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Effective classification and identification algorithms of small fishing vessels are the key to strengthen 
ship management. This paper proposes a classification and recognition method for small fishing 
boats based on GASF sequence diagram coding, addressing the complex and challenging recognition 
environment. The method focuses on four typical small fishing vessels, utilizing Gramian Summation 
Angular Field (GASF) time series images and the Efficiency MPViT (EMPViT) model. Unlike traditional 
approaches, this study initially employs a high-precision laser sensor to gather one-dimensional 
contour data of fishing boats. Subsequently, the polynomial fitting method is used to delineate the 
shape of the fishing boat contour, which is then encoded into a two-dimensional time series image 
using the GASF encoding method. The enhanced EMPViT model is then applied to classify and identify 
small fishing vessels, with the results verified through ablation experiments. These experiments 
demonstrate that the EMPViT model surpasses traditional neural network models such as CNN and ViT 
in both accuracy and performance, achieving a peak accuracy of 99.98%.

Keywords  GASF time series images, One-dimensional time series coding, Polynomial fitting, Classification 
and recognition of small fishing boats, EMPViT deep learning model

Ship identification is essential for detecting illegal vessels and pinpointing unauthorized activities by ship type. 
In the realm of fishing vessel management, the identification of fishing vessels plays a crucial role in enhancing 
sea area management and safeguarding marine resources1. Small fishing vessels, typically with a displacement 
of less than 50 tons, are prevalent in offshore and inland waterways worldwide. As shipping and fisheries rapidly 
develop, the management of waterways and fisheries faces significant challenges, highlighting the urgent need for 
informatization and automation in the management and monitoring of small fishing vessels. Currently, fishing 
vessel target detection primarily employs methods and technologies based on radar scanning, the Automatic 
Identification System (AIS), and optical imaging, each presenting limitations.

The radar system, which operates by transmitting electromagnetic waves, can detect vessels in all weather 
conditions. However, due to their minimal reflective cross-section and low height, small fishing vessels often 
evade detection by conventional radar. The AIS, an automatic tracking system equipped with transceivers on 
ships, collects and provides information such as position, heading, and speed. This system necessitates open 
and cooperative sharing of information, rendering it ineffective for vessels that cannot share their data2. Optical 
imaging systems, which include visible light CCTV and infrared systems, frequently suffer from interference 
caused by reflections in the water or adverse weather conditions, leading to poor detection results. With the 
application and development of laser sensors, different feature information of fishing boat types can be collected 
through laser sensors, breaking the dependence on optical system image data samples and having stronger data 
stability and environmental resistance to interference. In fishing boat classification and recognition, different 
data of small fishing boats with different materials and outlines can be collected through laser sensors, achieving 
a high-quality data set collection, which is beneficial to the learning and training process of deep learning 
models. Therefore, this study introduces a new method for the classification and recognition of diverse ship 
hull contours using infrared laser sensors. This approach, based on varied data models, aims to enhance the 
robustness of the detection system.

Laser sensors are currently widely utilized in various applications including obstacle detection and 
recognition, environmental reconstruction, and the recognition of unmanned vehicles or ground mobile robots3. 
With the ongoing advancement and refinement of deep neural network algorithms, deep learning technologies 
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based on laser data have reached a mature stage4,5. Consequently, this study explores the use of deep learning 
models that utilize laser sensors for the identification of small fishing boats. As illustrated in Fig. 1, different 
types of fishing boats exhibit variations in size, shape, and materials. These distinct characteristics influence the 
shape and distribution of laser spots produced during ship scans. This research introduces a recognition method 
for small fishing vessels based on the Gramian Summation Angular Field (GASF) sequence diagram and the 
EMPViT model. 

In this approach, sequence laser points are encoded using the Gramian Summation Angular Field (GASF), 
resulting in the generation of GASF two-dimensional color time series images. GASF encoding expands the scale 
and dimension of one-dimensional contour data features of small fishing boats, enhancing the neural network 
model’s sensitivity to varying fishing boat contour features6. Additionally, this paper introduces an improved 
MPViT neural network model, the EMPViT, which not only enhances the classification and recognition 
effectiveness of fishing boats but also reduces the complexity and training time of the model.

Research on fishing boat recognition is broadly categorized into two main approaches: traditional machine 
learning methods and deep learning methods for ship recognition7. Xia et al.8 developed a ship detection 
algorithm for optical remote sensing images based on a dynamic fusion model that utilizes multiple features 
and variance features, employing a Support Vector Machine (SVM) based on geometric features for training and 
prediction. Damastuti et al. conducted an experiment using a real-time AIS database, classifying fishing vessels 
in Indonesian waters based on tonnage, length, and width using KNN and neighborhood component analysis9. 
To ensure reliable and timely identification of ship targets in maritime battlefields, Guo et al. proposed a ship 
identification method based on the entropy of optical remote sensing data. This method constructs a decision 
tree based on hierarchical discriminant regression according to information entropy to identify different small 
fishing boats in optical remote sensing data10.

