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This study proposes an enhanced multi-agent swarm control algorithm (EN-MASCA) to solve the 
problem of efficient patrolling of drone swarms in complex durian orchard environments. It introduces 
a virtual navigator model to dynamically adjust the patrol path of the drone swarm and perform 
obstacle avoidance and path optimization in real time according to environmental changes. Different 
from traditional algorithms that only rely on fixed path planning, the virtual navigator model 
significantly improves the flexibility and stability of the drone swarm in complex environments. It 
also applies deep reinforcement learning algorithms to path planning and obstacle avoidance of 
drone swarms for the first time, improving the algorithm’s adaptability and optimization capabilities 
by learning dynamic information in complex environments. This innovation significantly improves 
the applicability of existing methods in complex terrain and dynamic obstacle environments. 
Finally, it incorporates the simulation characteristics of biological swarm behavior, and on this basis, 
comprehensively optimizes the flight path, obstacle avoidance and swarm stability of the drone 
swarm. By improving control strategies and parameter design, it improves the trajectory consistency 
and mission completion efficiency of the UAV swarm during flight. In the experimental part, this 
study verified in detail the advantages of the EN-MASCA algorithm in terms of flight trajectory, flight 
stability, cluster consistency and task completion efficiency by constructing a six-degree-of-freedom 
UAV motion simulation model and real environment simulation. It provides an efficient and intelligent 
solution for collaborative patrol operations of drones in durian orchards, which has important practical 
application value and promotion prospects.
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The durian orchard is a large-area and high-density agricultural plantation. Its management and maintenance 
require efficient patrol operations to ensure the healthy growth and high yield of durian1. However, since durian 
orchards usually have large area, much manpower must be invested in patrolling especially the peak periods. 
In addition, the cost of agricultural labor is rising year by year, which causes higher costs of relying on manual 
patrols of durian orchards. It is also difficult to ensure full coverage of the entire durian orchard, which will miss 
some areas and affects the patrol effect. The environment of durian orchard is large, so manual patrols require 
long walks, which consumes a lot of physical strength2. With the application of drone technology in agriculture, 
durian orchards have also begun to try to use drones for patrol operations. Drones can cover large areas quickly, 
provide high-resolution real-time images and data and improve the patrol efficiency and accuracy. However, 
the drone patrol operations also have some problems. The autonomous flight path planning and navigation 
accuracy of drone swarms is insufficient, which is easy to deviate from the planned route or fail to cover all target 
areas3. Due to the complex terrain of the durian orchard, the drone swarm needs to fly at different altitudes, 
which increases the difficulty of path planning. The weather conditions (such as wind speed, wind direction 
and rainfall) will also affect the flight stability of the drone swarm, which causes the flight trajectory deviation, 
mutual interference and collisions. So drone swarms need to calculate and optimize paths to cope with changes 
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in the dynamic environment. It also needs to share the real-time location information and status data. If the 
synchronization is not timely, the drones cannot coordinate and perform tasks4.

Literature review
In order to solve the above-mentioned problem of motion cruising, some scholars have made some achievements 
in some scene applications. Miao et al.5 proposed a heuristic algorithm for the SAC (slice admission control) 
problem in 5G/B5G networks. It introduces the resource efficiency of the introduced service to correct 
the priority violation, and then sets the target CSAR for each service type and improves its actual CSAR to 
improve accuracy. Sun et al.6 designed a task scheduling algorithm based on proportional fairness awareness 
auction (PFAPPO) based on proximal policy optimization. It allocates computing resources reasonably to each 
drone, so that the drone learns the computing resources available at each unloading destination, solving the 
problems of extremely long queue delays and load imbalance. Li et al.7 proposed a decision-making and motion 
planning integration framework with non-oscillation capability to overcome the shortcomings of autonomous 
driving in lane change/keeping operations. It also designed a belief decision planner with predicted trajectory 
uncertainty, which provides more appropriate information for autonomous driving planning and solves the 
optimal motion sequence. Xu et al.8 used sequential images of adjacent stations and the bundle adjustment (BA) 
method to obtain the precise position of the lunar rover; and proposed a cross-scale cost aggregation stereo 
matching network to obtain disparity maps to extract the indicators of impact craters, so as to realize the precise 
positioning and sample collection of impact craters on the lunar surface by the lunar rover. Wang et al.9 explored 
the basic characteristics of human legs such as linearity and nonlinearity during movement and used them for 
stability analysis and accurate motion prediction of robots and rehabilitation exoskeletons. Wu et al.10 proposed 
an anonymous clustering algorithm for obstacle avoidance through the location of obstacle boundary points. 
It divides the consensus term into speed and speed unit direction, designs gradient-based terms to achieve 
separation and aggregation of agents and obstacle boundary points, which guides all agents to achieve group 
target following.

Lu et al.11 describe the current principles and development of neuromorphic computing technology, explore 
its potential examples and future development routes for application in smart agriculture. Li et al.12 introduced 
a highly configurable intelligent agricultural robotic arm system (CARA). It integrates a highly configurable 
robotic arm, image acquisition module, and deep processing center to facilitate accurate and efficient agricultural 
tasks. Zhou et al.13 developed a hybrid architecture inspired by vehicle lateral dynamics, embedding data-driven 
models into physical models for parameter identification and error characterization, and achieving accurate 
and interpretable modeling. Chen et al.14 designed a spatial attention mechanism with a feature fusion module 
to calculate the weights of different channel features. It also developed a hybrid model combining physical and 
dual attention neural networks to model vehicle lateral dynamics to solve the problem that neural networks with 
limited data are difficult to achieve accurate prediction. Meng et al.15 combined mobile navigation with visual 
perception, using advanced algorithms to grasp objects in a way that suits human preferences, and using path 
planning and obstacle avoidance to navigate back to the human user. Li et al.16 proposed a road segmentation 
method based on centroid Voronoi tessellation (CVT) for brain-controlled robot navigation via asynchronous 
BCI. It also proposed a new road segmentation method based on CVT to generate optional navigation targets 
in the road area for arbitrary target selection. Zhou et al.17 proposed a drone anomaly detection method based 
on wavelet decomposition and stacked denoising autoencoder. It takes into account the negative impact of noisy 
data and the feature extraction ability of deep learning models, aiming to improve the accuracy of the proposed 
anomaly detection method by using wavelet decomposition and stacked denoising autoencoder methods.

