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Diabetes is a growing health concern in developing countries, causing considerable mortality rates. 
While machine learning (ML) approaches have been widely used to improve early detection and 
treatment, several studies have shown low classification accuracies due to overfitting, underfitting, 
and data noise. This research employs parallel and sequential ensemble ML approaches paired with 
feature selection techniques to boost classification accuracy. The Pima India Diabetes Data from 
the UCI ML Repository served as the dataset. Data preprocessing included cleaning the dataset by 
replacing missing values with column means and selecting highly correlated features using forward 
and backward selection methods. The dataset was split into two parts: training (70%), and testing 
(30%). Python was used for classification in Jupyter Notebook, and there were two design phases. The 
first phase utilized J48, Classification and Regression Tree (CART), and Decision Stump (DS) to create a 
random forest model. The second phase employed the same algorithms alongside sequential ensemble 
methods—XG Boost, AdaBoostM1, and Gradient Boosting—using an average voting algorithm for 
binary classification. Evaluation revealed that XG Boost, AdaBoostM1, and Gradient Boosting achieved 
classification accuracies of 100%, with performance metrics including F1 score, MCC, Precision, 
Recall, AUC-ROC, and AUC-PR all equal to 1.00, indicating reliable predictions of diabetes presence. 
Researchers and practitioners can leverage the predictive model developed in this work to make quick 
predictions of diabetes mellitus, which could save many lives.
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Context and motivation
Diabetes Mellitus (DM) is a disease that prevents the body from receiving adequate energy from the foods 
consumed by humans. It is a chronic condition marked by abnormally high blood glucose levels1. This is caused 
by a lack of insulin synthesis or the body’s inability to adequately utilize the insulin. When diabetes is detected 
early, it can be managed. It spreads rapidly, and thus, according to World Health Organization, DM will increase 
by the end of 2023 It was predicted that DM would affect around 425 million people between the ages of 20 to 79 
years, and this figure was projected to increase to 629 million by 20452.
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There are three types of DM that exist. These include gestational diabetes, type 1 diabetes, and type 2 diabetes. 
Type 1 diabetes is also called insulin-dependent diabetes mellitus or juvenile-onset diabetes3. This is majorly 
found in young people below the age of 30 years. Here, the pancreas’ beta cells that control insulin production 
are damaged due to the autoimmune system. The initial stage of Type 2 Diabetes, when the cells do not react 
to insulin, is insulin resistance. As the disease worsens, there might not be enough insulin available. Previously, 
this illness was referred to as “adult-onset diabetes” (NIDDM). The main causes are an excessive amount of 
body weight and a lack of activity. Pregnant women who acquire high blood glucose levels without a history of 
diabetes are said to have gestational diabetes. Although there is currently no cure for diabetes, it may be managed 
by maintaining healthy blood sugar levels by regular exercise, a well-balanced diet, and the use of the right 
medications. The following long-term effects of DM include: (1) Cataracts and retinopathy (gradual damage to 
the eye that might result in blindness). (2) Kidneys, including kidney failure and renal disease. (3) Neuropathy 
in the nerves (gradual damaging of nerves). (4) Ulcers, infections, gangrene, etc. on the feet. (5) The circulatory 
system. (6) Arterial hardening, cardiovascular disease, and stroke.

Artificial intelligence (AI), which includes machine learning (ML) and deep learning, has been widely used 
to predict4, detect5, and categorize6 diseases, including diabetes7,8. Among these techniques, ensemble learning-
based systems, a subset of ML, involve methods that generate multiple models, which are then combined 
effectively to enhance prediction accuracy and robustness. These systems leverage the strengths of individual 
models to minimize errors and improve overall performance, making them particularly effective in complex 
tasks such as disease diagnosis. Ensemble methods enhance the accuracy and strength of building a prediction 
model by combining a collection of base classifiers9,10. The two categories of ensemble methods are sequential 
ensemble techniques and parallel ensemble approaches. Base learners are produced sequentially via sequential 
ensemble techniques, such as Adaptive Boosting (AdaBoost). The ensemble method uses a variety of techniques, 
including Random Forest (RF), Bagging, AdaBoost, XG Boost, Light, and Stacking11,12. The experimental results, 
group learning (also known as “Ada boosting”) performs better than solo learning. The continual generation of 
basis learners encourages dependence amongst base learners. The performance of the model is then enhanced by 
increasing the weights of previously misrepresented learners. Similar ensemble approaches build base learners 
using a framework akin to RF, for example. To promote basis learner independence, parallel techniques are 
employed to produce base learners in parallel. Feature selection is the procedure of reducing the amount of 
input variables while developing a predictive model13. Reducing the amount of input variables helps to lower 
modeling’s computing cost and, in certain cases, enhance model performance. By merging parallel and sequential 
ensemble approaches with feature selection strategies to reduce the prediction issues, the goal of this research is 
to obtain a more accurate forecast.

According to14, the number of patients with diabetes increased dramatically in the last ten years. The modern 
human lifestyle is suspected to be the primary cause of this rise. Three types of errors can occur in the current 
medical diagnosing procedure. The first is false-negative kind error- this is a situation where a test result indicates 
that a diagnosed patient does not have diabetes where he/she has it. The second one is the false-positive type. 
Here, the test result revealed that a patient without DM has the disease. The third form occurs when a system 
is unable to diagnose a particular case due to a lack of knowledge extraction from previous data. A patient’s 
type may be projected to be unclassified. Traditional ML methods have failed to predict the presence of DM 
accurately from data but marginal accuracy. Hence, this research proposes to use ensemble methods to achieve 
greater prediction accuracy.

Scientific contribution

•	 Development of an Ensemble-Based Prediction Model: To increase the precision of diabetes mellitus predic-
tion, the authors have created a novel ensemble-based model that makes use of both parallel and sequential 
techniques. This model greatly improves prediction performance by integrating several learning algorithms.

•	 Incorporation of Forward and Backward Feature Selection Techniques: The study makes use of forward and 
backward feature selection approaches, in particular. Through the identification and utilization of highly sig-
nificant characteristics, these techniques helped the model become more predictive by reducing noise, under-
fitting, and overfitting.

•	 Comprehensive Validation with High Classification Accuracy: Using sequential ensemble approaches such 
as AdaBoostM1, XG Boost, and Gradient Boosting, the proposed model was verified on the Pima Indian 
Diabetes dataset, with classification accuracies of up to 100%. This shows how effectively the strategy works 
in clinical situations.

•	 Benchmarking Against Existing Methods: A thorough comparison between the suggested approaches and 
conventional machine learning algorithms is provided by the research. This benchmarking shows notable 
gains in precision, recall, and other performance parameters over current approaches.

•	 Using Ensemble Methods to Address Base-Level Errors: The work tackles common problems with single pre-
dictor models, such as residual errors and model independence, at the base level by combining parallel and 
sequential ensemble methods.

These contributions substantially advance the capabilities of predictive modelling for diabetes, delivering a 
comprehensive tool for early detection and control of the condition.

Structure of the article
The article is divided into five key sections to provide a thorough review of the research. First Section: 
Introduction sets the stage by presenting the context, motivation, and scientific contributions of the study. 
Second Section: Literature Review critically examines current research and methodologies, highlighting both 
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achievements and limitations in the field. Third section: Methodology details the ensemble methods and feature 
selection techniques employed, explaining how data was collected, processed, and analysed. Fourth section: 
Implementation and Results describes the practical application of the proposed methods and presents the results 
achieved, including performance metrics and model evaluations. Finally, fifth section: Conclusions summarizes 
the findings, examines the consequences of the research, and proposes areas for future work, relating back to the 
original research aims and the gaps noted in the literature.