Compared to conventional machine learning techniques, some researchers have integrated traditional 
algorithms with machine learning to enhance benefits and boost target recognition performance. Han et al. 
introduced a hierarchical target recognition method based on fractal analysis of evidence, addressing the 
challenge of incomplete images11. Zhu et al. developed a ship detection approach that utilizes shape and texture 
features for optical image recognition of ships, employing a novel semi-supervised hierarchical classification 
method to distinguish between small and non-small fishing vessels, significantly reducing false positives12. Khan 
introduced a recognition method for small fishing boats using histograms of oriented gradients and bag of words 
for infrared images, demonstrating its superiority over other algorithms through empirical testing.

Furthermore, various researchers have devised effective small fishing boat recognition models using diverse 
algorithms, yielding commendable results13. Zhang et al. proposed a ship recognition method based on Bayesian 
inference and evidence theory, validated in simulated battle scenarios, showing notable performance advantages 
in recognition accuracy over other methods14. Wang et al. introduced a support vector regression (SVR) 
recognition method enhanced by an improved particle swarm optimization (PSO) algorithm to address issues 
of model inaccuracy.

Beyond machine learning, deep learning has rapidly advanced, with numerous methods applied to ship 
imagery for target recognition15. Liu et al. enhanced a convolutional neural network (CNN) to improve ship 
detection under varying weather conditions16. Chen et al. introduced a new deep learning framework for 
small fishing boat type recognition, termed coarse-fine cascade CNN, and validated the model’s performance 
through experimental analysis17. Huang et al. developed a ship detection method based on deep learning to 
address the challenge of detecting ships of various sizes and types in complex sea conditions, enhancing the 
convolutional network18. As Synthetic Aperture Radar (SAR) image resolution has improved, Dong et al. 
proposed a high-resolution SAR image ship classification framework based on a deep residual network19. Lang 
et al. designed a neural network-based method for infrared intrusion target detection and classification, tailored 
to the characteristics and detection difficulties of small fishing boats in infrared images20. Ma et al. introduced 
a novel concept utilizing an improved YOLO v3 and KCF algorithm for accurate identification and authenticity 

Fig. 1.  Four different types of small fishing boats. (a) Small alloy fishing boats (b) wooden fishing boats (c) 
rubber inflatable fishing boats (d) PE plastic fishing boats.
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verification of water targets21. Deep learning methods often provide superior accuracy and efficiency but 
typically require extensive labeled data and substantial computational resources. Addressing the challenges of 
inadequate labeled data, unoptimized polarimetric images, and noise interference in ship classification, Jeon et 
al. combined CNN and KNN models to enhance the classification efficiency of small fishing boats, particularly 
useful for datasets of limited size22. Mishra et al. explored transfer learning in CNNs, applying it to AlexNet, 
VGGNet, and ResNet architectures for ship classification tasks on the Miracle dataset23. Li et al. proposed a small 
fishing boat recognition method using a ResNet neural network and transfer learning24.

The Transformer, a novel deep learning model, surpasses traditional convolutional neural networks (CNNs) 
in performance despite its relatively recent development. Initially dominating the field of natural language 
processing (NLP) due to its high-performance recognition capabilities, the Transformer model has gained 
prominence in Computer Vision (CV), challenging the long-established dominance of CNNs. Researchers 
have started investigating Transformers for applications in small fishing boat detection. For instance, Wang et 
al. utilized the Vision Transformer (ViT) model for small fishing boat recognition, creating an image dataset 
comprising four distinct classes. Pre-training on ImageNet addressed the issues of model complexity and data 
scarcity, resulting in a 4.45% improvement in verification accuracy. Exploring the scalability of Transformers, 
Gao et al. introduced an enhanced architecture, the variant Swin Transformer, which incorporates a novel 
window shifting scheme to improve feature transformation between windows, enhancing the framework’s 
efficacy in defect detection. The comprehensive framework, named Cas-VSwin Transformer, outperforms most 
existing models25. Lee et al. developed the multi-path Vision Transformer (MPViT) model, which diverges from 
conventional Transformers by incorporating multi-scale path embedding and a multi-path structure, addressing 
the limitations of models that overlook local features and enhancing overall performance26.

In this study, the one-dimensional contour of a small fishing boat is captured using a high-precision 
laser sensor, with the data subsequently fitted using polynomial methods. The Gramian Summation Angular 
Field (GASF) coding method then generates GASF two-dimensional time series images, enhancing feature 
differentiation in terms of scale and dimension. This study further refines the MPViT model into the EMPViT 
model, achieving superior accuracy and reduced computational demands. “Introduction” introduces the research 
background and methodology. “Model approach” section details the proposed image recognition method for 
small fishing boats.   “Experiment” section elaborates on the experimental process and results, including the 
setup of the experimental environment, data preparation, and analysis of the findings.  “Conclusion” section 
concludes the paper.