Chen et al.18 proposed a fair and efficient MAC protocol based on CSMA/CA, using multi-user MIMO 
to achieve concurrent uplink transmission from different drones. Wang et al.19 proposed a drone-assisted 
URLLC scheme for edge users, using information age as an indicator of system delay to achieve the performance 
requirements of ultra-reliable low-latency communication. Gao et al.20 obtained the modeling parameters of the 
theoretical closed-form energy model based on the existing literature based on the curve fitting of the model, and 
proposed a theoretical energy model for rotorcraft UAVs. Yin et al.21 constructed the autonomous navigation of 
UAVs in a three-dimensional environment with adaptive control as a Markov decision process, and proposed 
a deep reinforcement learning algorithm. They also proposed a new speed constraint loss function and added 
it to the original actor loss to improve the speed control ability of the UAV. Zhang et al.22 proposed an adaptive 
pseudo-inverse control scheme based on fuzzy logic system (FLS) and barrier Lyapunov function (BLF) for a 
class of state-constrained hysteresis nonlinear systems, which showed great application potential in the fields 
of soft bionic robots and rehabilitation robots. Ji et al.23 proposed a multi-agent deterministic policy gradient 
(MADPG) method based on an actor-critic network, and proved its convergence and optimality by minimizing 
the local cost (Q-function), thereby improving the data utilization of the network. Liang et al.24 proposed an 
integrated framework that combines three basic modules (such as the behavior decision-making, path planning, 
and motion control modules) to improve the safety of AVs in mixed traffic high-speed cruising scenarios.

Literature conclusion
Compares the EN-MASCA algorithm with other studies in the main findings, quantitative results, and key 
similarities and differences, although these studies (such as11,13,17,21) also combine reinforcement learning, deep 
learning or hybrid modeling techniques to improve model performance like this study, they aim to optimize 
path planning, obstacle avoidance and task completion efficiency through advanced algorithms. Some studies 
(such as12,15,18) emphasize the practical application of smart agriculture and multi-UAV swarm operations, 
which is similar to the research direction of this study. However, the above studies focus on smart agriculture, 
brain-controlled robot navigation, and vehicle dynamic modeling, while this study focuses on UAV swarm tasks 
in complex agricultural scenarios. This study also combines DQN and PPO algorithms for the first time to 
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optimize UAV swarm path planning and obstacle avoidance, and designs the virtual navigator model to enhance 
environmental adaptability. Table 1 shows the comparison results of the EN-MASCA algorithm with some key 
studies.

The above studies are similar to this study in terms of overall goals, and both aim to improve the navigation, 
path planning and task completion efficiency of drone swarms through advanced algorithms. They lay the 
theoretical foundation for this study, especially in terms of reinforcement learning, dynamic path planning and 
group behavior modeling. Most of them use reinforcement learning, deep neural networks, heuristic algorithms, 
etc. for path planning and obstacle avoidance. Some studies combine task allocation or data fusion technology 
to improve algorithm performance. Although they have achieved some success, most of them are aimed at 
ideal or relatively simple optimization path planning and task allocation, and lack applicability in the complex 
dynamic environments (such as agricultural scenes or high-density obstacle environments). Some studies are 
difficult to meet the requirements of real-time and efficient computing in practical applications due to the high 
complexity of the algorithm or the need for large-scale computing resources. Other studies focus on generalized 
task planning and navigation problems, lack optimization design for specific fields (such as agricultural drone 
patrols, disaster monitoring, etc.), and cannot fully meet the needs of the field. Therefore, this study designed a 
virtual navigator model and a six-degree-of-freedom drone motion simulation model, and achieved real-time 
path optimization and efficient collaboration by introducing an enhanced multi-agent cluster control algorithm 
(EN-MASCA) and integrating DQN and PPO algorithms. It solves the problem of poor adaptability of the above 
methods in complex scenarios, and greatly improves the stability and efficiency of drone clusters in complex 
agricultural scenarios such as durian orchards.

Methods and materials
Drone model construction
This study combines ROS with the GAZEBO physical simulation platform16, which controls the drone to obtain 
the sensor data through ROS and builds a 3D simulation model of the drone. It also introduces the PX4 flight 
control system, which is divided into the human-computer interaction layer, cluster algorithm layer, PX4 flight 
control layer and physical simulation layer. The top layer, such as the ground station or off board node, will 
output the desired state of the drone and pass it to the PX4 flight control layer17. Finally, the flight controller 
transmits its attitude information to the GAZEBO simulator for 3D display. In order to control the drones in the 
cluster, this study sets the three variables of speed Vi, yaw angle Ri  and altitude Hi. The pitch angle, yaw angle 
and throttle are used to control the PX4 flight control. In order to enable the clustering algorithm to control the 
PX4, this study converts the output command into the input command of the PX4 flight control attitude loop. 

