actually performing it. In the fields of neuroscience and BCI, motor imagery is used as a method to 
generate brain activities that can be detected and interpreted by external devices. However, due to the complexity 
of EEG signals and inter-individual differences, extracting effective motor imagery features has become key to 
improving the performance of BCI systems.

In order to improve the classification accuracy of BCI systems, researchers have proposed various feature 
extraction methods and classification algorithms. For example, Xue et al.1 used the MVAR model as a time-
domain feature and achieved a classification accuracy of 86.4% using a radial basis function neural network 
classifier; Jin et al.2 extracted frequency-domain features through bicoherence analysis and achieved a 
classification accuracy of 83.6% using a SVM classifier; Ang et al.3 used the FBCSP-based method to extract 
spatial features and achieved a classification accuracy of 83.3% using an SVM classifier.

Through the studies of the above literature, they were found that most researchers extract features from only 
a single domain, such as the time domain, frequency domain, or spatial domain, and then use different classifiers 
to classify the extracted features. However, feature extraction from different domains has its own advantages. 
Whether combining the strengths of features from each domain can improve the recognition accuracy of motor 
imagery signals is a question worth studying. Therefore, Li et al.4 proposed a multi-domain feature fusion method 
that combines wavelet packet energy and hierarchical fuzzy entropy, and achieved a classification accuracy of 
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88.26% using an SVM classifier, verifying that the multi-domain feature fusion method has better classification 
performances. Cai et al.5 extracted linear and nonlinear features from EEG signals of each mode and used 
linear combination techniques to fuse EEG features of different modes, constructing a global feature vector, 
and achieved a classification accuracy of 86.98% using a KNN classifier. Liu et al.6 extracted multiple features 
from the frequency and time domains, and used sparse representation methods for feature fusion, achieving 
a classification accuracy of 90.875% with the Sparse Representation based Discriminant Analysis classifier ( 
SRDA ) classifier. These studies have already proven that multi-domain features are beneficial for more accurate 
classification and recognition.

In the classification phase of motor imagery EEG (MI-EEG) data analysis, nonlinear classifiers and algorithms 
from machine learning, including K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), and 
Support Vector Machines (SVM), have seen extensive application. Recently, neural network models have shown 
superior performance in handling nonlinearity and generalization compared to conventional machine learning 
approaches. Extreme Learning Machine (ELM)7 represents an efficient algorithm for single-layer feedforward 
neural networks, capable of expediting the learning process for nonlinear challenges by means of randomly 
assigning parameters to hidden layer nodes and simultaneously calculating the weights of the output layer. 
Nevertheless, conventional ELM implementations may grapple with overfitting issues stemming from the 
immutable nature of the parameters connecting the input and hidden layers. To combat this flaw, Iosifidis et al.8 
introduced the Kernel Extreme Learning Machine (KELM) as a solution. To avoid directly setting the hidden 
layer parameters, KELM used kernel tricks to map input data into a high-dimensional feature space, thereby 
improving the generalization capability of the model. However, for more complex tasks, a single kernel may not be 
sufficient to capture the multi-dimensional features of the data. Therefore, inspired by Multiple Kernel Learning 
(MKL), Liu et al.9 proposed the Multi-Kernel Extreme Learning Machine (MKELM), which enhances the model’s 
generalization capability and performance through automatic learning and optimization of the combination of 
kernel functions. The hyperparameters in MKELM include kernel parameters and kernel weight coefficients, 
and the selection of these parameters has a direct impact on the performance of the model10. Therefore, it is 
necessary to use optimization algorithms to find the optimal configuration of hyperparameters, such as Grey 
Wolf Optimization (GWO)11, Whale Optimization Algorithm (WOA)12, Harris Hawk Optimization13, and 
other heuristic learning algorithms that have shown strong optimization capabilities in recent years. The goal of 
this study is to further explore the application of MKELM in EEG signal recognition and to enhance the model’s 
performance through multi-domain feature fusion and hyperparameter optimization.

As BCI technology advances, there is a growing need to move beyond basic left-right hand motor imagery 
tasks to more sophisticated control of individual joints. The classification of single joint motor imagery (MI) tasks 
is particularly daunting due to the less distinct event-related desynchronization/synchronization (ERD/ERS)14 
patterns they generate. To enhance the accuracy of classifying multiple tasks involving single joint MI, and 
considering the richer brain information afforded by multi-domain feature fusion combined with the superior 
denoising and classification capabilities of the MKELM, this investigation employs multi-domain feature fusion 
and a RIO-MKELM to analyze multi-task MI-single joint EEG signal maps. The objective is to improve the 
classification accuracy of MI-EEG signals and enhance the usability of the system. During preprocessing, the 
Pearson correlation coefficient is utilized to sift through the Intrinsic Mode Functions (IMFs) derived from 
Improved Complete Ensemble Empirical Mode Decomposition (ICEEMD), retaining components with strong 
correlations to reconstruct the EEG signal. Furthermore, to ensure the robustness of the classification model, 
an algorithm that incorporates radius information is applied to optimize its hyperparameters. This study offers 
a structured approach to EEG signal classification within BCI systems, and by contrasting the methodologies 
employed here with other approaches, the significance of this research is underscored, contributing valuable 
insights to the field of single joint multi-task MI research.