Model approach
The SICK laser contour sensor is utilized to capture the contour data of various small fishing boats, which are then 
encoded into time series images using the Gramian Summation Angular Field (GASF) method. These images 
serve as input for the EMPViT neural network model during pre-training. Subsequently, the trained EMPViT 
model is employed to enhance the recognition of small fishing boats. This study is conducted in three distinct 
phases. Initially, the contour data of different fishing vessels are collected using SICK laser contour scanning 
equipment and are modeled into one-dimensional curves through polynomial fitting. In the second phase, 
the fitted curve data are treated as one-dimensional time series and transformed into GASF two-dimensional 
time series images. In the final phase, the MPViT neural network model is advanced to the EMPViT model, 
facilitating rapid classification and recognition of small fishing boats via GASF two-dimensional time series 
images. The efficacy of this methodology is substantiated through experimental validation. The workflow of this 
study is depicted in Fig. 2. 

Polynomial fitting to 1D contour data
Since the contour data of fishing boats encompass a full 360-degree range, the surround data from different 
directions are concatenated into one-dimensional contour data. This approach maximizes the retention of the 
distinctive characteristics of various fishing boats.

Due to the dispersion in the original ship contour data, which includes substantial amounts of invalid 
information, the data must undergo fitting and cleaning. To ensure the accuracy of the fitting results, isolated 
scattering points that are distant from the main contour are removed prior to fitting. The contour data of the 
cleaned small fishing boat is then fitted using a polynomial curve fitting algorithm. The specific process of fitting 
is detailed as follows27:

The polynomial curve fitting method was used to fit the scattered data close to the curve. For a set of data 
A = {(u0, v0) , (u1.v1) , . . . (uk−1, vk−1)} , k ∈ N*, the polynomial that best fits the data is:

Fig. 2.  Flow chart of our method.
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	 u = c0 + c1v + · · · + cmvm, m ∈ N � (1)

The sum of squares of errors is expressed as:

	
R2 =

∑
k
i=1[yi − (c0 + c1vi + · · · + cmvm

i )]2� (2)

By calculating the partial derivatives of the equation and using the Van der Monde matrix for simplification, we 
obtained the bounding values, resulting in Eq. (3). 
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Equation (3) can be abbreviated as Eq. (4): 

	 V ∗ C = U � (4)

In Eq.  (4), V, Cand U represent the three matrices in Eq.  (3), and the coefficient matrix is derived from the 
desired fitting curve. After applying the fitting algorithm to fit the original contour data, as shown in Fig. 3, all 
fitting results were obtained.

Fig. 3.   Data of four types of small fishing boats. (a) Small alloy fishing boats (b) wooden fishing boats (c) 
rubber inflatable fishing boats (d)PE plastic fishing boats.
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Polynomial fitting data stitching
After fitting all segments of the fishing boat contour data, the results are concatenated and treated as a one-
dimensional time series suitable for encoding. The fitted results are stitched together in the sequence that matches 
the actual contour of the fishing vessel. During the splicing process, the intersection points of the fitting result 
equations serve as connection points, ensuring that the fitted segments are seamlessly joined into a continuous 
result28. The specific effect of this connection is illustrated in Fig. 4. 

GASF 2D time series images encoded by 1D stitching data
Gramian Angular Field (GAF) method is to encode the time series into a pole-based representation rather than 
Cartesol coordinates. It looks into the angle and poor triangle function transformation. The image is considered 
a Gramian matrix in the GAF method, each of which is a triangle and (i.e., superimposed) between different time 
intervals. The data is then processed as a one-dimensional time series using the Gramian Summation Angular 
Field (GASF) method. This can well preserve the time dependence of fishing vessel profile data, and encode 
one-dimensional data features into two-dimensional image features, which is conducive to strengthening the 
sensitiViTy of neural network models.

Suppose all vectors are in units, the Gram matrix can be written as the following formula: 

	

G1 =




cos (ϕ1,1) cos (ϕ1,1) . . . cos (ϕ1,1)
cos (ϕ1,1) cos (ϕ1,1) . . . cos (ϕ1,1)
...

...
. . .

...
cos (ϕ1,1) cos (ϕ1,1) . . . cos (ϕ1,1)


� (5)

where φ m,n is an angle of two vectors. Single variable time sequences cannot explain data characteristics and 
potential status to some extent. The Gram matrix can not only show the features of the data but also reflect the 
close link between different features.