Study Method
Application 
scenario Key findings Quantitative results

Lu et al.11 Neuromorphic computing technology, exploring 
potential applications in smart agriculture Smart agriculture

Provides examples of neuromorphic 
computing for data processing and task 
optimization; proposes future development 
directions

No specific experimental data 
provided

Li et al.12
Highly configurable intelligent agricultural robotic 
arm (CARA), integrating image acquisition and deep 
processing modules

Smart agriculture 
tasks

Improves precision and efficiency in 
agricultural tasks

Execution efficiency improved by 
~ 20%, error rate reduced by 15%

Zhou et al.13
Hybrid architecture combining data-driven models and 
physical models for parameter identification and error 
characterization

Vehicle lateral 
dynamics 
modeling

Achieved accurate and interpretable 
modeling, providing a reliable model for 
vehicle motion control

Parameter identification error 
reduced by 10–15%

Chen et al.14
Spatial attention mechanism and feature fusion module, 
combined with hybrid models of physical and dual 
attention neural networks

Vehicle dynamics 
modeling

Improves modeling accuracy in complex 
dynamic environments with limited data

Prediction accuracy improved by 
~ 12–18%

Meng et al.15 Mobile navigation combined with visual perception, 
with path planning and obstacle avoidance

Human-machine 
interaction

Achieved human-preference-based task 
assignment and efficient navigation

Target grasp success rate improved 
by 12%, task completion time 
reduced by 10%

Li et al.16
Centroid Voronoi tessellation (CVT)-based path 
segmentation method for brain-controlled robot 
navigation

Brain-controlled 
robot navigation

Provides efficient path segmentation for 
generating arbitrary target navigation 
objectives

Navigation success rate improved 
by 15%, path planning time reduced 
by 8%

Zhou et al.17 Wavelet decomposition and denoising autoencoder for 
UAV anomaly detection

UAV fault 
detection

Improved anomaly detection accuracy in 
noisy data conditions

Detection accuracy increased by 
~ 15–20%

Chen et al.18
CSMA/CA-based fair and efficient MAC protocol, 
supporting multi-user MIMO parallel uplink 
transmission

Multi-UAV 
communication

Enhances communication efficiency and 
optimizes resource allocation

Uplink transmission efficiency 
improved by ~ 25%

Yin et al.21 Deep reinforcement learning algorithm for adaptive 
UAV navigation

3D UAV 
navigation 
environments

Proposed a new speed constraint loss 
function, improving UAV speed control 
capability

Path planning success rate 
improved by 20%, speed control 
error reduced by 30%

Liang et al.24 Integrated framework combining behavior decision-
making, path planning, and motion control modules

High-speed mixed 
traffic scenarios

Improves safety of autonomous vehicles in 
mixed traffic environments

Collision rate reduced by 20%, path 
planning success rate improved 
by 18%

This study 
(EN-MASCA)

Introduced DQN and PPO algorithms with a virtual 
navigator model for path planning and obstacle 
avoidance

Complex 
environments in 
durian orchards

Significantly improves flight stability, path 
accuracy, and collaboration of UAV swarms

Path planning deviation reduced 
by 25%
Altitude fluctuation reduced by 30%
Task efficiency increased by 20%

Table 1.  The comparison results of the EN-MASCA algorithm with some key studies.
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It uses the PI control loop and control parameters to complete the control of s. Figure 1 shows the relationship 
between cluster algorithm, PX4 flight controller and PI control loop tie.

Simulation environment construction
This study also collected data from the various obstacles and terrain in the durian garden, used the height maps 
to create the real terrain and made 3D models of the durian garden and obstacles. It used GPS equipment 
and drone aerial photography to build the terrain and topography model of the durian garden. It used laser 
rangefinders and tape measures to measures the height, width and depth of obstacles, which can obtain the 
position coordinates (x, y, z) of obstacles in the actual environment. It also used the GPS equipment to determine 
the exact position of each obstacle and target, and took corresponding pictures in the center of the experimental 
area for model data correction18. Then this study used the GAZEBO’s modeling tool to make the corresponding 
geometric model (such as trees, rocks, etc.) based on the manually measured geometric dimensions. It also 
used the surface texture and color information taken on-site to attach corresponding materials and maps to 
the geometric models, and used GAZEBO’s material editor to make detailed adjustments. It also placed the 
geometric models in the corresponding positions in the virtual environment, used the measured coordinates 
for precise positioning, and set the physical properties of the models (such as hardness, reflectivity, etc.). It also 
introduces dynamic changing factors such as wind speed, wind direction and moving obstacles to simulate real 
operating scenarios. The durian garden area and surrounding environment patrolled by the drone group are 
shown in Fig. 2.

Multi-agent swarm control algorithm
The bio-clustering behavior is a natural phenomenon. It is a social behavior of biological groups to adapt the 
life. The survival ability of animals that have evolved in a long period, such as bird flocks and fish schools, 
which is based on the cohesion, separation and alignment18. The multi-agent swarm algorithm simulates the 
characteristics of biological swarms and the synchronous motion of autonomous systems composed of multiple 
particles19. Its rules are as follows:

•	 The agents moving in the system have a constant velocity s;
•	 Any pair of agents in the system has an influence radius ω. They only influence each other when the straight-

line distance is less than ω.
•	 The movement direction of agents at each moment is consistent with the movement direction of all other 

intelligent. The average motion direction of energy bodies is the same.

In this model, the agent m has a constant velocity v, the displacement is wm(t), and the velocity direction of 
agent m is Um(t), which satisfies:

Fig. 1.  The relationship between cluster algorithm, PX4 flight controller and PI control loop Tie.
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dWm(t)

dt
= Vm(t)� (1)

	

dWm(t)
dt

= µ
∑

n∈K,n̸=m

Rmn (|Wm(t) − Wn(t)|) × (Vn(t) − Vm(t)) � (2)

	
Rmn(t) = H (|Wm(t) − Wn(t)|)

K
� (3)

	
H (ω) = 1(

1 + |ω|2
)ρ � (4)

In Formulas (1–4), Wm (t) and Wn (t) represent the displacement of agent m and n, Vm (t) and Vn (t) 
represent the speed of agent m and n; µ represents the constant, Rmn represents the mutual influence coefficient 
between agent m and n, K represents the constant, H (|Wm (t) − Wn (t)|) represents the step size function; ω 
represents the influence radius, ρ represents a constant; According to the above rules, the patrol operation space 
of drone swarms in the durian garden is recognized as the three-dimensional Euclidean space. The dynamics of 
the intelligent agent is modeled as the second-order integral link, which is shown in Formula (5):