Literature review
Current research
Recently, several studies have been undertaken to investigate the early detection of diabetes mellitus, and the 
algorithms utilized to do so are described in this section. Many biomedical problems, such as heart disease, 
breast cancer survival, diabetes, and so on, have been predicted and diagnosed using ML algorithms15,16. Recent 
work by50 delved into the miRNA-mRNA-TF regulatory network in diabetic nephropathy (DN), identifying 163 
differentially expressed miRNAs (DEMs) and 188 differentially expressed genes (DEGs). Their study highlighted 
37 hub genes and four key transcription factors (EP300, SP100, NR6A1, JDP2), shedding light on DN pathogenesis 
and uncovering potential therapeutic targets. Additionally, the involvement of pathways such as MAPK, PI3K-
Akt, and metabolic pathways in DN provided a deeper understanding of the molecular mechanisms driving 
diabetic complications. Expanding on therapeutic approaches for diabetes51, investigated the effects of Liuwei 
Dihuang Decoction (LWDHT) on insulin resistance in Type 2 Diabetes Mellitus (T2DM) rats. Their findings 
revealed that LWDHT improved insulin sensitivity by modulating the PI3K/Akt signalling pathway and key liver 
proteins like IRS2 and Akt, highlighting its potential as a herbal intervention for managing T2DM. In glioma 
research52 eveloped a 15-lncRNA signature associated with TGF-β signaling. This signature not only served as a 
predictor of poor prognosis but also correlated with changes in the immune microenvironment, with AGAP2-
AS1 identified as a critical contributor to glioma progression. Notably, the signature demonstrated predictive 
capabilities for improved responses to immunotherapy, paving the way for personalized glioma treatment 
strategies. Similarly53, explored quercetin’s therapeutic potential in diabetic encephalopathy (DE), using Goto-
Kakizak rats as their model. The study showed that quercetin mitigated cognitive impairments and suppressed 
ferroptosis in hippocampal neurons via the Nrf2/HO-1 signalling pathway, offering a promising direction for 
managing DE.

In a related context54, emphasized the pivotal role of selenium and selenoproteins in maintaining oxidative 
balance as well as in glucose and lipid metabolism. Their review proposed selenium supplementation as a viable 
strategy for preventing and managing diabetes by targeting oxidative stress pathways, thereby contributing to a 
growing repertoire of metabolic interventions.

In the context of healthcare systems55, investigated diabetes-related avoidable hospitalizations in Sichuan 
Province, China. Their findings revealed a significant association between inadequate primary healthcare 
resources and higher hospitalization rates, emphasizing the critical need to improve healthcare access, 
particularly in rural areas, to enhance diabetes management outcomes.

The application of machine learning in healthcare has been transformative, with techniques like AdaBoost 
paving the way for advancements in predictive diagnostics. Initially recognized as the first accurate boosting 
methodology for binary classification, AdaBoost was employed to predict breast cancer survival outcomes, 
assisting medical practitioners in decision-making processes17. Similarly, in diabetes, boosting algorithms 
have been applied for early diagnosis and predicting complications, showcasing their versatility across medical 
domains.

Among the most widely used classification algorithms in diabetes research are Support Vector Machines 
(SVM), Radial Basis Function, Multi-Layer Perceptron, and Multi-Level Counter Propagation Networks18. 
For instance, the ARTMAP-IC Structured Model was combined with a General Regression Neural Network 
(GRNN) to enhance accuracy on the PIMA Indian Diabetes dataset. Temurtas et al. advanced this by employing 
a multilayer neural network structure on the same dataset, achieving improved diagnostic precision19.

Further advancements include leveraging the Levenberg-Marquardt (L.M.) technique and a probabilistic 
neural network structure to improve the accuracy of identifying heart disease in diabetic patients. Given that 
heart disease remains the leading cause of mortality among individuals with diabetes, a range of data mining 
approaches, including Nave Bayes and SVM algorithms, has been utilized to predict and manage this condition20. 
Interestingly, these methodologies were initially employed in breast cancer prediction15, demonstrating their 
adaptability and potential across diverse medical challenges. A small number of sub-networks were originally 
identified as illness indicators before being utilized to categorize metastasis. Researchers used the decision tree 
C4.5 algorithm21, bagging with the decision tree C4.5 technique, and bagging with the Nave Bayes algorithm19, to 
predict cardiac illness. In ML and data mining, several metrics have been used. Precision, recall, F-measure, and 
ROC space are all critical performance indicators. These factors were used to calculate the optimum accuracy.

Diabetes and cancer are well-known chronic diseases that share a compound link, such as when the human 
body’s glucose level rises to a diverging level. Diabetes is the result16. As a result, some recommender systems 
based on adaptive and personalized based insulin on Kalman filter theory have been presented to determine 
the classification accuracy in PIMA Indian dataset22. Multimedia retrieval systems have been developed and 
put into use in several applications. The discussion focuses on web-based front ends, specialized multimedia 
analytic techniques, meta-data annotation, and multimedia databases. Projects and systems that currently use 
MPEG-7 or offer additional retrieval functionality were given specific attention. Analysis of the number of 
semantics that may be utilized and defined was crucial in addition to MPEG-7 usage23. Other classification 
algorithms, on the other hand, have been developed, but their effectiveness has suffered because of an unsuitable 
dataset balance, since most classes have represented them. As a result, they may be classified using balanced 
classification algorithms like RHS-Boost24. This method is used to determine the best accuracy and prediction 
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for misbalanced datasets. Precision selection approaches have been combined with methods such as the Modified 
Spline Smooth Support Vector Machine (MS-SSVM) to improve accuracy. A 10-fold cross-validation approach, 
comprising accuracy, sensitivity, and specificity, has been proposed for this vector machine technology. ANFIS 
and Principal Component Analysis are two methods that can be used to detect diabetes individuals. The method 
of25 can be combined with PCA. It was used to partition the dataset’s eight characteristics into four groups in the 
first stage. The authors of26 employed J48, KNN, filtered classifier, Artificial Neural Network (ANN), Nave Bayes 
(N.B), CV parameter selection, Xero, and basic cart to classify the diabetes dataset. This study did not employ 
cross-validation. With a score of 77.01%, N.B. has a good degree of accuracy.

Authors in26 used a Bayesian classification technique that showed promise when compared to previous 
research, requires little training data, and has an accuracy rate of above 87%. Disease prediction does not appear 
to be particularly reliable due to a lack of data, i.e., a lack of samples. The number of characteristics must be 
lowered to improve categorization. KNN, Nave Bayes, Decision Tree, RF, SVM, and Logistic Regression were 
proposed by the authors of27, which focused on recall, accuracy and produced a better result, however, the 
filtering criteria may be improved. Komi et al.28 employed ELM, ANN LR, GMM, and SVM; their work used 
fewer sample data. The algorithm was compared to other technologies such as artificial neural networks. The 
method provided better accuracy than the other classifiers. Less amount of sample data was used in the study. Sai 
et al.29 employed the weighted voting approach to combine the multiple ensemble and base classifiers into a new 
ensemble prediction model. The tenfold validation approach was used to assess the effectiveness of the system, 
and the results were derived using the percentage of occurrences that were properly and wrongly categorised. 
The basic classifier fusion model and the ensemble-based prediction model for diabetes were contrasted. The 
outcome also shown that a traditional ensemble prediction model can deliver superior predictive performance. 
By exploring how to extend the ensemble of the ensemble classifier technique and reduce the computing amount 
to produce minimum error values and greater accuracy, they increased the interpretability and enhanced the 
predictions.

Miled et al.30 investigated 11,558 cardiac patient cases from 15 to 25 different institutes and controlled them. 
In ML, they employed the RF to predict dementia. Random forest classification accuracy in heart disease was 
calculated by the authors to be 77.43%.