In a given time series X = {x1, x2, . . . , xn}, in order to make the inner spot not bias toward the maximum 
observation, we normalize X  to make all values in the time series at intervals [-1,0] or [0,1]: 

	

∼
x

m

−1 = (xm − max (X) + (xm − min (X))
max (X) − min (X) � (6)

	

∼
x

m

0 = xm − min (X)
max (X) − min (X) � (7)

By encoding the value as the angle cosine and the as a radius, we mark the time series 
∼
x, and the equation is as 

follows: 

	

{
Φ = arccos (x̃m) , −1 ≤ x̃m ≤ 1, x̃m ∈ X̃
r = τm

N
, τm ∈ N

� (8)

Fig. 4.  The stitching effect of all fitting results with the intersection point of the fitting function equation as the 
stitching point.
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In Eq. (8), τm is a timestamp, and N is a constant factor that standardizes polar coordinate span. This conversion 
has two advantages.

After converting the time series into a pole coordinate form, it is possible to consider the triangular and 
defiance between each point to exhibit time dependence of different time intervals with an angle view angle. The 
Gramian Summation Angular Field (GASF) are defined as follows: 

	 GASF = [COS (φ m + φ n)]� (9)

	

G2 =




cos (ϕ1 + ϕ1) cos (ϕ1 + ϕ1) . . . cos (ϕ1 + ϕn)
cos (ϕ2 + ϕ1) cos (ϕ2 + ϕ1) . . . cos (ϕ2 + ϕn)
...

...
. . .

...
cos (ϕm + ϕ1) cos (ϕm + ϕ1) . . . cos (ϕm + ϕn)


� (10)

In the above formula, G2 is a Gram matrix of the GASF method. The one-dimensional time series is encoded as 
a GASF matrix by the above algorithm. The GASF encoding process is shown in Fig. 5.

 

EMPViT neural network model
Overall architecture of EMPViT neural network model
We introduce a novel small fishing boat detection framework called the Efficient Multipath Vision Transformer 
(EMPViT), building upon the latest advancements in the MPViT model. This new framework is designed to 
enhance training speed and accuracy while effectively handling local and multi-scale features. In EMPViT, 
an efficient multi-stage transformer structure is developed, incorporating new convolutional embeddings 
that significantly enhance the model’s capability to capture local features, addressing a common shortfall in 
transformers when compared to convolutional networks. Furthermore, by integrating multi-scale features at 
each stage into a transformer, the redundant paths typically present in the original framework are minimized, 
reducing the model’s complexity and boosting its performance efficiency.

As illustrated in Fig.  6, the EMPViT architecture extends the multipath approach of the ViT and XCiT 
models29, adding a local convolution module to augment detection performance and precision. While the 
MPViT model offers substantial improvements in these areas, it also increases in complexity and demands more 
extensive training resources. This poses challenges for smaller datasets, where MPViT models can be overly 
cumbersome and difficult to train. To mitigate these challenges, we implement a streamlined transformer path 
stacking framework that incorporates convolutional modules30,31, optimizing the EMPViT model for faster 
inference speeds and reduced computational costs.In our design, a four-stage feature hierarchy is constructed 
to generate feature maps at various scales, addressing the high computational demands of MPViT models 
by implementing strategies to simplify the model’s structure. To curb the model’s linear complexity, a single 

Fig. 5.  The stitching effect of all fitting results with the intersection point of the fitting function equation as the 
stitching point.
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transformer structure is used at each stacking stage. Additionally, the decomposed self-attention transformer 
encoder from CatCoaT32 is utilized alongside the convolution module from LeViT33, ensuring that no critical 
information is lost during processing. This holistic approach not only streamlines the model but also preserves 
its effectiveness in capturing essential features. 

In the realm of object detection, excessive model complexity can give rise to a host of challenges. Typically, 
datasets feature a limited number of samples, making data augmentation a time-intensive and resource-heavy 
aspect of model training. Furthermore, employing transfer learning for small datasets can complicate the training 
process even further. Large models are often prone to overfitting and instability during training. Given these 
issues, there is a crucial need to strike a balance between reducing model complexity and maintaining accuracy.

To address these challenges, this paper introduces a newly designed, more efficient model named the Efficient 
Multipath Vision Transformer (EMPViT). This model is predicated on a single Transformer structure that 
boasts reduced complexity while still prioritizing high accuracy. The EMPViT model leverages the strengths 
of the Transformer architecture to ensure a streamlined yet effective approach to object detection, particularly 
for small fishing boats where conventional models may falter due to the aforementioned issues. This design 
philosophy not only simplifies the training process but also enhances the practical applicability of the model in 
real-world scenarios.

Our modifications to the original MPViT model, particularly the reduction of the Transformer three-path 
module, have significantly improved the performance of the EMPViT model. By consolidating multi-scale 
features into a single-path Transformer module, the EMPViT model demonstrates enhanced classification 
capabilities with faster training speeds and greater accuracy. This adaptation indicates that integrating multi-
scale features into a single Transformer pathway is an effective strategy.