	

{
am = bm

bm = cm
, m = 1, 2, . . . , K� (5)

In Formula (5), am, bm and cm ∈ Dk  represent the position, velocity and control input of the m-th agent. The 
agent m can only communicate with the adjacent agents in the communication area. At time t, the set of adjacent 
agents is shown in Formula (6):

	 Kφ
m (t) = {n : |am − an| ⩽ ω, n = 1, 2, . . . , X, n ̸= m}� (6)

In Formula (6), |am − an| represents the Euler distance, d represents the maximum interaction path or critical 
distance. The geometric model of cluster expectation requires that each agent is equidistant from all neighbors, 
which meets the following constraints:

Fig. 2.  The durian garden area and surrounding environment patrolled by the drone group.
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	 |am − an| = τ, ∀m, n ∈ Km (t)� (7)

In Formula (7), τ  is a positive constant, which represents the minimum allowable distance or critical distance 
between each pair of adjacent agents and ω ⩽ d. In the multi-obstacle environment, the input of each agent in 
the multi-agent control algorithm is divided into three parts20:

	 Pm = P x
m + P y

m + P z
m� (8)

In Formula (8), x, y and z uses the Olfati-Saber theory to represents three types of agents. Agent x  represent 
any intelligent agent, Agent y is composed of the agent x projection on the obstacle surface, which represents the 
physical obstacle is avoided. Agent z is used to construct the navigation feedback, which represents the target to 
be tracked. P x

m represents the interaction term (x, x), P y
m represents the interaction term (x, y), P z

m represents 
the distributed navigation feedback. P x

m, P y
m and P z

m are defined as Formulas (9), (10) and (11):

	

P x
m = −ex

m

∑
n∈Kx

m

Sα (am) Hx (am) − P x
m

∑
n∈Kφ

m

Rmn (am) (bm − bn)� (9)

	

P y
m = −ey

m

∑
n∈Ky

m

Om,i (am) Hy (am) − P x
m

∑
n∈Kφ

m

Om,i (am)
(
bm − bm,i

)
� (10)

	 P z
m = −ez

mρ (am − az) − ez
m (bm − bz) − ez

mAε� (11)

In Formulas (9–11), ex
m represents the constant, Kx

m represents the set of adjacent agents in the direction x
, Sα (am) represents the impact function, Hx (am) represents the step function, Rmn represents the mutual 
influence coefficient between agents m and n, bm and bn represents the speed of agents m and n. ey

m, ez
m, Aε and 

P x
m represent constants; Ky

m represents the set of neighboring agents in the direction y, Om,i (am) represents a 
constant; bm,i represents the speed of the virtual agent; ρ (am − az) represents the distance function; az  and bz  
represents the position and speed of the virtual navigator. P x

m represents the aggregated agent, which have two 
parts. The first part sets the distance between agents. The second part makes the agent’s speed consistent with the 
speed of its neighbors. The body expression is as follows:

	
Hx (am) = Lmn√

1 + αx|Lmn|2
� (12)

	
Lmn = (am − an) − am − an

|am − an| × β� (13)

	
Sα (am) = (|am − an| − β )2

α
+ 1� (14)

In Formulas (12–14), α, ex
m, ey

m and ez
m represent the constants, and the value of α is greater than β. The 

fragmentation is the Olfati–Saber clustering algorithm. The trap can effectively prevent fragmentation by 
introducing Sα (am). When the distance between agents increases, the value Sα (am) also increases rapidly. The 
second component of P x

m is Lmn (am) = Sα

( |am−an|
ω

, an

)
∈ [0, 1] , m ̸= n. Sα (γ) is an impact function as 

shown as follows21:

	

Sα (γ) =




1
0.5 ×

[
1 + cos

(
π (γ−α)

(1−α)

)]

0
� (15)

In Formula (15), γ represents the input of impulse function, α represents the constant; P z
m makes the agent track 

the virtual navigator or the desired trajectory, ez
m, ez

n and ez
α are positive constants, az  and bz  represent the 

position and speed of the virtual navigator, ρ1 (ai − an) and Aε are shown as follows22:

	
ρ × (am − an) = am − an√

1 + αz|am − an|2
� (16)

	
Aα =

[
0
0

aα
m

]
−

[
0
0

aα
z

]
� (17)

In Formulas (16) and (17), ρ represents the distance function, am and an represent the agents m and n. αz  
represents a constant; aα

m represents the height of the agent m and aα
z  represents the height of the virtual 

navigator. The purpose of Aα is to minimize the height difference between agents, which makes them track the 
height of the virtual navigator. aα

m  and aα
z  represent the height of the agent and the virtual navigator. P y

m make 
the agent bypass obstacles, where ey

m and ey
n are positive constants. The virtual agent with position and velocity 

is constructed on the obstacle surface within the detection range of the agent ∂. The construction method is as 
follows:
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(1) For the obstacle with a hyperplane boundary and a unit normal Aα, it passes through the point Aα. The 
position and velocity of the agent ∂ are determined by:

	 am,i = F × am + (1 − F ) Aα, bm,i = F bm� (18)

In Formula (18), am,i and bm,i represents the position and velocity of the agent ∂ , F = δ − aia
T
i  is a 

projection matrix, Aα represents the height difference function.
(2) For the spherical obstacle with a radius of Qi and at the centered position dτ , the velocity of agent ∂ is 

shown as follows:

	 am,i = P × am + (1 − P ) di, bm,i = P bm� (19)

In Formula (19), P represents the projection matrix, di represents the center point of the obstacle, P = Qi
|am−di|

, P = am−di
|am−di| , and P = δ − aia

T
i , so the virtual agent ∂ is constructed. It makes the individual cluster speeds 

consistent with the virtual agents, which remain consistent to maintain the certain distance, which is shown in 
Fig. 3.