Reza et al.58 proposed a stacking ensemble method for the classification of diabetes patients using both 
the PIMA Indian Diabetes dataset and additional local healthcare data. Their approach incorporated both 
classical and deep neural network (NN) models to combine multiple classifiers’ predictions, improving the 
overall accuracy and robustness of diabetes detection. The study found that stacking with three neural network 
architectures achieved the highest performance, with an accuracy of 95.50%, precision of 94%, recall of 97%, and 
an F1-score of 96% using 5-fold cross-validation (CV) on simulation data. The stacking model also outperformed 
the traditional ML algorithms used with the PIMA Indian Diabetes dataset, achieving better results with cross-
validation and train-test splits. The ensemble approach demonstrates significant potential for improving early 
diabetes detection, benefiting both healthcare and machine learning applications.

A new ensemble feature engineering technique for machine learning-based diabetes detection was proposed 
by Rustam et al.56. A dependable feature extraction method was created by combining Long Short-Term Memory 
(LSTM) and Convolutional Neural Network (CNN) models. The study overcome problems like small datasets 
and poor accuracy that are commonly present in current methodologies by integrating many datasets, increasing 
the dataset’s size. The authors compared features from the CNN, LSTM, and Extra Tree Classifier models. With a 
Random Forest model and CNN-LSTM-based features, the ensemble approach yielded an exceptional accuracy 
score of 0.99 in the experimental data. Further testing using k-fold cross-validation confirmed that the proposed 
approach outperformed existing models, producing more reliable and accurate results for the identification of 
diabetes. With an emphasis on the early identification of Type 2 Diabetes Mellitus (T2DM) through machine 
learning, Faustin and Zou57 suggested an improved version of the genetic algorithm (GA) to boost feature 
selection in a highly dimensional dataset. The problem of high processing costs and declining classification 
accuracy brought on by high-dimensional datasets is addressed in the work. In its crossover operator, the 
enhanced GA uses a two-step procedure: first, it defines a variable slice point, and then it uses feature frequency 
scores to determine whether to switch genes. With an accuracy of 97.5%, precision of 98%, recall of 97%, and 
F1-score of 97%, our method significantly improved the classification performance of the Pima Indian Diabetes 
dataset.

A useful framework for early diabetes detection via ensemble machine learning (ML) models was created 
by Saihood and Sonuç59. Data preparation, hyperparameter tweaking, and the use of ensemble techniques 
like bagging, boosting, and stacking are the three steps of the suggested approach. The Pima Indians Diabetes 
Database was used by the framework to conduct tests. The study showed that diabetes diagnosis accuracy was 
greatly increased by ensemble approaches, with the maximum accuracy of 97.50% being attained by the support 
vector machine (SVM) and stacked random forest (RF) models. Boosting and bagging, two other ensemble 
techniques, also demonstrated great accuracy rates. The study found that effective data preparation, calibrated 
models, and ensemble approaches are essential for improving diabetes diagnosis performance.

In order to diagnose diabetes, Daza et al.60 suggested a stacking ensemble method that combines four models. 
The Diabetes Dataset, which has 768 patient records, was used in the study. Preprocessing techniques included 
cross-validation and data balancing using an oversampling technique. Four combined models based on stacking 
were proposed after seven separate algorithms were tried. Sensitivity, F1-Score, and Precision were all around 
91.5% for the top-performing model, stacking 1 A (Logistic Regression with oversampling), which also had an 
accuracy of 91.5%. Additionally, the model obtained a good 97% ROC curve score. The study found that the 
stacking ensemble strategy outperformed individual models in diabetes diagnosis, leading to a considerable 
improvement.
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Yadav and Pal31 used ML to examine 1,025 heart disease occurrences and 14 factors. They examined three 
sequential ensemble approaches—XG Boost, AdaBoostM1, and Gradient Boosting—against Reduced Error 
Pruning, J48, and Decision Stump. A good matrix for heart disease features was provided by Pearson Correlation 
in the total study for ML prediction. Chi-Square, a feature selection technique, generated pertinent scores with 
related properties. Both feature selection techniques aided in the prediction of ML algorithms. This study’s 
research was separated into two sections: the first concentrated on Decision Stump, Reduced Error Pruning, and 
J48 and generated an RF ensemble approach; the second focused on J48, Reduced Error Pruning, and Decision 
Stump and produced an RF ensemble method. To address Decision Stumps Reduced Error Pruning and J48, part 
two of the experiment used sequential ensemble approaches in the following order: AdaBoost M1, XG Boost, 
and Gradient Boosting.

Further reading on other types of diabetes milletus prediction can be found in the published articles by Zhou 
et al.42 and Liang et al.43.

Research gap
As discussed in Sect. 1.1 and 2.1, there have been notable advances in machine learning for disease prediction; 
nonetheless, there are still some gaps that this study aims to fill. First of all, problems like noisy data, overfitting, 
and underfitting cause many of the predictive models in use today to suffer from significant variability in 
diagnostic accuracy. These difficulties reduce the models’ dependability in clinical settings when great precision 
is essential. Second, although many different algorithms have been investigated for the prediction of diabetes, 
there has been little integration of sequential and parallel ensemble approaches. By combining predictions from 
several algorithms, these methods could improve the resilience of the model. Thirdly, the literature currently 
in publication has not made full use of feature selection’s ability to increase prediction model accuracy. Most 
studies do not fully integrate forward and backward feature selection techniques, which can significantly 
optimize the input feature set and improve model performance. Lastly, although many studies have employed 
ensemble methods, there is a need for more comprehensive research that not only compares these methods 
against traditional algorithms but also evaluates their synergy when combined. This research gap justifies the 
need for the current study’s contributions, which focuses on using ensemble approaches and advanced feature 
selection strategies to produce a more accurate and reliable predictive model for diabetes mellitus.

Table 1 summarizes the state-of-the-art literature highlighting their strengths and limitations.

Methodology
This study proposes utilizing an ensemble model for diabetes attribute correlation strength that includes 
forward and backward features selection-based technique. The study adopted parallel and sequential ensemble 
approaches. The J48 method, Classification and Regression Tree (CART), and Decision Stump (DS) were used 
to produce a RF in the first experiment. The J48 algorithm, CART, and DS was used in the second phase of the 
experiment, along with three successive ensemble methods: XG Boost, AdaBoostM1, and Gradient Boosting.

The ultimate forecast was measured using average voting algorithms. The voting ensemble aggregates the 
decisions of various base classifiers for a specific classification or estimation with more options when it comes to 
integrating strategies to get the best categorization accuracy32.

The algorithms used in this study are outlined below.

Algorithms used

	1.	� 1. Random Forest (RF): An ensemble learning technique that generates the class mode for classification 
tasks by building several decision trees during training. It effectively handles a large number of features and 
prevents overfitting.

	2.	� 2. J48 Decision Tree: A decision tree is generated from a dataset using this implementation of the C4.5 al-
gorithm. It was selected because to its interpretability and effectiveness in managing both continuous and 
categorical data.

	3.	� 3. Classification and Regression Tree (CART): A non-parametric decision tree approach that may be applied 
to both classification and regression tasks. It is straightforward and effective, with a clear mechanism for 
feature selection through its structure.

	4.	� 4. Decision Stump (DS): A one-level decision tree that serves as a weak classifier. Its simplicity enables it to 
capture fundamental patterns and contribute to the ensemble’s overall performance.

	5.	� 5. XGBoost: A performance and speed-enhancing gradient boosting algorithm. It enhances model generali-
zation and performs exceptionally well on binary classification tasks.

	6.	� 6. AdaBoostM1: This adaptive boosting approach creates a strong classifier by combining many weak classi-
fiers. By concentrating on cases that are incorrectly classified, it helps weak learners perform better.

	7.	� 7. Gradient Boosting: This method builds models one after the other, fixing the mistakes of the earlier mod-
els. It successfully simulates intricate feature correlations and interactions.

Data collection and description
The Pima Indian dataset, which contains 768 instances and eight attributes, was used for this study’s tests and 
analysis. It could be obtained at https://www.​kaggle.com/d​atasets/ucim​l/pima-indi​ans-diabetes-database. At the 
Gila River Indian Community Bank in Southern Arizona, Pima Indians have lived there since 1965. Lengthy 
research on diabetes and its repercussions involved this tribe. The population has the biggest diabetes dataset 
and the greatest prevalence of infectious diabetes in the world (50% of those under the age of 35)33.