The contributions of this paper include the following points: First, an improved Comprehensive Ensemble 
Empirical Mode Decomposition (ICEEMD) algorithm combined with the Pearson correlation coefficient is used 
for preprocessing EEG signals. After preprocessing, the accuracy rate of motor imagery recognition is improved 
by 14.07% compared to EMD, providing cleaner data for subsequent feature extraction. Second, a multi-
domain feature extraction method: A multi-domain feature extraction method that combines time-domain 
MVAR model, frequency-domain wavelet packet decomposition, and spatial-domain Riemannian geometry is 
proposed. The average classification accuracy of the feature vectors constructed by this method is improved by 
at least 2.16%. Third, feature fusion and dimensionality reduction technology: Kernel Principal Component 
Analysis (KPCA) is used to fuse and reduce the dimensionality of multi-domain features. The dimensionality 
after feature fusion is reduced by 88.1%, while maintaining a classification accuracy of over 95%. Fourth, an 
optimized multi-kernel extreme learning machine classifier: The Radius-Incorporated Multi-Kernel Extreme 
Learning Machine (RIO-MKELM) is introduced for classification. On the test set, the classification accuracy of 
RIO-MKELM reaches 95.49%, which is at least 3.51% higher than other optimized extreme learning machines.

The subsequent chapters of this paper are organized as follows: Sect. 2 provides a detailed account of the data 
collection experiment, including the design and execution of the experimental process. Section 3 outlines the 
system framework of this study, with a comprehensive introduction to the data preprocessing, time-domain, 
frequency-domain, and spatial-domain feature extraction algorithms, as well as the strategies for feature fusion 
and dimensionality reduction, and the classification recognition methods. Section 4 reports the experimental 
results and explains the theoretical and practical rationale behind the selection of algorithm parameters. Section 5 
engages in an in-depth discussion and comparative analysis of the experimental results, aiming to highlight 
the effectiveness and performance differences among various methods. Section 6 concludes the study, offering 
insights into potential future research directions and discussing the application prospects and limitations of this 
work.
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Data collection experiment
In this study, a total of 6 right-handed subjects participated in the experiment, aiming to explore the recognition 
capability of our method for different motor imagery (MI) tasks. The experiment was designed to include three 
types of motor imagery tasks: shoulder abduction, extension, and flexion. All subjects were in good health, 
ensured adequate sleep before the experiment, and were prohibited from taking medication or consuming 
stimulating beverages such as alcohol, tea, coffee, etc., within the 48 h prior to the experiment. All participants 
were informed of the purpose of the study and volunteered to participate after understanding the details. 
Everyone signed an informed consent form before the experiment, and the experiment was approved by the 
Research Ethics and Technical Safety Committee of Northeast Electric Power University.

In this experiment, the Emotiv Epoc + device was used to collect EEG signals for motor imagery. The device 
consists of 14 electrode channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) and 2 reference 
electrodes (CMS, DRL). The signal sampling frequency is 128  Hz, and the electrode placement follows the 
international 10–20 system.

During the experiment, the subjects naturally placed their hands, maintained relaxation, and tried to minimize 
body or head movements. They performed motor imagery in response to external cues. The experiment collected 
EEG data for shoulder abduction, extension, and flexion motor imagery tasks. Each subject conducted 60 sets 
of experiments, with 20 sets for each type of motor imagery task. A schematic of the experimental procedure is 
shown in Fig. 1, and the experimental setup and details are shown in Fig. 2.

Related studies15 have shown that the brain areas associated with limb motor imagery are mainly concentrated 
around the four channels F3, F4, FC5, and FC6, which are located in the central area of the brain. Therefore, 
this paper uses the EEG signals from these four channels for the recognition of the three types of motor imagery 
tasks.

Methodology
This study proposes an EEG signal recognition method based on multi-domain feature fusion and RIO-MKELM. 
Figure 3 shows the overall framework of this method. The method can be summarised into four steps: Firstly, 
preprocess the EEG signals to remove noise and artifacts. Secondly, use the multivariate autoregressive model, 

Fig. 2.  Specific Experimental Scenarios.

 

Fig. 1.  Schematic Diagram of the Experimental Process.
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wavelet packet decomposition, and Riemannian geometry methods to extract features from the time domain, 
frequency domain, and spatial domain. Thirdly, employ kernel principal component analysis (KPCA) to reduce 
the dimensionality of the feature matrix and generate a fused feature vector after dimensionality reduction. 
Finally, these feature vectors are input into the RIO-MKELM for classification, to achieve the recognition of 
EEG signals.

Preprocessing
An 8th-order Butterworth filter is used to filter the raw MI-EEG signals from 4 channels to a frequency range of 
8–30 Hz. The 8th-order Butterworth filter can effectively remove various types of noise and interference, thereby 
enhancing the signal-to-noise ratio of the EEG signals. Furthermore, the common average reference (CAR) is 
used to filter out noise from the subjects’ raw EEG signals. The MI-EEG after CAR processing for each channel 
can be expressed as:

	
xCAR

i (t) = xi(t) − 1
4

4∑
j=1

xj(t)� (1)

In the formula, xi(t) is the original MI-EEG of the ith channel, and c is the number of channels.
The purpose of applying baseline removal16 in electroencephalogram (EEG) signals is to eliminate non-

cerebral slow-varying components caused by electrode drift, skin electrical activity, environmental noise, 
etc., thereby analyzing brain electrical activity more accurately. The following are the specific steps of baseline 
removal in EEG signals:

Determining the Baseline Period: Select a period of relatively stable signal without obvious brain electrical 
activity as the baseline period. This is usually at the beginning of the experiment or a period of time before the 
stimulus event.

Calculating the Baseline Level: Average the signal within the baseline period to obtain an estimate of the 
baseline. Sometimes, more complex methods, such as a low-pass filter, can be used to estimate the baseline trend.

	 yCAR
i (t) = xCAR

i (t) − B� (2)

Subtracting the Baseline Value: Subtract the average value or estimated trend of the baseline period from the 
entire EEG signal to remove the baseline drift.

	
B = 1

256

256∑
j=1

xj(t)� (3)

The ICEEMD algorithm17 improves the accuracy and efficiency of decomposition by introducing adaptive white 
noise and an improved ensemble averaging strategy. It also includes additional steps to reduce residual noise, 
ensuring that the decomposed IMFs are purer. The ICEEMD algorithm is used to decompose the aforementioned 
filtered EEG signals, obtaining the IMFs for different motor imagery tasks from all subjects.