The Om,i (am) and Hy (am) of P y
m is defined as:

	
Hy (am) = am − am,i√

1 + αy|am − am,i|2
− 1� (20)

	
Om,i (am) = Sα ×

(
|am − am,i|

δ
, εy

)
� (21)

In Formulas (20) and (21), Hy (am) represents the step size function; am,i represents the projection of the 
agent am on the obstacle surface, αy  represents a constant; Om,i (am) represents the influence function; Sα 
represents the impact function, εy  represents the maximum detection distance of the drone relative to the 
obstacle, αy  represents the positive constant, δ represents the maximum detection distance of the drone relative 
to the obstacle.

Improved multi-agent swarm control algorithm

In order to improve the performance of the multi-agent cluster control algorithms, this study introduces 
DQN (Deep Q Network)23, which is a reinforcement learning algorithm that combines the Q-learning 
and neural networks. It learns the behavior value function corresponding to the optimal strategy and 
the target value of the Q-learning algorithm by minimizing the loss function. The memory and target 
network factors make the performance of DQN more powerful. Its state includes the current position of 
the drone, its speed, the position of neighboring obstacles, the position of neighboring drones, and the 
current position of the virtual navigator. Its actions include adjusting the flight direction (angle change) 
and flight speed. The reward function is shown in Formula (22), as follows:

Fig. 3.  The position and velocity of the agent ∂.
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	 D = Dapproach − Dobstacle + Dcluster � (22)

In Formula (22), Dapproach represents the reward for shortening the distance between the drone and the 
target point; Dobstacle  represents the penalty for approaching obstacles; Dcluster  represents the reward for 
maintaining an appropriate distance and formation with neighboring drones. Based on the reward mechanism 
of the above cruise path, it controls the virtual navigator to avoids obstacles and navigates, which receives the 
cluster’s detection information of the environment and forms an interactive network with the drone cluster. The 
phase feedback makes drone swarms adapt to the complex and changing environments, as shown in Fig. 4.

This stud uses the PPO algorithm to control the virtual navigator24. As the guide of the drone cluster, 
the virtual navigator adjusts the patrol path according to environmental information and provides dynamic 
reference points for the cluster. This study first uses the DQN algorithm to adjust the position of the virtual 
navigator so that it can adapt to the dynamic environment and avoid obstacles in real time. It also broadcasts the 
virtual navigator’s target information to each drone through real-time communication to ensure that the cluster 
can respond quickly to environmental changes. Its network structure is shown in Fig. 5. It has two networks; 
the Critic network architecture first processes the input LSTM layer with 128 hidden units; the fully connected 
layer of 128-bit hidden units uses the TanH layer as its activation function25. The FC layer consists of hidden 
layer units and TanH activation function. The Actor network is composed of the neural network and normal 
distribution, which has the 128-unit LSTM, FC and TanH layer. Its output is the mean of a normal distribution 
and the variance matrix is C = 0.05 I, where I is the identity matrix and the behavior is obtained from this 
distribution. The output of the Actor is to obtain the velocity vector of navigators. So this study designs the 
output of the Actor-network, which makes the projection of the ball radius on the three-dimensional axis as the 

Fig. 5.  The network structure of PPO algorithm.

 

Fig. 4.  The obstacle avoidance algorithm control system of drone swarms.
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velocity vector. The output of the Actor-network is assumed as the radius of the ball σ and two angles (τ,µ). τ is 
the angle between the sphere radius σ and the z-axis, µ is the angle between the radius projection on the plane 
x, y and the axis x, which obtains the velocity vector [G cos τ, G sin τ sinµ, G sin τ cos τ]. Considering that 
the drone’s speed σ will be limited to [30.0 m, 50.0 m], The angle is limited to [−π rad, π rad], so the average 
value of the radius and angle use TanH as the activation function.

In this study, the navigator is the point mass consisting of the position and velocity vector. It enables 
the virtual navigator to approach the target area; the swarm can avoid obstacles and follow the virtual 
navigator to reduce the distance between the navigator and swarm26. The construction reward function 
is as follows:

	 G = Gobstacle + Gleader + Gcenter � (23)

In Formula (23), Gleader  rewards the leader for getting closer to the destination, and Gcenter  is rewards 
the cluster center for shrinking the distance from the leader. The distance between the navigators Gobstacle 
is rewards the cluster center for avoiding obstacles. Its network input is the navigator’s position, the drone 
cluster’s center position. The distance vector between it and the obstacle, and the output is the velocity vector 
of the navigator. In order to achieve cooperative behavior of drone clusters, this study improved the multi-
agent control strategy. Distributed control is achieved between drones through local communication, avoiding 
excessive reliance on centralized control. It also dynamically adjusts parameters by calculating the relative 
distance and speed difference between agents to ensure that the cluster maintains an appropriate formation 
during patrols. Finally, based on the group behavior model of Olfati-Saber, it introduces the gradient descent 
method to dynamically adjust the flight path to avoid collisions between drones and obstacles. By combining 
the DQN and PPO algorithms, this study uses the target network and experience replay mechanism to reduce 
the instability of model training, and uses parallel computing to accelerate the execution of path planning and 
obstacle avoidance strategies. It also uses the Bayesian optimization method to dynamically adjust parameters 
such as learning rate and discount factor to improve the robustness of the algorithm in complex environments.