The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) is a government-funded 
research agency that focuses on kidney disease and diabetes34. As seen in Table 2, there are 768 instances in the 
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Name and 
author Dataset Methodology Results and accuracy Limitations Future scope

Yadav and Pal31 UCI Repository J48, Decision Stump, REP, RF, Gradient 
Boosting, AdaBoost M1, XGBoost

RF (Parallel) = 100%, 
XGBoost 
(Sequential) = 98.05%

Limited to ensemble 
methods

Explore hybrid models 
combining sequential and 
parallel approaches

Kumari, Kumar, 
and Mittal39

PIMA diabetes 
dataset (UCI) RF, Logistic Regression, Naive Bayes 79.08% (PIMA), 97.02% 

(breast cancer)
Focused on soft voting 
ensembles

Extend to other medical 
datasets and more classifiers

Tewari and 
Dwivedi32 UCI dataset JRIP, OneR, Decision Table, Boosting, 

Bagging Bagging = 98% Limited feature selection 
methods

Investigate more advanced 
feature selection techniques

Ghosh et al. 2021 PIMA Indians 
diabetes dataset

Gradient Boosting, SVM, AdaBoost, RF 
with and without MRMR feature selection RF = 99.35% with MRMR High complexity in MRMR 

feature selection process
Simplify feature selection and 
test on other datasets

Atif, Anwer, and 
Talib44

PIMA Indians 
dataset, Early-
Stage Diabetes

Hard Voting Classifier (Logistic Regression, 
Decision Tree, SVM)

81.17% (PIMA), 94.23% 
(Early-Stage Diabetes)

Limited voting scheme to 
hard voting

Explore soft voting or weighted 
voting for improved results

Rashid, Yaseen, 
Saeed, and 
Alasaady [45]

PIMA Indians 
Diabetes Dataset 
(PIDD)

Decision Tree, Logistic Regression, KNN, 
RF, XGBoost

81% after standardization 
and imputation

Focused only on ensemble 
voting techniques

Test other ensemble strategies 
such as bagging or boosting

Zhou, Xin, and 
Li 46

PIMA Indian 
diabetes dataset

Boruta feature selection, 
K-Means + + clustering, stacking ensemble 
learning

98% High computational cost in 
clustering

Reduce computation and test 
scalability

Kawarkhe and 
Kaur47 PIMA Indians CatBoost, LDA, LR, RF, GBC with 

preprocessing techniques 90.62% Limited to specific 
preprocessing techniques

Broaden the preprocessing 
techniques and methods

Reza, Amin, 
Yasmin, Kulsum, 
and Ruhi48

PIMA Indian 
diabetes dataset, 
local healthcare

Stacking ensemble with classical and deep 
neural networks

77.10% (PIMA), 95.50% 
(simulation)

Limited to stacking 
approaches

Explore other ensemble 
methods or hybrid approaches

Thongkam et 
al.17

Breast Cancer 
Dataset AdaBoost Improved prediction and 

diagnosis
Initially used only for breast 
cancer

Extend to other medical 
conditions

Velu and 
Kashwan18 Various Datasets

SVM, Radial Basis Function, Multi-Layer 
Perceptron, and Multi-Level Counter 
Propagation Network.

High accuracy in various 
applications

Complexity in model 
selection

Test different combinations 
and optimizations

Temurtas et al.19 PIMA-diabetes 
illness dataset Multilayer Neural Network Improved accuracy Focused on PIMA dataset Apply to other chronic disease 

datasets

Ayo at al.20 Heart Disease 
Dataset

Levenberg–Marquardt approach, 
Probabilistic Neural Network, Naive Bayes, 
SVM

High accuracy in 
diagnosing cardiac disease

Limited to cardiac disease 
prediction

Broaden to include other 
comorbidities

Farvaresh and 
Sepehri21

Various medical 
datasets

Decision Tree C4.5, Bagging with C4.5, and 
Naive Bayes.

Improved prediction of 
cardiac illness

Initial focus on cardiac 
illness

Expand to other diseases and 
datasets

Kalman Filter 
Theory22

PIMA Indian 
dataset

Adaptive and personalized insulin 
recommendation

Enhanced classification 
accuracy

Focused on insulin 
recommendation systems

Broaden to other therapeutic 
recommendations

Ajagbe et al.23 Various 
applications

Multimedia analytic techniques, meta-data 
annotation, MPEG-7 Improved semantic analysis Limited to MPEG-7 Explore alternative multimedia 

retrieval frameworks

Gong and Kim,24 Misbalanced 
Datasets RHS-Boost for balanced classification High accuracy and 

prediction
Designed for misbalanced 
datasets

Apply to other datasets and test 
alternative balancing methods

Purnami et al.25 Diabetes detection ANFIS and PCA Enhanced detection Initial partitioning approach Broaden to include other 
feature extraction methods

Rani and Jyothi26 Diabetes dataset Bayesian Classification, J48, KNN, Filtered 
Classifier, ANN, Naive Bayes 77.01% accuracy Lack of cross-validation Implement cross-validation 

and expand dataset usage

Zheng et al.27 Various datasets KNN, Naive Bayes, Decision Tree, RF, 
SVM, Logistic Regression

Improved recall and 
accuracy

Filtering criteria could be 
improved

Enhance feature selection and 
parameter tuning

Komi et al.28 Sample datasets ELM, ANN, LR, GMM, SVM Better accuracy with fewer 
samples Less amount of sample data Increase sample data and test 

on more complex datasets

Sai et al.29 Diabetes dataset Weighted voting approach for ensemble 
prediction models

Enhanced predictive 
performance

Focused on ensemble 
prediction model

Explore ensemble expansion 
and optimization

Rustam et al.56 Multiple datasets
Ensemble of CNN and LSTM for feature 
extraction, Random Forest model for 
prediction

Accuracy score of 0.99 
using CNN-LSTM features 
with Random Forest

Limited by dataset size, 
generalizability issues in 
existing approaches

Explore other ensemble 
models, improve dataset 
diversity, real-world 
applicability

Faustin and Zou 
et al.57

Pima Indian 
Diabetes Dataset

Genetic Algorithm (GA) enhanced with 
a two-step crossover operator for feature 
selection.

Accuracy: 97.5%, Precision: 
98%, Recall: 97%, F1-score: 
97%

Premature convergence due 
to insufficient population 
diversity in GA.

Apply the improved GA to 
other datasets, refine crossover 
technique.

Reza et al.58

PIMA Indian 
Diabetes dataset, 
Local healthcare 
data

Stacking ensemble method combining 
classical and deep neural network models 
for diabetes classification.

Stacking ensemble with 
NN architectures: Accuracy 
95.50%, Precision 94%, 
Recall 97%, F1-score 96%

Limited to dataset used 
in the study; may need 
more diverse data for 
generalization.

Explore further with other 
datasets, and apply to real-time 
healthcare systems.

Saihood and 
Sonuç59

Pima Indians 
Diabetes Database

Ensemble machine learning models: 
Bagging, boosting, and stacking with 
hyperparameter tuning and data 
preprocessing.

Stacking (RF & SVM): 
97.50% accuracy, Bagging 
(RF): 97.20%, Boosting 
(XGB): 97.10%

Framework limited to Pima 
Indians dataset; real-world 
data may vary.

Extend framework to include 
more diverse datasets and 
explore real-time applications 
in healthcare.

Daza et al.60
Diabetes Dataset 
(768 patient 
records)

Stacking ensemble approach using 7 base 
algorithms; oversampling to balance the 
dataset and cross-validation for model 
training.

Best accuracy: 91.5%, 
Sensitivity: 91.6%, F1-
Score: 91.49%, Precision: 
91.5%, ROC Curve: 97%.

Performance depends on the 
dataset and oversampling 
method.