The formula for the ICEEMD algorithm is as follows: by adding I group high-frequency white noise to 
yCAR

i (t), a new signal yCARI
i (t) is generated.

	 yi
CARI (t) = yi

CAR (t) + βkwI � (4)

Where, wI  is a set of white Gaussian noise variables βk = εkstd(rk) is the k-th residual term, εk takes a constant 
value of ε0, and its calculation process is the reciprocal of the signal to noise ratio of the added noise (usually set 
to 0.2).

Fig. 3.  Architecture of a Multi-Class Motor Imagery Recognition Model Based on Multi-Domain Feature 
Fusion.
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Calculate the Pearson correlation coefficient between each IMF component and the original signal, and select 
the components with stronger correlation for signal reconstruction. The formula for screening using Pearson 
correlation coefficient is as follows:

	
ρ

yi(t),IMFij
= cov (yi(t), IMFij)

σ
yi(t) σIMFij

=
E

[(
yi(t) − µ

yi(t)

) (
IMFij − µIMFij

)]

σyi(t)σIMFij

� (5)

Where IMFij  represents the j-th IMF component of the i-th channel, ρ
yi(t),IMFij

 represents the Pearson 
correlation coefficient between original channel yi(t) and IMFij , cov (yi(t), IMFij) represents the covariance 
between yi(t) and IMFij ,σyi(t) represents the standard eviation ofyi(t), E(·) represents the mathematical 
expectation, and µIMFij

 represents the average amplitude of IMFij .
These IMFs are considered to be components related to specific activities or patterns within the EEG signals, 

thereby allowing for further filtering and denoising of the EEG signals.

Time-domain feature extraction based on MVAR model
The MVAR model18 is an extension of the univariate AR model and is used to extract time-domain features from 
the reconstructed EEG signal matrix. In EEG analysis, the MVAR model can be used to capture the interactions 
and synchrony between different EEG channels. The MVAR model regards the current value of each channel as a 
linear combination of all channel values at previous time points, as well as the influence of possible input signals 
and noise. A p-th order MVAR model can be described as follows:

	

Y ′(n) =
p∑

i=1




a′
1,1(i) . . . a′

1,m(i)
...

. . .
...

a′
m,1(i) · · · a′

m,m(i)







y1(n − i)
...

ym(n − i)


 +




e1(n)
...

em(n)


� (6)

The above equation can be simplified to:

	
Y ′(n) =

p∑
i=1

A′(i)Y (n − i) + E(n)� (7)

Where Y(n) is a (m∗1)order column vector representing the value of a multichannel signal at moment n,A
′
(i) 

is a predictive coefficient matrix of(m∗m), andE(n) = (e1(n), . . . , em(n))T  is the prediction error matrix.

	
E(n) =

p∑
i=0

A(i)Y (n − i)� (8)

Where:

	 A(0) = I, A(i) = −A′(i)� (9)

	

A(i) =




a1,1(i) a1,2(i) · · · · · · a1,m(i)
...

...
...

...
...

...
...

... au,v(i)
...

...
...

...
...

...
am,1(i) · · · · · · · · · am,m(i)




� (10)

Using the above steps to solve the order of the MVAR model, which is denoted as p, construct a matrix with 
coefficients of size (m2 ∗ p) as [A′(1), . . . , A′(p)], Since this study employs 4-channel EEG signals, each 
coefficient matrix is then concatenated by rows to form the reconstructed signals for n participants, resulting in 
a 4*4*p order time-domain feature vector 

→
fm var as follows:

	
→

fmvar = [a′
1,1(1), ..., a′

1,4(1), ..., a′
4,1(1), ..., a′

4,4(1), ..., a′
1,1(p), ..., a′

1,4(p), ..., a′
4,1(p), ..., a′

4,4(p)]� (11)

As shown in the Fig.  4, taking the 13th experimental data of subject A’s shoulder forward movement as an 
example, Fig. 4 describes the relationship between the matrix coefficients and the MVAR coefficients within the 
1st to 4th order (i.e., matrix coefficients ranging from 1 to 16), serving as its time-domain features.

Frequency domain feature extraction based on wavelet packet
Wavelet packet al.gorithms are a signal processing technique that extends the wavelet transform, allowing for 
more detailed time-frequency analysis of signals. Compared to standard wavelet transforms, wavelet packet 
transforms not only decompose the low-frequency part of a signal but also the high-frequency part, thereby 
providing a more flexible method for time-frequency localisation analysis. Wavelet packet al.gorithms are 
effective in extracting frequency domain features of non-stationary signals, such as electroencephalogram 
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(EEG)19.The wavelet packet decomposition method is used to extract frequency domain features from each 
channel of the preprocessed EEG signals. At the i-th level, 2i sub-bands are obtained. In this paper, 4 sub-bands 
are used, i = 2, corresponding to the calculation of the energy spectrum energy for each frequency component:

	
f(t) =

2i−1∑
j=0

fi,j(tj) = fi,0(t0) + fi,1(t1) + · · · + fi,2i−1
(
t2i−1

)
� (12)

In the formula, j = 0, 1, 2, . . . , 2i − 1, fi,j(tj) represents the reconstructed signal at node (i, j) in the wavelet 
packet decomposition at the i-th level, and the energy spectrum of f(t) is:

	
Ei,j (tj) = ∫

Γ
|fi,j (tj)|2 dt =

n∑
k=1

|xj,k|2� (13)

Fig. 4.  The relationship between MVAR coefficients and matrix coefficients in the 13th experimental data of 
subject A’s shoulder flexion.
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In the formula, Ei,j(tj) represents the band energy of the EEG signal f(t) after wavelet packet decomposition 
at node (i, j); xi,j(j = 0, 1, 2, . . . , 2i − 1; k = 1, 2 . . . n) is the discrete amplitude value of the reconstructed 
signal fi,j(tj); n is the number of signal sampling points.