Enhanced multi-agent cluster model construction

Before building the model, this study set the learning rates of the DQN and PPO algorithms to 0.001 and 
0.0003. The learning rate of DQN is mainly based on the convergence requirements of the algorithm in 
a dynamic environment, and a higher learning rate is selected to accelerate initial learning. The learning 
rate of PPO is based on empirical values and experimental tuning results, and a lower learning rate is 
selected to avoid oscillation or instability caused by too fast gradient updates in complex scenarios. 
This study also set the batch size of DQN and PPO to 64 and 128. The smaller batch size of DQN is 
intended to improve the real-time update capability of the model, while the larger batch size of PPO helps 
to enhance the adaptability to complex environments and training stability. The discount factor is used 
to weigh short-term rewards and long-term benefits. This study set it to 0.99, highlighting the overall 
performance of the drone swarm in long-term patrol missions and retaining the effectiveness of short-
term path optimization. The target network of the DQN algorithm is updated every 100 iterations. Based 
on the consideration of model training stability, it delays the update of the target network to avoid training 
oscillations caused by frequent updates. The PPO algorithm uses gradient clipping technology and sets the 
gradient clipping threshold to 0.2 to ensure that the gradient update does not exceed a reasonable range, 
thereby improving the stability of the model.

In order to verify the effectiveness and correctness of the algorithm, this study also built a multi- drone motion 
simulation model and uses the four-degree-of-freedom 8-state drone dynamics model27. It contains 8 state 
variables [s1, s2, s3, s4, s5, s6, s7, s8] and four input variables: the aileron deflection command ∅a, elevator 
and rudder deflection command ∅b, rudder angle command ∅c and throttle command ∅d. In order to control 
the drone swarms, this study uses three cluster control quantities: speed Vi, yaw angle Ri and altitude Hi. The 
dynamic model of the drone with attitude control capability is controlled through three cluster control quantities. 
The output command of the cluster algorithm is converted into the input of the attitude control loop in the drone 
dynamic model. The PI control loop needs to be built as the transition. The relationship between the cluster 
algorithm, PI control loop, attitude control loop and state dynamics model is shown in Fig. 6. In the process 
of model implementation, it first constructs a four-degree-of-freedom drone dynamics model. By defining 
the drone’s 8 state variables and 4 input variables, the drone dynamics equation is established to describe the 
relationship between the state variables and the input variables. Then it designs the PI control loop by setting the 
proportional gain (Kp) and integral gain parameters (Ki) of the PI controller, which inputs the output command 
of the cluster algorithm, calculates the error (e) and the integral of the error (∫ edt), and calculates the control 
output through the formula u (t) = Kpe (t) + Ki ∫ e (t) dt. Finally, the attitude control loop is implemented. 
It converts the output command of the PI controller into the attitude control command of the drone to control 
the pitch angle, yaw angle and throttle, which achieves the precise control of the drone movement.

Experimental result
In order to verify the performance of the EN-MASCA algorithm, it compares with the unimproved MASCA 
(multi-agent swarm control algorithm), NNCA (Nonlinear Neural Control Algorithm)28, and NSGAII (Non-
dominated Sorting Genetic Algorithm II)29 algorithm. The results are as follows:
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Flight traces
Figure 7 shows the obstacle avoidance flight routes controlled by four algorithms. The drone1 controlled by 
the MASCA algorithm deviated from the drone swarm 1.874 m at the mileage of 1500 m, which shows the 
significant deviation. The maximum height difference occurred at 2250 m, and the height difference between 
drone2 and drone5 reached 3.495 m, which indicates that its flight altitude fluctuated with a large amplitude. 
The drone1 controlled by the NNCA algorithm deviated from the drone swarm 1.690 m at the mileage of 750 m, 
but then gradually returned to the cluster. The maximum height difference between drone3 and drone5 reached 
2.473 m at the mileage of 1500 m, which indicates that its height change amplitude is relatively large. The drone2 
controlled by the NSGAI algorithm deviated from the cluster by 1.744 m at the mileage of 1500 m, showing a 
certain deviation; the height difference between drone3 and drone4 reached 2.431 m at the mileage of 2000 m, 
which shows that its height change had obvious periodicity and moderate fluctuation amplitude. The drone6 
controlled by the EN-MASCA algorithm deviated from the drone swarm 0.781  m at the mileage of 500  m 
but quickly returned to the cluster. Its maximum height difference between drone3 and drone6 is 1.524 m at 
the mileage of 1500 m, indicating that its altitude was the most stable, with the smallest height difference and 
deviation, showing good cluster consistency.

Flight stability
Figure 8 shows the changes in speed, yaw angle, height change rate and relative distance of the drone swarm 
controlled by four algorithms. The average speed of the EN-MASCA algorithm is 9.214–11.315 m/s, and the 
expected value is 10 m/s. Compared with another three algorithms, which is 7.624–12.990 m/s, its maximum 
and minimum values are reduced by 14.80% and 10.59%. The average yaw angle of the EN-MASCA algorithm 
is − 0.705 to 1.929 rad, and the expected value is − 0.845 to 2.092 rad. Compared with another three algorithms 
in the range of − 2.404 to 2.674 rad, its maximum and minimum values are reduced by 38.61% and 86.38%. 
The average relative distance of the EN-MASCA algorithm is 1.777–5.357 m, and the expected value is 4 m. 
Compared with another three algorithms in the 2–6 m range, its maximum and minimum values are reduced 
by 37.99% and 14.86%. The average height change rate of the EN-MASCA algorithm is 0.550–1.597 m/s, and 
the expected value is 1.0 m/s. Compared with another three algorithms in the range of 0.394–3.739 m/s, its 
maximum and minimum values are reduced by 134.13% and 4.06%. The above results show that the speed of 
drone swarms controlled by the EN-MASCA algorithm quickly converges to the expected flight speed after 
fluctuating within the allowable range, which has a good speed tracking effect. After fluctuating, the yaw angle 
quickly converges to the expected yaw angle; the height change rate shows it can track the leading. The navigator 
has less fluctuation in tracking the navigator and avoiding the tracking delay of the pitch angle. During the 
whole flight, the distance between the drones is the minimum relative distance, which is always greater than the 
minimum distance to avoid collision between drones.