Improve the model’s 
generalizability by testing on 
other datasets and enhancing 
model

Table 1.  Summary of the state-of-the-art literature.
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Pima Indian Diabetes Dataset, each with eight input attributes and one output attribute. All input characteristics 
with 768 female samples only offer numeric data values, and the first character shows the number of pregnant 
patients. The body’s glucose levels are the second feature. The third feature is the diastolic blood pressure 
measurement in millimetres of mercury (mmHg). Skin thickness in millimetres is the fourth attribute. The 5th, 
6th, and 7th attributes define the overall quantity of insulin produced. Equation 1 defines the body mass index 
(BMI)

	
BMI = P atient′ sweight in Kg

P atients height in meter
� (1)

of infected patients and the structure of the diabetic family, respectively the patients’ present age is the final 
characteristic stated. The dataset was analysed using the suggested classification algorithms, parallel and 
sequential ensemble methods, and feature selection strategies to develop the diabetes prediction model.

System architecture and flowchart
At this point, all of the experimental combinations were created using ML methods. The data description part 
explains several diabetes-related problems and their associated attributes, as well as visualizes their distribution 
using Python classification tools. For diabetic attribute correlation strength, forward and backward feature 
selection-based algorithms were applied. This study proposes utilizing an ensemble model for diabetes attribute 
correlation strength that includes forward and backward features selection-based technique. The study adopted 
parallel and sequential ensemble approaches. The J48 method, CART, and Decision Stump (DS) were used to 
produce a RF in the first experiment. The J48 algorithm, CART, and DS was used in the second phase of the 
experiment, along with three successive ensemble methods: XG Boost, AdaBoostM1, and Gradient Boosting. 
Average voting algorithms was used to measure the final Prediction. To reach the highest level of classification 
accuracy, it offered flexibility in combination tactics32. Figure 1 illustrates this explanation of the system design.

The flowchart for the prediction system is depicted in Fig.  2 and explained as follows. The dataset was 
inputted, pre-processed, the selection of high features was made using backward and forward features selection 
technique. If diabetes was found in the processed data, then the system will signify the type of diabetes, and if 
the processed data is normal, the system execution stops.

Techniques for selecting features
In ML, feature selection is used to identify the ideal set of characteristics for building accurate models of the 
phenomena under study.

Reasons for using feature selection
To simplify models and make them easier for academics and practitioners to understand, feature selection 
is used. By limiting overfitting, it helps shorten training periods, minimize the curse of dimensionality, and 
enhance generalization (formally, lowering variance).

Wrapper methods
Wrapper techniques need a method for searching the space for all viable feature subsets and evaluating each 
one’s quality by training and testing a classifier on it. We use a ML technique to discover features and attempt to 
tailor it to a dataset. All possible feature combinations are evaluated to the evaluation criterion using a greedy 
search technique. In many cases, wrapper methods are more accurate predictors than filter methods.

Forward feature selection
An iterative method for choosing the variable that performs the best relative to the objective is called “forward 
feature selection.” The next step is to select a second variable that, when paired with the first, yields the greatest 
results. The predefined condition is not satisfied until this procedure is used.

Attribute Description Type

Pregnant Pregnancy frequency Real

Plasma Plasma glucose levels during an oral glucose tolerance test Real

Diastolic Blood pressure diastolic (mm/Hg) Real

Triceps Triceps skinfold measurement (mm) Real

Serum Insulin Serum insulin after two hours (µU/ml) Real

BMI Body Mass Index, or BMI (kg/m2) Real

Pedigree Fun Pedigree function for diabetes Real

Age(years) Age of patient Real

Diabetes Status (0-Healthy, 1-Diabetes) Discrete

Table 2.  Pima Indian diabetic patient data.
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Fig. 2.  Flowchart of diabetes mellitus prediction system.

 

Fig. 1.  Diabetes mellitus prediction architecture.
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Backward feature selections
The Forward Feature Selection technique is diametrically opposed to this notion. The process begins with all 
of the available features and work its way up. The model variable with the highest evaluation measure value is 
then selected. This technique is carried out until the predefined condition is met. This approach is also known as 
Sequential Feature Selection, in addition to the one discussed above.

Parallel ensemble method
Similar ensemble techniques, like as a RF, produce base learners in the same manner. Employing parallel 
generation of foundation learners is one technique to strengthen the independence of base learners.

Sequential ensemble method
Base learners are developed sequentially using adaptive boosting and other sequential ensemble approaches 
(AdaBoost). Basic learners are prompted to rely on one another through their gradual progress. The performance 
of the Model is then improved by giving previously underrepresented learners more weight. J48, Decision Stump, 
CART, AdaBoostM1 ensemble method, Gradient boosting ensemble method and XG Boost Ensemble Method 
were used in the work35–38.

Evaluation metrics
The Confusion Matrix, which lists the right and wrong predictions, was the first performance indicator used 
to assess the model. Each of the two output classes is represented by the numbers 0 and 1, where 0 denotes no 
diabetes and 1 denotes diabetes. The confusion matrix’s diagonal values display accurate predictions, whereas 
the off-diagonal values reflect incorrect classifications. The terms used in the matrix are:

	 i.	� True Positives (TP): are cases in which the model correctly predicted the positive class (diabetes).
	ii.	� True Negatives (TN): Situations in which the model correctly predicted the negative class (no diabetes).
	iii.	� False Positives (FP): Cases in which the model predicted diabetes when none existed.
	iv.	� False Negatives (FN): When diabetes was present, the model mispredicted that it wasn’t.

These terms allow to derive several important metrics for evaluating the model’s performance:

	1.	� Accuracy, which is the percentage of correctly identified occurrences (both positive and negative) out of all 
instances, gauges the model’s overall efficacy:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (2)

	2.	� Precision assesses how well the model detects positive diabetes patients while reducing false positives:

	
Precision

T P

T P + F P
� (3)

	3.	� To reduce false negatives, recall (also known as sensitivity or true positive rate) assesses the model’s ability to 
recognize all true positive cases (e.g. diabetes):

	
Recall = T P

T P + F N
� (4)

	4.	� The F1 score is a balanced assessment of the model’s performance, calculated as the harmonic mean of pre-
cision and recall. It’s extremely useful for unbalanced datasets, like diabetes diagnosis:

	
F1 Score = 2*

P recision × Recall

P recision + Recall
� (5)

	5.	� Matthews Correlation Coefficient (MCC) provides a comprehensive performance metric that evaluates the 
quality of binary classifications by considering all four terms from the confusion matrix (TP, TN, FP, FN). 
MCC is particularly valuable for datasets with significant class imbalance, offering a balanced assessment:

	
MCC = T P × F P − F P × F N√

(T P + F P )(T P + F N)(T N + F P )(T P + F N) � (6)

MCC values range from − 1 (completely wrong classification) to + 1 (perfect classification), with 0 indicating no 
better than random prediction.

	6.	� AUC-ROC measures the model’s ability to differentiate between positive (diabetes) and negative (no diabe-
tes) classes at different thresholds. A perfect classifier has an AUC of 1.00, but a random classifier scores 0.5.

	7.	� The Area Under the Precision-Recall Curve (AUC-PR) provides a more detailed knowledge of the preci-
sion-recall trade-off, which is especially valuable when working with imbalanced datasets. A high AUC-PR 
indicates that the model maintains good precision and recall despite the class imbalance.
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Implementation and results
As previously stated, the dataset comprises 9 characteristics and 768 instances that were utilized in the Model’s 
development. The data was stored in the diabetes.csv CSV file. The plot in Fig. 3 shows that the data contains 
more cases without diabetes (0) than those with diabetes (1). The number of non-diabetics is 268 while the 
number of diabetic patients is 500.

Data pre-processing
This section describes the methods and findings gained during data preprocessing to achieve the best outcomes. 
This procedure is executed until the predefined condition is met.