Repeat the above steps cyclically, traversing other channels, and concatenate the elements of the frequency 
domain features of each channel by rows. Construct the frequency domain feature 

→
fwpd based on the energy 

spectrum energy, and obtain the 16-order frequency domain feature vector of the reconstructed signal for a 
single participant as follows:

	
→

fwpd = [E1,1, . . . , E1,2i, . . . , Em,1, . . . , Em,2i] = [E1,1, . . . , E1,4, . . . , E4,1, . . . , E4,4]� (14)

As shown in the Fig.  5, taking the 13th experimental data of subject A’s shoulder forward movement as an 
example, Fig. 5 describes the wavelet packet energy of four frequency bands across four channels, serving as its 
frequency-domain features.

Spatial domain feature extraction based on Riemannian geometry
Riemannian manifold algorithm is a signal processing method based on geometry that uses the concepts of 
Riemannian geometry to analyze and process data. In EEG signal processing, the Riemannian manifold 
algorithm can be used to extract spatial features of the signal, especially when the data distribution of the signal 
is on a nonlinear manifold. This method takes into account the intrinsic geometric structure of the data, which 
helps to uncover complex patterns and dynamics in the signal.

Fig. 5.  The wavelet packet energy in the 13th experimental data of subject A’s shoulder flexion.
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Using Riemannian manifold for spatial domain feature extraction20, this study employs the covariance matrix 
of EEG signals as the statistical feature of the data, resulting in the spatial covariance matrix of EEG signals for 
a single participant as:

	
P = 1

n − 1Y Y T � (15)

Concatenate the covariance matrices from 20 experiments to form {P1…P20}, and calculate the Riemannian 
mean φ for the 20 experiments using the following formula, which represents the Riemannian center φ :

	
φi+1 = φ

1
2
i exp

(
1
20

20∑
i=1

log
(

φ
− 1

2
i Piφ

− 1
2

i

))
φ

1
2
i � (16)

Using the AIRM metric21, the 4th-order Riemannian local difference vector is calculated using the following 
formula to represent the deviation of a single covariance matrix from its Riemannian center:

	
ζ (P1, φ) = 2P

1
2

1 log
(

P
− 1

2
1 φP

− 1
2

1

)
P

1
2

1 � (17)

That is, the spatial domain feature vector:→
frm = ζ (P1, φ)

	 = [ ζ1, ζ2, ζ3, ζ4 ]� (18)

As illustrated below, using the 13th experimental data of subject A’s shoulder protraction movement as a case 
study, Fig. 6 depicts the Riemannian geometric difference vectors for the four channels, which are considered as 
their spatial domain features.

Dimensionality reduction of fusion features based on KPCA
Concatenate the time-domain feature vector 

→
fm var, the frequency-domain feature vector 

→
fwpd, and the spatial 

domain feature vector 
→

frm to obtain the joint feature vector 
→
a :

	
→
a = [

→
fm var,

→
fwpd,

→
frm]� (19)

The joint feature vector 
→
a  is a t-dimensional feature vector extracted from the same sample data using different 

signal processing methods. It is then used to construct a label vector for subsequent classification tasks.
Repeat all the aforementioned steps to extract the time-frequency-space joint feature vectors for all samples 

of various motor imagery tasks, constructing a time-frequency-space joint feature matrix T. Each row of the 
matrix represents the joint feature vector of a sample:

	 T = [→
a1; →

a2; . . .; →
ab]� (20)

Perform KPCA22 on the joint feature matrix T, projecting it into a linearly separable high-dimensional space 
using a kernel function for KPCA. The obtained principal component coefficient matrix Coeff  is as follows:

	

Coeff =




kp1,1 kp1,2 . kp1,t

kp2,1 kp2,2 . kp2,t

. . . .
kpt,1 kpt,2 . kpt,t




T

� (21)

During principal component analysis, the sample covariance matrix can be obtained, which is composed of 
eigenvalues as column vectors and arranged in descending order. This yields eigenvalues λ1 ⩾ λ2 ⩾ · · · ⩾ λt 

and their corresponding eigenvectors. The ratio λk/
t∑

k=1
λk  reflects the contribution rate of the k-th principal 

component in the generated feature space. According to the formula for cumulative contribution rate of 
eigenvalue variance, the number of kernel principal components c is determined. The calculation formula is as 
follows:

	
E =

∑s

i−1 |λi|∑t

i−1 |λi|
≥ 85%� (22)

Select the number of principal components based on the principle that the cumulative contribution rate exceeds 
85%. When the number of principal components is c, the cumulative contribution rate exceeds 85%, so the 
number of principal components is determined to be c. Select the first c principal components to construct the 
principal component coefficient matrix t ∗ c:
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Coeff ′ =




kp1,1 kp1,2 · · · kp1,c

kp2,1 kp2,2 · · · kp2,c

. . . . . . . . . . . .
kpt,1 kpt,2 · · · kpt,c




T

� (23)

By projecting each sample’s constructed joint feature vector onto the principal component coefficient matrix, the 
reduced-dimensional fusion feature vector 

→
a′ ∈ R1∗c can be obtained.

	

→
a′ =

→
a ∗Coeff ′ =

→
a ∗




kp1,1 kp1,2 · · · kp1,c

kp2,1 kp2,2 · · · kp2,c

. . . . . . . . . . . .
kpt,1 kpt,2 · · · kpt,c


 ∈ R1∗c� (24)

RIO-MKELM
Radius Information Optimization (RIO) is an optimization method that takes into account the relative distances 
between samples. In RIO-MKELM, this optimisation method is used to adjust the parameters of the kernel 
function and can also be used to modify the activation function of hidden layer neurons to better capture the 
local structure of the data.