To further explore the potential of the EMPViT framework, we developed three distinct versions of the 
model, each varying in complexity and depth:

	(1)	� EMPViT-Base(*M): The baseline model that establishes the core architecture.
	(2)	� EMPViT-Base+: This version includes an additional two layers of EMS-PatchEmbedded and two 

EMP-Transformer modules, designed to enhance the model’s feature extraction and processing capabilities.
	(3)	� EMPViT-Base++: The most complex version, incorporating four layers of EMS-PatchEmbedded and four 

layers of EMP-Transformer modules, aiming for even more refined feature integration and classification 
performance.

All versions of the EMPViT model employ eight Transformer encoder heads, enabling efficient data processing 
and feature extraction across different scales. The varying layers and modules in each version are tailored to 
accommodate different levels of computational resources and performance requirements. Detailed specifications 
and performance metrics of each EMPViT model version are provided in Table 1, facilitating a comprehensive 
comparison and analysis of their effectiveness in practical applications.

EMPViT model version types #Layers

EMPViT-Base [1,2,8,1]

EMPViT-Base+ [1,2,12,1]

EMPViT-Base++ [1,2,16,1]

Table 1.  EMPViT model version configuration.

 

Fig. 6.  Efficient multipath vision transformer EMPViT neuralnetwork model architecture.
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Efficiency multi-scale patch embedding
To address the challenge of overfitting due to the small sample size in small fishing boat datasets, it is crucial to 
reduce the complexity of the model. Our approach leverages a multi-level Transformer architecture with low 
complexity, where we eliminate all redundant Transformer structures from the original model and introduce 
an efficient multi-scale patch embedding module. This module uses various convolution embedding layers—
specifically 3 × 3, 5 × 5, and 7 × 7—to integrate the convolution results of different sizes into the Transformer 
structure through patching.

To optimize the utilization of both fine-grained and coarse-grained visual tokens, we employ a convolution 
operation with overlapping patches, similar to techniques used in CNN34 and CvT35. The convolutional patch 
embedding layer is designed to adjust the token sequence length by varying the stride length and the amount 
of padding, enabling it to produce feature outputs of the same size across different patch sizes. As depicted in 
Fig. 7, this method generates visual tokens of uniform sequence length, with patch sizes of 3 × 3, 5 × 5, and 7 × 7.

In practice, to expand the receptive field while maintaining reduced complexity, we use three consecutive 
3 × 3 convolutions with the same channel size, a padding of 1, and a stride (S) where S is 2 for reduced spatial 
resolution, and 1 otherwise. This approach mimics the effects of larger convolution kernels: two 3 × 3 operations 
equate to a 5 × 5, and three 3 × 3 operations equate to a 7 × 7.

Given the multi-path structure of the MPViT, which includes numerous embedding layers, we propose a 
novel multi-scale aggregation method. During the embedding process, as shown in Fig. 8, the output feature 
matrix sizes of the three convolution kernels (3 × 3, 5 × 5, and 7 × 7) are standardized through padding. These 
outputs are then linearly combined by matrix addition. The aggregated features are subsequently fed into a single 
Transformer module, achieving early token aggregation and minimizing computational load while ensuring that 
the multi-path and multi-scale convolution features are preserved. 

Additionally, we incorporate a 3 × 3 depthwise separable convolution36 to further reduce the model’s 
parameters and computational burden. This involves a combination of 3 × 3 depthwise convolution and a 1 × 1 
point convolution, effectively streamlining the model without sacrificing the integrity of the multi-scale features. 
This strategic reduction in complexity and enhancement of feature processing capabilities positions the modified 
EMPViT model as a robust solution for the efficient and accurate detection of small fishing boats.

Assuming that the input size before padding is (H, W ), the filter size is (FH , Fw), the output size is 
(OH , Ow), the padding is P , and the step size is S, the output size after padding can be calculated using 

Eqs. (11) and (12) : 

	
OH = H + 2P − FH

S
+ 1� (11)

	
OW = H + 2P − FW

S
+ 1� (12)

After adjusting the output matrices A, B and C  of the three distinct pathways (3 × 3, 5 × 5, 7 × 7) to a uniform 
size by zero-padding, the final aggregated matrix D is obtained through summation. The formula is as follows: 

	 D = A + B + C � (13)

Due to the multipath structure of EMPViT with many embedding layers, a 3 × 3 depth-separated convolution 
and a 1 × 1 point convolution are used to reduce the model parameters and computational overhead.

Local-to-global feature interaction
While the self-attention mechanism in Transformers captures long-term dependencies (i.e., global context), 
it overlooks the structural and local relational features within patches. Conversely, CNNs exploit local 
connectiViTy and translation invariance, processing images uniformly. This inductive bias leads CNNs to rely 
heavily on texture in visual object classification. To synergize the local strengths of CNNs with the global context 
capabilities of Transformers, this paper introduces a local to global feature interaction module. We employ a 

Fig. 7.  Efficient multi-scale patch embedding process.
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deep residual bottleneck block comprising 1 × 1 convolutions, two layers of 3 × 3 deep convolutions, and 1 × 1 
convolutions with identical channel sizes and residual connections. The integration of local and global features 
is achieved through concatenation, using the specified formula. 