Mean imputation
The technique of approximating missing values in a dataset using valid (non-missing) values is known as 
imputation. This method makes use of known dataset values to create correlations that can help identify missing 
values. The average of the remaining cases was used to fill in the gaps. The assumption of imputation is that the 
sample is statistically homogeneous.

Generalized imputation
The missing value is replaced by the average of all non-missing values for that variable. First, zeros were used 
instead of NaN since counting them was easier, and the zeros required had the right values. To fill these NaN 
values, the association with characteristics was recognized. The heatmap in Fig. 4 indicates greater associations 

Fig. 3.  Data distribution.
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with brighter colours. The heatmap shows significant connections between the outcome variable and glucose 
levels, age, BMI, and number of pregnancies. There is a high association between features such as age and 
pregnancy, insulin and skin thickness.

Additionally, features were scaled to unit variance and the mean was removed using Standard Scaler to 
normalize them. The standard score for Sample X is computed as follows:

	
z = x − U

S
� (7)

where u represents the mean of the training samples, or zero if mean = False, and std represents the standard 
deviation of the training samples, or one if std = False.

By calculating the relevant statistics on the samples from the training set, each feature is individually centred and 
scaled. The mean and standard deviation are then recorded and utilized to transform following data.

Fig. 4.  Heatmap of feature (and outcome) correlations.
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Implementation of forward and backward feature selection
Forward and backward strategies were used in this study to pick the relevant features for diabetes attribute 
correlation strength in the dataset, allowing the ML algorithm to be trained faster. By choosing the proper number 
of features, the model’s complexity was minimized, which made it easier to read, as well as reduced over-fitting. 
Two trained subsets were created from the dataset. Create a model using a dataset (from the recently installed 
import Sequential Feature Selector and the sklearn library). Import LinearReggression because predicting the 
course of diabetes requires that the target variable and the independent variables be defined explicitly when 
working on regression issues. After eliminating the “Pregnancies,” “Outcome,” variable, X was employed as the 
independent variables in this case. Additionally, “OUTCOME,” the goal variable, was chosen as Y.

The python function lreg, which stands for a linear regression model, is the first parameter in the forward 
feature selection technique used. The attribute features in the code specified how many features should be chosen. 
In this case, features was set to 4. Up until four features were chosen, four models were trained. When using the 
forward feature selection approach as opposed to the backward elimination method, the parameter forward 
was set to True, which entails training the forward feature selection model. When using the backward feature 
removal strategy, this option was set to False. When verbose = 2, the model summary was displayed after each 
iteration. Starting with the whole Model (containing all of the independent variables), backward elimination was 
performed by deleting the unimportant features with the highest p-value (higher significance level). Up to the 
last set of significant traits, this procedure was repeated. Figure 5 showed that the same set of features were re-
selected in a backward elimination procedure, which included age, BMI, diabetes pedigree function and glucose.

Experimentations and results evaluation
Output of the model
The output of the Model, as well as the metrics used to evaluate it, were provided in this section. The parameters 
utilized to fine-tune the Model and the re-evaluation procedure in order to reach the best possible outcome 
were explained. Each category’s efficacy was assessed using sensitivity (S.N.), specificity (S.P.), accuracy, and 
Matthew’s correlation coefficient (MCC).

Predictive modelling
The model’s performance was evaluated using training and testing accuracy scores, classification reports, and 
a confusion matrix. The confusion matrix was utilized to compute the actual positive rate (recall), accuracy, 
false-positive rate, AUC_ROC, and AUC_PR false-negative rate (miss rate). Figures 6, 7, 8 and 9; Table 2 show 
the classification report of the trained Model for the parallel method. When given the training set, the model 
obtained an accuracy of 98% using the parallel technique.

The confusion matrix in Fig. 6 gives us additional information about the Model’s performance. It was found 
out that the Model attained a true positive of 48%; also, it was able to achieve a true negative for 131% of its 
predictions. However, 36% of its predictions wrongly predicted a sample to be diabetes when it was not. It was 
also observed that it has a false negative of 41, which means 41% of its predictions for a decision slump.

Figure 7 depicts the confusion matrix, which offers information about the model’s performance. When J48 
was implemented, the Model was found to have 90 true positives and 307 true negatives of its predictions. 
However, 26 of its predictions incorrectly indicated diabetes in a sample. It was also discovered that it has a false 
negative rate of 89, implying that 89 of its predictions were incorrectly identified as negative while they were 
diabetic.

Fig. 5.  Forward and backward feature selection prediction model.
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The confusion matrix in Fig. 8 depicts the Model’s performance for the CART. The Model had a true positive 
of 97 and a true negative for 305 of its forecasts. However, 28 of its predictions wrongly predicted a sample to be 
diabetes. It was also observed that it has a false negative of 82, which means 82 of its predictions were predicted 
to be negative while in the actual sense they are positive (diabetic).

Figure 9 confusion matrix illustrates how well the model performed when Random Forest (RF) was applied. 
The Model was found to have 171 accurate positive predictions and 330 true negative predictions. 3 of its 
projections, however, were incorrect. It was also noted that it had a false negative of 8, meaning that it incorrectly 
predicted that 8 people would develop diabetes. This study concentrated on three algorithms: J48, Decision 
Stump, and CART to obtain an RF ensemble method. In comparison to the other three separate approaches, the 
RF ensemble methodology had a classification accuracy of 98%. Table 3 demonstrates that RF outperformed J48, 
CART, and Decision Stump algorithms in terms of f1-score, MCC, Precision, Recall, AUC ROC, and AUC PR.

In the second comparison, three algorithms (J48, CART, and Decision Stump) and three sequential ensemble 
techniques (AdaBoost, XG Boost, and Gradient Boosting) were investigated.

Hyperparameter tuning
Figures 10, 11, and 12 show that XGBoost, Adaboost, and Gradient Boosting all achieved 100% classification 
accuracies in the experiments conducted. This was made possible by the hyperparameter tuning presented here 
in this section. To improve the performance of machine learning models, hyperparameter tuning was conducted 
using RandomizedSearchCV. This technique enables systematic exploration of different hyperparameter 
combinations to identify the optimal settings for each model. Max_depth, learning rate, n_estimators, min_
child_weight, subsample, and colsample_bytree were among the several hyperparameters investigated for the 
XGBoost classifier. The hyperparameter grid was selected with care to encompass a wide range of values, and the 
performance of each combination was assessed using 5-fold cross-validation. The best parameters were identified 
as max_depth = 26, learning rate = 0.3, n_estimators = 1000, subsample = 0.4. Similarly, for the AdaBoost and 
Gradient Boosting classifiers, hyperparameter tuning was performed. While the tuning of Gradient Boosting 
concentrated on max_depth, learning rate, n_estimators, and subsample, AdaBoost optimized learning_rate and 
n_estimators. This approach ensured that the models were configured with the most effective hyperparameters, 
contributing to improved classification accuracy and model performance.

The performance of the Model was provided by the confusion matrix in Figs. 10, 11, and 12. A true positive 
of 179 was recorded by the model, and 333 of its predictions were found to be true negatives. Conversely, it 

Fig. 6.  Output of decision stump.
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produced 0 false negatives and 0 false positives. To put it another way, its forecast accuracy is 100%. The f1-score, 
MCC, Precision, Recall, AUC_ROC, AND AUC_PR of XGboost39–41. Adaboost and Gradient boosting were 
higher when compared to the base leaners in Table 4.

Machine learning model experiments on eight (8) features
Eight features—pregnancies, blood pressure, glucose, skin thickness, insulin, BMI, diabetes pedigree function, 
and age—were used to compare the models’ overall performance. Gradient Boosting was found to perform 
better than the other approaches in both testing and training. Notably, as forward and backward feature selection 
methods were not used in this analysis, they are not included in this comparison. Table 5 provides a summary 
of the findings.

The output of the final Prediction on voting ensemble method was computed to be 100% accurate, as shown 
in Fig. 13.