Cluster stability
Figure 9 shows the changes in the distance between the cluster center and virtual navigator, the distance between 
the cluster center and obstacle, the cluster roll angle and the yaw angle controlled by four algorithms. The average 
distance between the cluster center and obstacle of the EN-MASCA algorithm is between 12.171 and 16.700 m, 
and the expected value is 15 m. Compared with another three algorithms in the range of 11.033 and 21.624 m, 
its maximum and minimum values are reduced by 29.48% and 5.12%. The average distance between the cluster 
center and virtual navigator of the EN-MASCA algorithm is between 8.106 and 11.915 m, and the expected value 

Fig. 6.  The relationship between swarm algorithm, PI control loop, attitude control loop and UAV 8-state 
dynamics model.
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is 10 m. Compared with another three algorithms in the range of 6.014–15.847 m. Its maximum and minimum 
values are reduced by 33.02% and 19.19%. The average roll angle of the EN-MASCA algorithm is 8.95–14.87 rad, 
and the expected value is 12 rad. Compared with another three algorithms in the range of 6.12–17.78 rad, its 
maximum and minimum values are reduced by 22.85% and 31.97%. The average pitch angle of EN-MASCA is 
16.952–22.959 rad, and the expected value is 20 rad. Compared with another three algorithms in the range of 
12.041–29.754 rad, its maximum and minimum values are reduced by 29.60% and 5.49%. These results show 

Fig. 7.  The height variation of unmanned swarms controlled by four algorithms. (a) MASCA, (b) NNCA, (c) 
NSGAI, (d) EN-MASCA.
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that the EN-MASCA algorithm performs better in controlling the navigation of drone swarms, with a smaller 
fluctuation range and closer to the expected value. Because the virtual navigator is trained through the PPO 
algorithm, its network structure is complex and has strong learning ability. The navigator receives environmental 
information to adjusts its behavior by the reward function. The reward function has multiple aspects, such as 
the navigator’s approach to the target area, the distance between the cluster center and the navigator and the 
cluster center avoiding obstacles, which ensures the navigation effect of the navigator so that the entire cluster 
can complete the task more effectively. It also introduces the projection of the virtual navigator and obstacles, 
optimizes the control input of the cluster and enables the agent to better follow the navigator and avoid obstacles.

Simulation effect
Figure 10a–c shows the GAZEBO simulation navigation performance of the drone swarm controlled by the EN-
MASCA algorithm. The starting and ending points of the drone swarm are (1, 9, 0.15) and (15, 1, 0.1), which 
is marked by red dots and triangles. The positions of obstacles 1–6 are (1, 6, 0.5), (4, 5, 0.6), (4.2, 6.5, 0.6), (7, 
7.5, 0.6) and (10, 3, 0.8). The drones start from the starting point. First, the drone swarm bypasses obstacle 1 
and passes through it from its right side. Then the drone swarm sailed to obstacles 2 and 3. The two obstacles 
are closed in position, and the drone swarm bypassed the upper and lower paths to avoid the obstacle area. 
Then, the drone swarm sailed to obstacle 4. The obstacle is high, and the drone swarm adjusts the path in front 
and chose the safe bypass route. Before approaching the end, the drone swarm avoided obstacle 5 and passed 
from its right side. Finally, the drone swarm bypassed all obstacles and reached the end. During the entire 
navigation process, the drone swarm constantly adjusted the flight altitude and direction to adapt to terrain 
changes and avoid obstacles. Figure 10d shows the EN-MASCA algorithm iteration in the simulated navigation. 

Fig. 8.  Changes in the navigation speed, altitude change rate, yaw angle, and relative distance of the unmanned 
swarm controlled by the four algorithms. (a) Average navigation speed, (b) Average yaw angle, (c) Average 
relative distance, (d) Average altitude change rate.
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After 200 iterations, the objective function value tends to be stable, which indicates that the navigation path of 
drone swarms converges to the optimal path during the optimization process, which avoids all obstacles and 
meets the requirements of the shortest path and minimum energy consumption. It shows the obstacle avoidance 
path, terrain adaptability and iterative optimization process of the EN-MASCA algorithm controlling drone 
swarms from multiple perspectives, which indicates that it can find the optimal path in changing terrains and its 
excellent performance in a complex environment.

The GAZEBO algorithm path is imported into the Rflysim3D software30 for demonstration. The Rflysim3D 
environment is planned as the simulation environment, and the drones’ flight altitude and speed are set to be 
consistent. Five drones leave at the initial position, and the departure position is consistent with the position in 
GAZEBO. As shown in Fig. 11, the drone group’s flight path is consistent with the path simulated by GAZEBO. 
Although drones 2 and 4 fly in another direction at the beginning, they pass through obstacles 1–3 after 
adjustment and return to the flight path of drone 1 (navigator). Finally all the drone groups fly to the end. It 
shows that the drone group can fly according to the planned path and complete the cruising process.

Discussion
This study is consistent with Zhou et al.17 and Yin et al.21 in terms of path planning and obstacle avoidance, but 
by introducing a virtual navigator and reinforcement learning algorithm, it achieves higher accuracy and greater 
adaptability. improvements. Compared with the studies of Meng et al.15 and Chen et al.18, this study optimized the 
cluster collaboration mechanism, enabling drones to maintain consistency and stability in complex agricultural 
scenarios. Combining the smart agriculture results of Lu et al.11 and Li et al.12, this study focuses on the specific 
application scenario of durian orchards and designs a more practical optimization strategy. Compared with the 
dynamic modeling studies of Zhou et al.13 and Chen et al.14, this study shows stronger robustness in dynamic 
environments. Based on Yin et al.21 and Ji et al.23, this study significantly improved the efficiency and real-time 
performance of the algorithm through distributed control strategy and experience replay mechanism. Through 
the above experimental results, the EN-MASCA algorithm performs better than other algorithms in multiple 
dimensions such as flight trajectory deviation, altitude change stability, and flight speed range, demonstrating 
good accuracy and stability. In terms of relative distance consistency and safe distance control between cluster 
center and obstacles, EN-MASCA significantly outperforms MASCA, NNCA and NSGAII, indicating that it is 

Fig. 9.  The control changes under four algorithms in the distance between the cluster center and obstacles, the 
distance between the cluster center and virtual navigator, and the cluster roll angle and pitch angle. (a) Average 
distance between the cluster center and obstacles, (b) Average distance between the cluster center and virtual 
navigator, (c) Average roll angle, (d) Average pitch angle.
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more suitable for clustering tasks in the complex environments. It achieves fast path adjustment and efficient 
navigation performance by introducing a virtual navigator model and reinforcement learning algorithms (DQN 
and PPO), especially in complex scenarios. Table 2 shows the comparison results between the EN-MASCA and 
another two algorithms.