	 Mi = Concat ([ Fi, Ti,0, Ti,1, . . . , Ti,j ])� (14)

	 Xi+1 = P (Mi)� (15)

In Eq. (9), Ti,j ∈ RHi× Wi× Ci  represents the two-dimensional reshaped global feature of each transformer, 
Fi ∈ RHi× Wi× Ci  denotes the local feature, where j is the path index and i is the stage number. Mi 
is the aggregated feature, and P (·) is the learning and feature interaction function. The final feature 
Xi+1 ∈ RHi× Wi× Ci+1  is obtained through calculation, and its size is the channel dimension Ci+1 of the 
next stage.

Convolution local feature
As depicted in Fig. 8, to enhance the model’s ability to capture local features, a 3 × 3 convolution kernel has 
been added to the local convolution module. It is recognized that two 3 × 3 convolution kernels can perform 
equivalently to one 5 × 5 kernel. While 3 × 3 kernels involve a higher computational load, they require significantly 
fewer parameters compared to 5 × 5 kernels, and computers process them more rapidly during convolution 
operations. This optimization approach was commonly utilized in early VGG networks. Additionally, substituting 
a 5 × 5 kernel with two 3 × 3 kernels not only increases the network’s depth, thereby enhancing the non-linear 
expression of features, but this benefit is also supported by subsequent experimental validations. Furthermore, 
research indicates that replacing [CLS] labels with global average pooling (GAP) of the final feature map does 
not compromise performance; thus, for simplicity, we implement Global Average Pooling (GAP). The model’s 
parameters and computational demands are further reduced by using 3 × 3 depthwise separable convolutions, 
which consist of 3 × 3 depthwise convolutions and 1 × 1 point convolutions in the embedding layer. 

Fig. 8.  EMPViT neural network model local convolutional module.
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Experiment
Experiment environment
In the training process of deep learning, the neural network requires substantial computational resources; 
hence, an all-in-one computer equipped with an Intel i9 processor and an RTX 3090 graphics card serves as the 
hardware environment for running the neural network model in this experiment.

Python is widely favored by deep learning researchers due to its simplicity, open-source nature, portability, 
object-oriented features, and extensive third-party libraries. The software environment for this study is established 
using the PyCharm development tool, which is based on the Python language. Within this environment, the 
Python frameworks employed are Torch GPU 2.2 and Keras 2.2.4.

Experimental dataset
Datasets play a crucial role in the training and validation of models. In this study, we used the SICK LMS511, 
an LMS series infrared laser scanner, to collect small fishing boat profile data in local rivers, lakes and coastal 
waters during spring and summer, when fishing vessels are at their peak.We concentrated on four distinct types 
of small fishing boats: alloy, wooden, rubber-filled, and PE plastic. After securing the necessary authorization, 
we employed a 360-degree surround sampling method using an infrared laser sensor to capture the contours of 
these boats.

Due to restrictions imposed by epidemic policies, the data collection and sampling process extended over 
approximately six months, resulting in a total of 3,268 distinct profile datasets of fishing boats. The breakdown 
of the sampling data was as follows: 1,063 datasets from small alloy fishing boats, 918 from small wooden fishing 
boats, 726 from PE plastic small fishing boats, and 561 from small pneumatic rubber fishing boats. Among these, 
the small alloy fishing boats constituted the largest proportion of the data, while the small inflated rubber fishing 
boats represented the smallest.

The same fitting method was applied across all the collected contour data to concatenate the results into one-
dimensional time series data, which was then used for subsequent image coding. A uniform two-dimensional 
time series image coding method (GASF) was employed to encode all one-dimensional time series, generating 
reliable samples of time series image datasets. Four distinct types of GASF time series images were produced, as 
illustrated in Fig. 9.  

To enhance the model’s performance, we augmented the dataset of four small fishing vessels through various 
data augmentation techniques, including flipping, scaling, and noise addition. Specifically, the images of the 
fishing boats were flipped horizontally. During the scaling process, the images were adjusted using scale factors 
of 0.75 and 1.5. Overfitting, which often occurs when a neural network excessively learns high-frequency 
features that are not beneficial for its tasks, was addressed. To mitigate the influence of these high-frequency 
features on the low-frequency ones, Gaussian noise and salt-and-pepper noise were randomly introduced to the 
image samples upon completion of the data augmentation.

Following all augmentation steps, we meticulously cleaned the dataset by selectively removing several poor-
quality image samples. This process resulted in an adjusted total of 3,600 samples per image type.