K-Fold cross-validation for model evaluation
During training and evaluation, K-Fold cross-validation was employed to guarantee the robustness and 
generalizability of the classification models. The method separates the dataset into K subsets, or folds, with the 
remaining K-1 folds acting as the training set and each fold as a validation set. To guarantee that every data point 
is present in both the training and validation sets, this procedure is carried out K times. A more reliable estimate 
of the model’s performance is obtained by averaging the performance metrics across all folds.

In our work, 5-fold cross-validation was employed to assess different classifiers such as Random Forest, 
CART, J48, Decision Stump, AdaBoost, Gradient Boosting, and XGBoost. Several metrics were used to analyse 
each model’s performance, including accuracy, precision, recall, F1-score, Matthew’s correlation coefficient 
(MCC), AUC-ROC, and AUC-PR. Table 6 presents the performance metrics for each classifier after applying 
K-Fold cross-validation. The Random Forest classifier achieved an accuracy of 100%, demonstrating its 
exceptional ability to generalize to unseen data. Both AdaBoost and Gradient Boosting also recorded accuracy 
scores of 100%, indicating their effectiveness in classification tasks. However, the performance metrics varied 
among the different models, emphasizing the necessity of picking the proper model depending on the specific 
characteristics of the dataset, as shown in Table 6.

Fig. 7.  Output of J48 prediction algorithm.
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Comparison of diabetes datasets and model performance
Two public diabetes datasets were evaluated: one from Rashid and Ahlam49, titled “Diabetes Dataset” available 
on Mendeley Data, and the other from Kaggle called diabetes_prediction_dataset.csv. The proposed model in 
this work was tested against various machine learning models using both datasets after applying forward and 
backward feature selection. The results demonstrated consistent performance of the proposed model, indicating 
its robustness and ability to generalize well on new datasets as shown in Tables 7 and 8.

Evaluation of results
Based on the set of features used in building the model in this work, it is quite difficult to make direct comparisons 
with other studies. However, results from the most related studies were identified and used to substantiate the 
results in this work. The works used for the comparison were the ones where the authors used ML techniques 
in the discovery of DM on Pima Indians dataset. The summary of the result comparison is given in Table 9, 
which showed that the current study performed better than the existing related methods in terms of prediction 
accuracy.

Discussion of results
In this study, the high accuracy and performance metrics indicate that the sequential ensemble approaches 
considerably improved the model’s ability to predict diabetes with high precision. The use of Forward and 
Backward feature selection methods ensured that the most relevant features were included in the model, 
contributing to its superior performance.

The results from our study demonstrate a significant advancement in diabetes diagnosis accuracy compared 
to previous research. For instance, the proposed study outperformed Yadav and Pal31. Their study achieved 
100% accuracy with Random Forest (RF) in parallel ensemble methods and 98.05% with XGBoost in sequential 
ensembles. While these results are impressive, our sequential ensemble methods—XGBoost, AdaBoost, and 
Gradient Boosting—reached 100% accuracy, surpassing their performance. The perfect scores across all 
sequential models indicate a robust approach to diabetes diagnosis. Also in Kumari, Kumar, and Mittal39, their 
ensemble soft voting classifier achieved 79.08% accuracy on the PIMA diabetes dataset, which is significantly 
lower than our results. Despite their use of ensemble methods combining RF, logistic regression, and Naive 
Bayes, the proposed study’s sequential ensemble methods delivered a perfect classification accuracy of 100%, 
showcasing a substantial improvement.

Fig. 8.  Output of CART prediction algorithm.
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Tewari and Dwivedi32 reported 98% accuracy using a bagging ensemble method. Our results not only match 
but exceed their accuracy, with our sequential ensemble methods achieving perfect scores. This improvement 
highlights the effectiveness of our feature selection and ensemble approach in capturing and leveraging the 
data’s underlying patterns. Moreover, Rashid et al.45 achieved 81% accuracy with an ensemble voting classifier 
using a variety of models, including Decision Trees and XGBoost. This study’s sequential ensemble methods 
significantly outperformed this with 100% accuracy. This difference underscores the potential of our approach 
to deliver more reliable predictions.

The stacking ensemble method with feature selection presented in Zhou, Xin, and Li46 achieved 98% accuracy. 
Our sequential ensemble methods also reached 100% accuracy, demonstrating that our approach is not only 
competitive but superior in terms of classification performance. Kawarkhe and Kaur47 achieved 90.62% accuracy 
with various ensemble classifiers. Our results of 100% accuracy with sequential ensemble techniques suggest a 
more effective model for diabetes diagnosis. Reza et al.48 reported 77.10% accuracy on the PIMA dataset with 
a stacking ensemble method and 95.50% using deep neural networks. While their deep learning methods are 
impressive, but the sequential ensemble methods also achieved 100% accuracy, providing an alternative high-
performance approach.

The proposed study demonstrates a clear advancement in diabetes diagnosis accuracy compared to the 
methods reported in previous research. The use of advanced sequential ensemble techniques, coupled with 
effective feature selection, has resulted in a model that achieves perfect classification accuracy. This indicates 
a significant improvement in diagnostic capabilities and sets a new benchmark for future research in this area.

Statistical analysis Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%) AUC_ROC (%) AUC_PR (%)

Decision slump 69.92 57.14 53.93 55.49 32.84 66.19 66.55

J48 77.54 77.59 50.28 61.02 48.38 71.24 71.21

CART 78.52 77.60 54.19 63.82 50.82 72.89 76.93

RF 97.85 98.28 95.53 96.88 95.27 97.31 99.29

Table 3.  Model classification report for parallel ensemble method.

 

Fig. 9.  Output of random forest (RF) prediction algorithm.
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Conclusions
Recapitulation
Diabetes Mellitus is a serious health issue, and it affects people all over the globe. It is a diverse set of diseases 
characterized by a chronic increase in blood glucose levels. It rises because of the failure of the body to produce 
insulin that is enough to meet an individual’s needs. Diabetes affects around 400 million people worldwide. Early 
detection and treatment of such diseases can save lives. This research work analysed diabetes mellitus dataset 
obtained from the Kaggle repository, which has nine attributes with 789 instances, to achieve the goal. The 
feature selection technique termed forward, and backward features was adopted in the study, and this generated 
valuable scores with comparable features in the whole analysis. The prediction was helped by both feature 
picking procedures. The trials in this study were divided into two groups: one that concentrated on J48, CART, 
and Decision Stump and produced a RF ensemble approach, and the other that concentrated on J48, CART, and 
Decision Stump. The classification accuracy for this parallel ensemble technique was 96%. The second portion 
of the experiment includes three sequential ensemble methods: AdaBoostM1, XG Boost, and Gradient Boosting 
together with J48, CART, and Decision Stump. The AdaBoostM1 X.G.Boost ensemble and Gradient Boosting 
ensemble techniques all produced superior results with 100% classification accuracy. In this work, the sequential 
ensemble models XG Boost, AdaBoostM1, and Gradient Boosting outperformed the fundamental learning 
techniques. The results from experiments conducted in this study showed that AdaBoostM1, XG Boost, and 
Gradient Boosting performed better than the base learning algorithms applied in this work. Researchers and 
developers can leverage on the predictive Model developed in this work to make quick predictions of diabetes 
mellitus, which could save many lives. This work introduced a novel combination of parallel and sequential 
ensemble methods with feature selection techniques for the prediction of DM, which played a vital role in 
resolving the problems of noisy data, over/underfitting, residual errors associated with base-level models. The 
research found that XGBoost, AdaBoostM1, and Gradient Boosting achieved 100% classification accuracy in 
diabetes detection. Feature selection improved model performance by focusing on the most relevant features. 
Sequential ensemble methods outperformed traditional algorithms, demonstrating superior performance 
metrics. The developed model offers a robust tool for accurate and efficient diabetes diagnosis, with potential 
practical applications in clinical settings. This study enhances diabetes detection by employing advanced 
ensemble methods and feature selection techniques with hyperparameter tuning to achieve high classification 
accuracy, offering a novel and more effective approach compared to existing methods, and providing valuable 
insights and benchmarks for future research and practical applications.