RIO-MKELM9 combines the flexibility of multi-kernel learning with the training speed of ELM, while 
enhancing the model’s generalization capability and prediction accuracy through radius information 
optimisation. This algorithm is suitable for application scenarios that require fast training and high performance 
of the model.

The formula for the Radius-incorporated MK-ELM is as follows:

Fig. 6.  The Riemannian geometric difference vectors of the 13th experimental data for subject A’s shoulder 
flexion movement.
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min
β,ξ

1
2 ∥β∥2

F + C

2

n∑
i=1

∥ξ.i∥2 s.t.βT ϕ(xi) = yi − ξi, ∀i� (25)

{(xi, yi)}n
i=1 is a training set, ϕ(xi)(i = 1, . . . , n) is a feature mapping for Xi.β ∈ R|ϕ(·)|∗T  is the output 

weight. ξ ∈ RT ∗n is the training error matrix on the training data.ξ·i = [ξ1i, ξ2i, . . ., ξT i]T (1 ⩽ i ⩽ n) is the 
first column of ξ.yi = [0, . . ., 0, 1t, 0, . . ., 0]T ∈ {0, 1}T If Xi belongs to the t-th class. n and T are the numbers 
of training samples and classes, respectively. C is a regularization parameter that balances the norm of the output 
weights and the training error matrix. ∥ ·∥F  is the F-norm.

Input the initial parameters, including various types of kernel functions, class labels, and a regularization 
parameter that balances the norm of the output weights and the training error matrix. Initialize the weight 
parameters of the kernel combination function and the number of iterations, and calculate the radius Rp of the 
Maximum Envelope Ball (MEB) in the induced feature space using the kernel function. Cycle through iterations 
to calculate the combination parameters of the kernel functions and the types of kernel functions, updating the 
structural parameters α of ELM and the combination weights γ of the kernel functions, with the formulas as 
follows:

	
α =

(
K(·, ·; γ) + 1

C

)−1
Y T � (26)

	
γp = ∥ β̃p∥F

Rp

∑m

p=1 Rp ∥ β̃p∥F

, ∀p,� (27)

Until the maximum difference between the sum function combination weights γ is less than or equal to 10− 4, 
output all the optimal parameters to obtain the best kernel extreme learning machine classification model.

Results
In this study, the computer system configuration used is as follows: the operating system is Windows 10 64-bit, 
equipped with an Intel® Core i5-1155G7 processor, and 16.0 GB of random access memory (RAM). In terms of 
programming language, we chose MATLAB 2023a version for development and used auxiliary tools such as 
the EEGlab 7.0 toolbox in the data analysis process. Additionally, the device is also equipped with an RTX 3050 
graphics card and a 512GB solid-state drive (SSD).

Performance of preprocessing denoising
To illustrate the efficacy of the preprocessing technique adopted in this research, it was juxtaposed against various 
decomposition techniques such as EMD, VMD and LMD. Figure 7(a), (b), (c) and (d) display the decomposition 
outcomes of these four methodologies when applied to a consistent segment of EEG data. A comparative 
analysis of the decomposition results depicted in these figures reveals that the preprocessing technique utilized 
in this study is superior in capturing subtle fluctuations and nuances, minimizing endpoint effects and mode 
mixing, and isolating IMFs of higher purity. In the context of EEG signal processing, the preprocessing approach 
demonstrated in this study demonstrates a higher degree of adaptability to variations in signal morphology 
and amplitude than other adaptive mode decomposition techniques, leading to a reduction in decomposition 
errors, an enhancement of noise attenuation, and an overall improvement in the robustness and fidelity of the 
decomposition outcomes.

Noise reduction based on ICEEMD
The individual differences in MI-EEG signals and the variations in experimental conditions may result in 
inconsistent numbers of IMFs obtained through the ICEEMD algorithm across different situations. However, 
statistical analysis of the experimental results shows that starting from the third IMF component, the Pearson 
correlation coefficient with the original signal is generally below 0.2, as indicated by studies23, suggesting a low 
correlation between these components and the original signal. In contrast, the Pearson correlation coefficients 
for the first two IMF components range between 0.6 and 1.0, showing a higher correlation.

Taking the data from 20 experiments of shoulder abduction motor imagery from the first subject as an 
example, Fig. 8(a), (b), (c) and (d) show three-dimensional line graphs of the Pearson correlation coefficients 
between the IMF components and the original data for the four electrode channels.

Selection of the order of the MVAR model
This study uses the normalized local weighted regression (LWR) algorithm to estimate the coefficients of the 1st 
to 10th order MVAR, and selects the optimal model order p by minimizing the Akaike Information Criterion 
(AIC). The smaller the AIC value, the better the model fits the data, and at the same time, the lower the complexity 
of the model. Through the calculation and analysis of experimental data, we found that among different orders p, 
the AIC value is smallest when p takes the values of 3, 4, and 5. Figure 9 illustrates the change in AIC coefficients 
with the order of the MVAR model for the 20th trial of shoulder extension for the second subject. However, in all 
experimental calculations, the proportion of cases where the AIC value is smallest when choosing p = 4 exceeds 
90%. Therefore, we choose p = 4 as the final order of the MVAR model.
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Performance of multi-domain feature fusion
As shown in Fig. 10, there is a higher degree of confusion between shoulder extension and shoulder abduction 
motor imagery. The classification accuracy of shoulder extension motor imagery is relatively high, reaching 
95.49%. In addition, the feature extraction method proposed in this paper can significantly reduce the error rate 
of the three types of motor imagery. This indicates that through the method of multi-domain feature fusion, it 
is possible to extract more discriminative fusion features from the original EEG signals, thereby improving the 
recognition rate of various motor imagery categories.