Fig. 9.  GASF 2D time series images corresponding to four different types of small fishing boats, (a) GASF 
images of small alloy fishing boats, (b) GASF images of wooden fishing boats, (c) GASF images of rubber 
inflated fishing boats, and (d) GASF images of PE plastic fishing boats.
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Experimental procedure
Data augmentation and setup
Sample size significantly influences the learning capabilities of neural networks. To enrich the feature learning 
of the network, we expanded the number of time-series images by incorporating various sample types. Dataset 
expansion techniques such as rotation, scaling, and translation were employed to maximize the diversity of 
sample types available in the dataset.

To simplify the processing complexity, we ensured a balanced distribution of the dataset during the 
preparation phase. The enhanced and expanded dataset samples are detailed in Table 2. The complete dataset 
includes four different types of small fishing boats, totaling 14,400 Gramian Summation Angular Field (GASF) 
time series images, with each type—small alloy fishing boats, wooden fishing boats, rubber inflated fishing boats, 
and PE plastic fishing boats—contributing 3,600 images.

The dataset was segmented in a 3:1:1 ratio for training, testing, and validation, respectively. For imaging, the 
GASF method was used to generate pseudo-color images. In this process, each value in the Markov matrix was 
mapped to a color to produce RGB-channel time series images. Additionally, to meet the neural network model’s 
requirements, all images were standardized to a uniform size of 3 × 224 × 224.

Experimental parameter settings
During the experimental training process, through multiple training iterations, we refined the parameters 
that best suit the classification and recognition of small fishing boat datasets, such as the number of training 
iterations and batch size parameters. Additionally, we selected an optimal Adam optimizer to mitigate network 
overfitting. Based on the data presented in Table 2, we established that an initial learning rate of 0.01, a batch 
size of 32, a momentum of 0.9, and 300 training iterations constitute the optimal parameter configuration for the 
model. This setup was determined to effectively enhance the model’s performance in recognizing and classifying 
small fishing boats.

We assessed the performance of the EMPViT model on a dataset composed of 2D GASF time-series 
images, which were derived from fitting and concatenating contour data of various small fishing boats. The 
dataset includes GASF images of small alloy fishing boats, wooden fishing boats, rubber inflated fishing boats, 
and PE plastic fishing boats. To demonstrate the advantages of the proposed EMPViT model, we conducted 
a comparative experiment using well-established models from both the convolutional neural network and 
visual Transformer domains. The mainstream convolutional neural network models utilized include VGG-16, 
ResNet5037, GoogleNet38, DenseNet39, and MobileNet40.

For visual Transformer models, we included ViT41, Swin42, LocalViT43, DeepViT44, CaiT45, CrossViT46 and 
MPViT26 in the comparison.

All models underwent training for 300 iterations, employing the Adam optimizer with a batch size of 32 and 
an initial learning rate of 0.01. Image scaling was managed using a cosine decay learning rate scheduler, and each 
image was cropped to a size of 224 × 224. Parameter details were maintained consistently with those outlined in 
Table 3. This experimental setup aimed to ensure a fair and comprehensive evaluation of EMPViT’s performance 
relative to other prominent models in the field.

The experimental results and analysis
The experimental comparison results, presented in Table 4, delineate two primary experimental pathways: the 
CNN convolutional neural network models and the Transformer neural network models. Within the mainstream 
CNN model pathway, the accuracy of the 2D GASF time series image dataset corresponding to small fishing 
boats shows a progressive improvement with increasing model complexity and parameter count. The MobileNet 
network achieves the highest accuracy in this category at 89.67%, which falls slightly below 90%.

Conversely, in the mainstream Transformer model pathway, the highest recorded accuracy is an impressive 
99.67% Notably, the EMPViT neural network model not only exhibits a substantial improvement in accuracy 
but also demonstrates a significant reduction in model complexity. Compared to other models, EMPViT stands 
out with its remarkable balance of high accuracy and reduced complexity, highlighting its substantial advantages 
in both aspects.

In the model comparison experiments, the EMPViT-Base model stands out with the highest performance 
results. The experimental conditions and network model parameters were standardized across all tests to ensure 
comparability. As detailed in Table 3, while the parameters of the Transformer series models are generally more 
complex than those of the CNN series models, they also achieve significantly higher accuracy and GFLOPs (Giga 
Floating Point Operations per Second). Within the Transformer model family, the EMPViT model distinguishes 
itself with an exceptional performance, achieving an accuracy of 99.67%. It not only delivers the highest accuracy 
and GFLOPs but also maintains the least parameter complexity among its counterparts, underscoring its 
efficiency and effectiveness in processing.

EMPViT training neural network model parameters Parameter values

Epoch 300

Learning rate 0.01

Optimizer Adam

Momentum 0.9

Table 2.  EMPViT neural network model training parameter settings.