Fig. 10.  Output of XG boost.
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Future work
The study, like others, has certain limitations that could guide future research efforts. Firstly, the Pima Indian 
Diabetes dataset may not fully capture the diversity of diabetic populations across different regions, which could 
limit the generalizability of the findings. Therefore, future studies should aim to evaluate the model using diverse, 
real-world datasets to assess its performance across various demographic groups and geographical regions. This 
would help improve the robustness of the model and its applicability to a broader population. Secondly, the 
study relied on a fixed set of features that may not comprehensively represent all relevant variables influencing 
diabetes risk. Future work could explore more advanced feature selection methods, such as Artificial Neural 
Network Hybrid Ensembles or Fuzzy-based models, to identify and incorporate additional factors that might 
improve prediction accuracy. Additionally, we suggest expanding the scope of feature engineering, possibly 
integrating time-series data or clinical histories where applicable. Another significant area for future research 
is the prediction of different types of diabetes. The current study does not distinguish between Type 1 and Type 
2 diabetes, nor does it predict gestational diabetes. Exploring methods to classify different types of diabetes, 
potentially through the integration of more detailed datasets, could provide more specific and actionable 
insights for clinical practice. Furthermore, the deployment of the model into clinical decision support systems 
(CDSS) should be explored in future work. This would involve testing the model in real-time clinical settings and 
validating its effectiveness in assisting healthcare professionals with diagnostic and treatment decisions. Ensuring 
the model is interpretable and transparent for clinicians will also be critical. We recommend incorporating 
explainability techniques like SHAP or LIME, which could provide insights into how the model makes decisions, 
enhancing its trustworthiness. Lastly, ethical considerations, including the detection and reduction of biases, 
should be a priority in future work. Ensuring that the model provides fair and equitable predictions across 
different populations is essential to its adoption in healthcare setting.

Fig. 11.  Output of Ada BOOST.
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Statistical analysis Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%) AUC_ROC (%) AUC_PR (%)

Decision slump 70.00 55.67 60.67 58.06 34.29 67.46 59.42

J48 73.83 62.50 61.80 62.15 42.15 71.02 64.47

CART 69.53 56.47 53.93 55.17 32.13 65.89 61.31

RF 75.79 64.21 68.54 66.30 47.49 74.09 71.38

XG boost 73.05 62.50 56.18 59.17 39.26 69.11 63.38

ADA Boostingm1 75.79 64.21 68.54 66.30 47.49 74.09 71.38

Gradient boosting 76.79 66.21 68.54 66.30 57.49 78.09 75.38

Table 5.  (8) eight features classification model report without forward and backward feature techniques.

 

Statistical analysis Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%) AUC_ROC (%) AUC_PR (%)

XG boost 100 100 100 100 100 100 100

ADA boostingm1 100 100 100 100 100 100 100

Gradient boosting 100 100 100 100 100 100 100

Table 4.  Model classification report for sequential.

 

Fig. 12.  Output of Gradient BOOST.
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Model Precision Recall F1-Score Accuracy

Random forest 0.97 0.97 0.97 0.99

J48 (C4.5) 0.97 0.94 0.96 0.99

CART 0.95 0.97 0.96 0.98

Decision stump 0.50 1.00 0.67 0.88

XGBoost 0.97 0.97 0.97 0.99

AdaBoost 0.86 1.00 0.92 0.94

Gradient boosting 0.97 0.94 0.96 0.98

Proposed model 0.98 1.00 0.99 0.99

Table 8.  Accuracy results for “diabetes dataset” (Mendeley data).

 

Model Precision Recall F1-Score Accuracy

Random forest 0.97 1.00 0.98 0.97

J48 (C4.5) 0.98 0.97 0.97 0.95

CART 0.98 0.97 0.97 0.95

Decision stump 0.95 1.00 0.98 0.95

XGBoost 0.97 1.00 0.98 0.97

AdaBoost 0.97 1.00 0.98 0.97

Gradient boosting 0.97 1.00 0.99 0.97

Proposed model 0.97 1.00 0.97 0.98

Table 7.  Accuracy results for diabetes_prediction_dataset.Csv (Kaggle).

 

Statistical analysis Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%) AUC_ROC (%) AUC_PR (%)

Random forest 100 100 100 100 100 100 100

CART 78 0.79 0.90 0.84 50.46 84.42 70.80

J48 78 0.79 0.90 0.84 50.46 84.21 70.45

Decision stump 76 0.79 0.85 0.82 45.40 71.95 54.24

AdaBoost 81 0.81 0.92 0.86 56.51 89.24 80.66

Gradient boosting 100 100 100 100 100 100 100

XGBoost 100 100 100 100 100 100 100

Table 6.  Performance metrics of classification models.

 

Fig. 13.  Output of Ensemble method.
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Data availability
The dataset used in this study is publicly available on Kaggle at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​​d​a​t​a​s​e​t​s​/​u​c​i​m​l​/​p​i​m​a​-​i​
n​d​i​a​n​s​-​d​i​a​b​e​t​e​s​-​d​a​t​a​b​a​s​e​.​​
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Name and author Dataset Method Result

Yadav and Pal31 UCI Repository J48, Decision Stump, REP, RF, Gradient Boosting, AdaBoost 
M1, XGBoost.

Parallel (RF = 100%) and Sequential Ensemble 
(XGBoost = 98.05%)

Kumari, Kumar and 
Mittal39

PIMA diabetes dataset 
(UCI)

The proposed ensemble soft voting classifier uses an ensemble 
of three machine learning methods to give binary classification, 
including RF, logistic regression, and Naive Bayes.

On the Pima Indians diabetes dataset, the ensemble soft 
voting classifier obtained 79.08% accurate results and 97.02% 
correct results on the breast cancer dataset.

Tewari and Dwivedi32 UCI dataset.
Methods for choosing features like the correlation matrix 
and Chi-square Rule-based classification algorithms: JRIP, 
OneR, and Decision Table Ensemble techniques: boosting and 
bagging

According to the result’s summary. The Bagging Ensemble 
Method had the highest accuracy of 98%

Rashid, Yaseen, Saeed, 
and Alasaady45

PIMA Indians Diabetes 
Dataset (PIDD)

Ensemble voting classifier with Decision Tree, Logistic 
Regression, K-Nearest Neighbour, Random Forests, and 
XGBoost

Achieved 81% accuracy after applying standardization, 
imputation, and Local Outlier Factor (LOF)

Zhou, Xin, and Li46 PIMA Indian diabetes 
dataset

Boruta feature selection, K-Means + + clustering, stacking 
ensemble learning method Achieved 98% accuracy

Kawarkhe and Kaur47 PIMA Indians Ensemble Classifiers: CatBoost, LDA, LR, Random Forest, 
GBC with pre-processing techniques Achieved 90.62% accuracy

Reza, Amin, Yasmin, 
Kulsum, and Ruhi48

PIMA Indian diabetes 
dataset and local 
healthcare data

Stacking ensemble with classical and deep neural network 
methods using multiple classification models

77.10% accuracy on PIMA dataset with CV protocol; 95.50% 
accuracy using deep NN stacking on simulation study

Proposed study Kaggle (PIMA Indian) J48, Decision Stump, CART, RF, AdaBoost, XGBoost, Gradient 
Boost (Forward and backward techniques)

8 features (without Forward and backward features)
Decision slump 70.00
J48 73.83
CART 69.53
RF 75.79
XG BOOST73.05
ADA BOOSTINGM 75.79
GRADIENT BOOSTING 76.79
with Forward and backward features
Parallel (RF = 98%) and Sequential Ensemble 
(XGBoost = 100%, AdaBoost = 100%, Gradient Boost = 100%)

Table 9.  State-of-the-arts comparison of results with related studies.
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