As shown in the three Fig. 11(a), (b), and (c) above, the ROC curves for Flexicon, Extension, and Abduction 
are displayed, respectively. The X-axis represents the False Positive Rate (FPR), ranging from 0 to 1. The Y-axis 
represents the True Positive Rate (TPR), also known as recall or sensitivity, with the same range from 0 to 1. 
The actual ROC curve illustrates the performance of the classifier at different threshold settings. The closer this 
curve is to the top-left corner, the better the performance of the classifier. The red dots mark the coordinates of 
specific points. The AUC value is the area under this ROC curve and is commonly used to quantify the overall 
performance of the classifier. A higher AUC value indicates better classifier performance. Overall, these three 
graphs show a ROC curve with a high AUC value, suggesting that the classifier has a strong ability to distinguish 
between positive and negative cases.

Here is a table comparing the accuracy of different methods. The Table 1 lists three different methods and 
their combinations, and compares their accuracy on a certain task. Each method has a corresponding accuracy 
percentage, which is indicated in the respective row. Through these data, one can visually see the performance 
differences of each method and compare which single or combined method performs the best.

As shown in Table 1, the table lists the classification accuracy rates of the time-domain, frequency-domain, 
and spatial-domain algorithms used in this paper, as well as their combinations. Among them, when using a 
single domain, the average classification accuracy rates for motor imagery are 91.26%, 81.22%, and 90.24%, 

Fig. 7.  The Outcomes of These Four Methodologies When Applied to a Consistent Segment of EEG Data.
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respectively. When using any combination of two domains, the accuracy rates are 90.24%, 92.35%, and 92.87%, 
respectively, which are higher than those of the single-domain accuracy rates. When using the fusion of time-
frequency-spatial multi-domain features, the average accuracy rate is 95.49%, which is higher than the accuracy 
rate of combining two domains and significantly higher than that of a single domain. Therefore, the feature 
extraction method of multi-domain feature fusion can greatly improve the classification accuracy.

Fusion features constructed based on KPCA
Figure 12 illustrates the distribution of feature points after fusion and dimensionality reduction using KPCA, 
showing that the data points exhibit a certain regularity, are more dispersed, and the separation between classes 
has been significantly improved. This indicates that KPCA can effectively distinguish the principal component 
features of shoulder flexion, shoulder extension, and shoulder abduction, thereby enhancing the recognition 
effect.

Through the analysis of visualized images, it can be concluded that KPCA performs well in feature fusion and 
dimensionality reduction.

The results of KPCA feature fusion
To demonstrate the specific improvements of KPCA on fusion features, this study employed the Calinski-
Harabasz index (CH) to evaluate the fusion features before and after processing with PCA, t-SNE and KPCA.
The evaluation results, as shown in Table 2, indicate that the t-SNE, PCA and KPCA algorithms all significantly 
improve the Calinski-Harabasz index value of the fusion features. Among these, KPCA demonstrates the most 
significant improvement in the fusion features, with the largest increase in the Calinski-Harabasz index, further 
confirming the excellent performance of KPCA in fusion dimensionality reduction.

Fig. 8.  Line Chart of Pearson Correlation Coefficients for IMF Components of Channels F3, F4, FC5, and FC6.
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Optimization of performance with incorporation of radius information optimization 
algorithm
In order to assess the proficiency of Radius Information Optimization (RIO) in parameter optimisation, it was 
benchmarked against the Grey Wolf Optimization (GWO) and the Whale Optimisation Algorithm (WOA). To 
mitigate any potential comparative bias and to maintain a level playing field, the evaluation utilized two distinct 
training datasets of varying sizes (N = 30 and N = 60). Moreover, all optimisation methods were initialised with 
identical parameter configurations and subjected to the same number of iterative cycles. As a case study, subject 
S9 was selected, and Fig. 13 (a) and (b) present the iterative performance of the MKELM model when optimised 
by different algorithms, using both small and large training datasets for MI-EEG tasks.

It is suggested by the analysis of Fig. 13 (a) and (b) that the RIO-MKELM approach consistently achieves 
more rapid convergence and lower fitness values across different training data volumes, outperforming the 
GWO and WOA methods. Additionally, a side-by-side comparison of these figures reveals that while expanding 
the training dataset size does accelerate the convergence of both GWO and WOA, the effect on the RIO is 
notably less pronounced. This observation suggests that variations in training data have a minimal impact 
on the optimization efficacy of RIO-MKELM, underscoring its stability and effectiveness in tuning MKELM 
parameters.

As shown in Table 3, C represents the regularization parameter, λ₂, λ₃, and λ₄ are coefficients of the weight 
decay term, also known as the L2 regularization weights. γ is associated with the Radial Basis Function (RBF) 
kernel and determines the width of the RBF kernel. The larger the γ, the narrower the RBF kernel; the smaller the 
γ, the wider the RBF kernel. σ is related to Gaussian noise, and β represents the scale factor.

The classification performance of RIO-MKELM
The extracted time, frequency, and spatial features are fused to obtain the fusion features, which are then used 
to train the constructed RIO-MKELM model, the selection of the base kernel for RIO-MKELM is based on 
the research in24. Due to the small scale of the dataset collected, in order to prevent overfitting of the model, 
the collected data was used to train the established model multiple times. In addition, in order to select the 
optimal model and further improve the recognition effect of the model, five-fold cross-validation was adopted 
during the training process (where RIO-MKELM-Kn represents the RIO-MKELM model corresponding to each 
fold, n = 1,2,…,5). Figure 14 illustrates the training process of each model corresponding to each fold of cross-
validation, where each model undergoes 50 rounds of iteration with all the training data. From this figure, 

Fig. 9.  Variation of AIC Coefficients with the Order of the MVAR Model for the 20 Trials of Shoulder 
Extension for Subject 2.
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it can be observed that after multiple rounds of training under each fold of cross-validation, the recognition 
effect of each model has reached 85% or more and tends to stabilize, indicating that the model has been trained 
successfully and possesses good recognition performance. Based on this, the structural parameters of each 
model corresponding to each fold are summed and averaged to enhance the robustness of the model.