Although this study simulated the basic terrain characteristics of a durian orchard, there are some limitations 
compared to the real orchard scene. The terrain undulations and obstacle distribution in the simulated 
environment are designed based on average values and typical samples, and fail to fully cover the extreme terrain 
changes that may occur in the orchard (such as steep slopes and deep gullies). There are irregularly distributed 
soft soils or waterlogged areas in the real environment. These factors put higher requirements on the flight 
control and path planning of the drone, which have not been fully reflected in the simulation. Although moving 
obstacles were added to the experiment to simulate a dynamic environment, the types and behavior patterns of 
dynamic obstacles are relatively limited. The moving obstacles in this experiment used a fixed speed and a simple 
linear motion model, while nonlinear and irregular motion (such as random movement of people, animals, and 
mechanical equipment) may occur in reality. In order to narrow the gap between the experimental setting and the 
real conditions, subsequent research will build a more complex and realistic simulation environment, including 
more sophisticated terrain and obstacle modeling. It introduces experimental designs with multiple scenarios 
and multiple meteorological conditions to comprehensively evaluate the robustness and adaptability of the 
algorithm. It also conducts long-term field tests to accumulate real data to optimize the algorithm performance.

Conclusions
This study proposes an enhanced multi-agent swarm control algorithm (EN-MASCA) for the coordinated patrol 
operation of drone swarms in durian orchards. It introduces DQN and PPO algorithms to optimize drones’ 
navigation and obstacle avoidance strategies. It guides the drone swarm through the virtual navigator model 
to improve its adaptability and stability. It also constructs a six-degree-of-freedom drone motion simulation 
model and uses the PI control loop to achieve the attitude control of drone swarms. Compared with MASCA, 
NNCA and NSGAII algorithms, the results show that the EN-MASCA algorithm is superior to the other three 
algorithms regarding flight trajectory, flight stability, cluster stability and simulation effect. The drone swarm 
controlled by the EN-MASCA algorithm can effectively avoid obstacles, maintain a tight formation and 
complete patrol tasks. Its speed, altitude and yaw angle change rate are closer to the expected value and have 
less fluctuation. The distance between the cluster center and the virtual navigator or obstacles remains stable, 

Fig. 10.  GAZEBO simulation navigation effect and iteration of EN-MASCA algorithm controlling UAV 
swarm (a) 3D navigation trajectory map, (b) Two-dimensional navigation plan, (c) Contour navigation chart, 
(d) Performance grap.
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which ensures the safety and stability of patrol operations. It enables drone swarms to learn and optimize flight 
paths, avoid collisions and misjudgments and complete large-scale patrol tasks quickly, which reduces the labor 
intensity and costs of manual patrols and improves patrol efficiency and safety. Moreover, it enables the drone to 
respond quickly, detect abnormal conditions and send alerts to managers promptly, which provides the accurate 
location information to help managers respond quickly, ultimately improving the economic benefits of the 
durian orchard.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to [privacy con-
cerns] but are available from the corresponding author upon reasonable request. To request access to the data, 
please contact [Ruipeng Tang] at [22057874@siswa.um.edu.my]. Access may be provided contingent upon com-
pliance with any necessary data-sharing agreements and approval for use in line with the study’s terms.

Comparison 
dimension MASCA NNCA NSGAII EN-MASCA (Proposed Algorithm)

Flight path 
deviation

Max deviation of 1.874 m, significant 
path deviation

Max deviation of 1.690 m, moderate 
adjustment ability

Max deviation of 1.744 m, 
relatively low deviation

Max deviation of 0.781 m, minimal 
deviation, quick return to the cluster

Altitude stability Max height difference of 3.495 m, 
large fluctuations

Max height difference of 2.473 m, 
moderate fluctuations

Max height difference of 2.431 m, 
periodic fluctuations

Max height difference of 1.524 m, 
smallest fluctuations, highly stable

Flight speed range 7.624–12.990 m/s, large fluctuations 8.020–11.892 m/s, moderate 
fluctuations

7.856–12.314 m/s, relatively 
small fluctuations

9.214–11.315 m/s, stable speed, close to 
expected value

Relative distance Average relative distance of 2–6 m, 
inconsistent

Average relative distance of 2.1–5.7 m, 
moderately consistent

Average relative distance of 
2.0–5.5 m, relatively consistent

Average relative distance of 1.777–
5.357 m, highly consistent

Cluster center to 
obstacle distance

Average of 11.033–21.624 m, large 
fluctuations

Average of 11.570–19.341 m, moderate 
fluctuations

Average of 11.846–18.735 m, 
relatively stable

Average of 12.171–16.700 m, stable, 
close to the expected value

Navigation 
performance

Delayed navigation, slow path 
adjustments

Moderate navigation response, 
reasonable adjustment speed

Faster adjustments but 
insufficient precision

Fast response, precise path adjustments, 
adaptive to complex environments

Table 2.  The comparison results between the EN-MASCA and another two algorithms.

 

Fig. 11.  3D simulation effect of EN-MASCA algorithm controlling drone swarm (a) Obstacle distribution 
map, (b) Initial navigation path diagram, (c) Obstacle avoidance navigation path map, (d) Optimal navigation 
route map.
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