 

Scientific Reports |         (2025) 15:4619 11| https://doi.org/10.1038/s41598-025-87698-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Experimental results and analysis of EMPViT ablation
In Table 4, the EMPViT-Base + and EMPViT-Base + + model versions, which feature added layers in two and 
four-layer stack modules respectively, underwent fusion experiments with different layer configurations as 
detailed in the table. These experiments utilized a dataset of 2D GASF time series images corresponding to small 
fishing boats for comparative analysis.

The data presented in Table 4 indicates that the EMPViT-Base + + model, which has more layers, tends to 
be more accurate but also possesses a higher number of parameters, thus increasing the model’s complexity. 
Conversely, the EMPViT-Base version maintains fewer model parameters and lower complexity, while the 
accuracy gap between it and the higher-stack version remains modest. This characteristic is particularly 
advantageous for reducing model training time.

Further analysis of the experimental data in Table  4 reveals that the EMPViT models exhibit a 2–3% 
improvement in accuracy over the MPViT models. Despite the significant boost in accuracy, all versions of the 
EMPViT model maintain a smaller size and faster inference speed. This combination of improved performance 
metrics robustly confirms the practical effectiveness and application value of the EMPViT models.

Ablation experiments were conducted on EMPViT models featuring different configurations to evaluate 
enhancements proposed in the method. The two key configurations tested include the addition of a new 3 × 3 
local convolution module and an improvement involving multi-scale, multi-path convolutions aggregated into a 
single Transformer module. The results of these ablation experiments are displayed in Table 5.

As indicated in Table 5, both configuration improvements significantly enhance the accuracy and efficiency 
of the EMPViT models compared to the MPViT models. The introduction of the local convolution module 
markedly influences the model’s performance; however, it also increases the consumption of model parameters. 
Conversely, the strategy of aggregating individual Transformer modules in advance not only boosts the model’s 
performance but also substantially reduces the number of model parameters and the computational resources 

Dataset MPViT

EMPViT model improvement results

All(token + conv) Only token Only conv

GASF 
2D 
time-
series 
image 
of a 
fishing 
vessel

96.79% 98.84% 98.27% 98.58%

Table 5.  Analysis of ablation experiments for the EMPViT Model.

 

Model Param. GFLOPs Time ACC

MPViT 5.3 1.6 7 h 08 min 96.79%

EMPViT-Base 4.7 2.1 4 h 23 min 98.81%

EMPViT-Base+ 6.1 3.2 5 h 12 min 99.26%

EMPViT-Base++ 7.4 4.6 5 h 29 min 99.95%

Table 4.  EMPViT Melting models experiment analysis.

 

Model route Model type Param. GFLOPs ACC

CNN

VGG-16 6.3 1.3 84.37%

ResNet50 5.8 1.6 86.34%

GoogleNet 6.5 2.1 86.89%

DenseNet 7.1 1.8 87.62%

MoblileNet 8.2 2.3 88.72%

Transformer

ViT 6.0 3.3 92.26%

Swin 7.3 2.7 94.75%

LocalViT 6.2 2.5 93.58%

DeepViT 6.8 2.9 94.66%

CaiT 5.1 2.1 95.28%

CrossViT 5.7 2.4 95.81%

MPViT 5.4 1.6 96.79%

EMPViT-Base 4.3 2.9 98.84%

Table 3.  Comparison results of different models in the experiment.
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required. This demonstrates the effectiveness of the improvements in optimizing both the operational efficiency 
and the computational economy of the EMPViT models.

Conclusion
This paper introduces a novel method for recognizing small fishing boats based on GASF time series images 
and the EMPViT model, aiming to enhance the classification and recognition of four distinct types of small 
fishing boats. Unlike traditional approaches, this method initially employs an infrared laser sensor to capture 
one-dimensional contour data of the boats. These data are then fitted using a polynomial fitting function 
and gradually assembled into one-dimensional time series data, which are subsequently encoded into two-
dimensional time series images. The enhanced EMPViT model is then utilized for training and learning, with 
the neural network classification and recognition model undergoing fine-tuning and improvements throughout 
the experimental process. This method is based on laser sensors, combined with GASF encoding method and 
improved optimized EMPViT model, which has lower cost and higher performance in classification recognition, 
and has good implementation and applicability.

The experimental results demonstrate that this method achieves the highest average accuracy across the 
dataset of four types of boats, with the EMPViT-Base + + model reaching an accuracy of 99.95%. These findings 
effectively validate the proposed method and clearly illustrate its advantages over traditional convolutional neural 
network models and one-dimensional CNNs. This paper presents a novel method for classifying and detecting 
small fishing boats. The method has a lower deployment cost and possesses good application prospects. By GASF 
encoding of small fishing boat contour data in combination with an improved EMPViT model, the method 
reduces model complexity while further enhancing the accuracy of small fishing boat and recognition. In the 
future, we will try different fishing boat contour data coding and model improvement methods to better improve 
the classification and recognition performance of small fishing boats.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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