The Table 4 is a summary of the evaluation metrics including accuracy, sensitivity, specificity, recall rate, 
and F1 score for all participants, along with their averages. From the chart, it can be observed that the average 

Fig. 11.  Flexicon’s ROC curve, Extension’s ROC curve and Abduction’s ROC curve.

 

Fig. 10.  Confusion Matrix for EEG Category Based on Different Feature Extraction Methods.

 

Scientific Reports |         (2025) 15:6601 14| https://doi.org/10.1038/s41598-025-87569-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


accuracy, average sensitivity, average specificity, average recall rate, and average F1 score for the six participants 
are 95.49%, 97.88%, 98.12%, 97.88%, and 96.67% respectively. Taking shoulder abduction as an example, each 
cell in the Table 4 represents the average of 20 trials of shoulder abduction movements for each participant.

Discussion
Accuracy comparison
To validate the performance of the feature extraction method in this study compared to multi-domain feature 
extraction methods in other literature, this study conducted a comparison of accuracy rates. Under the condition 
of keeping other factors unchanged, only the multi-domain feature extraction algorithm was changed. From 
the comparison results in Table 5, it can be seen that the method proposed in this topic is superior in terms of 
accuracy compared to other multi-domain feature fusion methods. This indicates that the feature extraction 
method in this study has good performance in handling multi-domain data.

Subject

Calinski-Harabasz index

Before After t-SNE After PCA After KPCA

S1 13.56 18.45 17.79 25.56

S2 15.06 21.63 20.58 35.95

S3 6.87 10.39 12.86 15.29

S4 15.93 21.76 23.32 28.04

S5 6.85 9.89 9.16 15.82

S6 6.72 11.67 11.42 16.61

Mean 10.83 15.63 15.85 22.88

Table 2.  Calinski-Harabasz index for all subjects’ Fusion features before and after Fusion Dimensionality 
reduction with t-SNE, PCA and KPCA.

 

Fig. 12.  Three-Dimensional Scatter Plot After KPCA Fusion and Dimensionality Reduction.

 

Methods MVAR
Wavelet 
Packet

Riemannian 
geometry

MVAR + Wavelet 
Packet

MVAR + Riemannian 
geometry

Wavelet 
Packet + Riemannian 
geometry

MVAR + Wavelet 
Packet + Riemannian 
geometry

Accuracy 91.26% 81.22% 90.24% 92.35% 92.87% 93.55% 95.49%

Table 1.  The preparation rates of MVAR, Wavelet Packet, and Riemannian geometry methods, as well as the 
accuracy rates of their combined methods.
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Comparison of classifier classification
To assess the accuracy of the proposed model (MKELM) across various motor imagery tasks, it was compared 
with models such as KNN25, LDA26, ELM27, SVM28 and LSSVM29.These comparisons are aimed at further 
testing the superiority of our method in the classification of MI-EEG signals.

For all experimental samples of each subject, this study used 70% of the samples for training and the 
remaining 30% for testing. Through the application of a suite of evaluation criteria, encompassing recognition 
accuracy, F1-Score and time efficiency, a thorough performance analysis of the model was conducted.

For imbalanced datasets, the F1-Score is typically a better indicator of model performance than a single 
measure of accuracy. Figure 15 (a) and (b) respectively present histograms for the MKELM model and other 
classification models in terms of average recognition accuracy and average F1-Score, including error bars to 
represent statistical uncertainty. In these two figures, we can observe the performance of recognition accuracy 
and F1-Score for six different models.

By comparing the results in Fig. 15 (a) and (b), it is clearly observed that, in terms of recognition accuracy 
and F1-Score, the MKELM model significantly outperforms traditional models such as KNN, LDA, LSSVM 
and ELM. This result indicates that in the task of EEG signal classification, the MKELM model exhibits superior 
classification performance. In addition, it was found that the MKELM model exhibited the smallest fluctuations 
in both recognition accuracy and F1 score, indicating that the model has strong robustness and is better able to 
adapt to complex data distributions, thereby achieving superior performance in classification tasks.

Through comparison with traditional models such as KNN, LDA, ELM, SVM and LSSVM, MKELM has 
shown outstanding performance in terms of recognition accuracy and F1-Score, confirming its advantage in 
classification performance. Figure 16 shows the average time consumption of the six models. It can be seen 
from the figure that the time consumption of MKELM is relatively close to that of KNN, LDA, ELM, SVM and 
LSSVM. The running time of MKELM remains within an acceptable range, making it attractive for practical 
applications in brain-computer interface edge computing scenarios.

The limitations and future prospects of this study
The limitations of this paper lie in the fact that the process of feature fusion and optimization of the multi-core 
extreme learning machine may require considerable computational resources, especially when dealing with large 
amounts of data; although this method is suitable for real-time monitoring, the technical challenges of real-
time processing of EEG signals and rapid response still exist. The future prospects are that we plan to reduce 
computational costs and complexity through optimization algorithms to ensure operation even on devices with 

Subject

Hyperparameters of MKELM

C λ₂ γ λ₃ σ λ₄ β

A 508.29 0.64 15 0.45 468.65 0.35 176.88

B 430.62 0.55 11 0.41 571.46 0.03 276.75

C 600.55 0.24 17 0.78 579.48 0.13 140.78

D 430.76 0.88 17 0.35 671.13 0.03 376.75

E 600.97 0.24 21 0.88 769.38 0.33 139.88

F 527.21 0.25 19 0.78 669.96 0.23 156.38

Table 3.  Corresponding hyperparameter setting values of MKELM for each trial participant.

 

Fig. 13.  Fitness change curves of three optimization algorithms with N = 30, 60.
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Method Accuracy (%)

Wavelet Packet Energy + Hierarchical Fuzzy Entropy4 88.26

Linear + Nonlinear Features5 86.98

Multiple Features in the Frequency and Time Domains6 90.875

AR + VMD-BIS + CSP22 93.33

The method proposed in this study 95.49

Table 5.  Comparison of classification accuracy between the Method proposed in this paper and other Multi-
feature Fusion methods.

 

Subject A (%) B (%) C (%) D (%) E (%) F (%) Mean (%)

Accuracy 93.74 95.83 94.68 95.16 95.99 97.54 95.49

Sensitivity 98.15 95.98 98.82 98.50 98.38 97.47 97.88

Specificity 98.26 96.09 99.25 99.22 97.62 98.41 98.12

Recall 98.15 95.98 98.82 98.50 98.38 97.47 97.88

F1 Score 95.89 95.90 96.71 96.80 97.17 97.50 96.67

Table 4.  The accuracy, sensitivity, specificity, recall rate, and F1 score of all participants, as well as the average 
of all participants.

 

Fig. 14.  Average Classification Accuracy of Six Subjects.
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Fig. 16.  Average Time Consumption of Six Models.

 

Fig. 15.  Histogram of Average Recognition Accuracy and Average F1-Score for MKELM and Other 
Classification Models (with Error Bars).
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limited resources, and utilize cloud computing and distributed computing resources to handle large-scale data. 
At the same time, we are committed to improving the real-time performance of EEG signal processing to meet 
the needs of real-time monitoring and feedback systems, researching low-latency signal processing and machine 
learning algorithms. We believe that through these efforts, our research results will provide more enriched 
information and offer a clearer background for the significance and practical application of the study.

Generalization validation
Leave-One-Out Cross-Validation (LOOCV) is a method of cross-validation, primarily used to evaluate the 
performance of a model on a limited dataset. In Leave-One-Out Cross-Validation, each time one sample is used 
as the validation set, and the rest of the samples are used as the training set. This process is repeated once for each 
sample, so if there are N samples, there will be N iterations of training and validation30.

Leave-One-Out Cross-Validation (LOOCV) operates as follows: for each sample in the dataset, it is used 
as the validation set, while the remaining N-1 samples form the training set; then, the model is trained on 
the training set and its performance is evaluated on the validation set; this process is repeated once for each 
sample, and the overall performance of the model is estimated by calculating the average performance of all N 
evaluations. LOOCV is particularly suitable for situations where the number of samples is limited, although it 
is more computationally expensive than other methods such as k-fold cross-validation, as it requires training 
a model for each individual sample. However, since it uses almost all the data to train the model, LOOCV can 
provide an unbiased estimate of the model’s performance.

Therefore, in our experiment, we sequentially use one of A-F as the test set, with the remainder used as the 
training set. The 1–6 rounds in the Table 6 represent the results of us using one of A-F as the test set in turn, 
with the rest as the training set (one-to-one correspondence, A corresponds to 1, B corresponds to 2, …, 6 
corresponds to F).

As shown in the Table 6, the results range from 95.08 to 95.84%, with a standard deviation of 0.259, which is 
also a very small number. Therefore, the dependence of the data on the subjects can be neglected, proving that 
the method proposed in this paper has good generalizability.

The application of this study to healthcare
In applying the EEG signal recognition method based on multi-domain feature fusion and optimized multi-
core extreme learning machines to the healthcare field, we take the following steps: First, extract multi-domain 
features related to motor imagery from EEG signals, including time-domain, frequency-domain, and time-
frequency domain features; then, fuse these features to enhance the information content and interpretability of 
the signals; next, train the fused features using a multi-core extreme learning machine and improve the model’s 
recognition accuracy and generalization capability through optimization algorithms; finally, apply the trained 
model to clinical scenarios such as assistive communication, rehabilitation training, and disease diagnosis. 
Through these steps, the method can help healthcare providers gain a deeper understanding of patients’ brain 
activities, thereby offering more precise and personalized treatment options for patients.

Conclusion
This study proposes an EEG signal recognition method based on multi-domain feature fusion and optimized 
MKELM, which has been tested on a collected dataset of three types of shoulder joint motor imagery and 
compared with current classification models. The results demonstrate the method’s strong recognition ability, 
which is significant for advancing the practical application of single-joint MI-BCI. The contributions of this 
study are as follows: Firstly, a time-frequency-space multi-domain feature extraction method combining 
MVAR, wavelet packet, and Riemannian manifold is introduced, which not only comprehensively captures 
the multifaceted information of brain activity during motor imagery, including temporal dynamics, frequency 
energy distribution, and spatial activity patterns, but also, as evidenced by experimental data, the classification 
accuracy of the fusion method used is higher than that of some previous methods. Secondly, a KPCA fusion 
dimensionality reduction method is proposed to enhance data separability, making it easier to distinguish data 
points even in high-dimensional space, which is very beneficial for subsequent clustering and classification 
tasks. Lastly, an algorithm incorporating radius optimization is proposed to optimize the hyperparameters of 
MKELM, which, as compared with other algorithms under different training scales, has proven to be efficient in 
optimization and effectively avoids the random impact of manual selection of MKELM hyperparameters.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due [The data set is a com-
pany secret] but are available from the corresponding author on reasonable request. E-mail:13944946325@163.
com.
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Round 1 2 3 4 5 6 Standard Deviation

Accuracy 95.84% 95.42% 95.65% 95.56% 95.39% 95.08% 0.259

Table 6.  The accuracy rate for each round and the standard deviation for all rounds.
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