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Existing tribo-dynamic models encounter challenges in accurately characterizing the intense coupling 
and notable nonlinearity between component deformation and oil film pressure in lubricated clearance 
joints. Consequently, a novel general tribo-dynamic coupling model based on an absolute coordinate 
framework has been developed in this paper. The equations of motion for flexible multibody systems 
are formulated based on the absolute nodal coordinate formulation. Mixed lubrication equations are 
defined at spatial nodes on reference surfaces by employing the mixed Eulerian-Lagrangian approach. 
The model is applied to a translational clearance joint, validated through an impact test rig. Comparing 
the dynamical response signals from the model and experiment demonstrates its accuracy in depicting 
the strong coupling characteristics between deformation and pressure fields in lubricated clearance 
joints.
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Multibody system dynamics primarily investigate dynamic systems involving multiple joints and bodies 
with relative motion, offering a comprehensive abstraction and effective description of systems composed 
of interconnected bodies1. In an ideal scenario, moving bodies are modeled as rigid or deformable entities, 
while joints are mathematically characterized through kinematic constraints. In practice, however, clearances 
within the joints are inevitably present due to factors such as assembly design, manufacturing errors, and 
wear2. Clearances are critical for ensuring the proper functioning of joints, yet such clearances can also lead 
to system vibrations and noise, thereby reducing work efficiency. To accurately analyze or predict the dynamic 
characteristics of multibody systems, clearance joints are garnering increasing research attention.

Modeling of contact and friction behaviors of clearance joints can be primarily represented into two main 
forms. The first is the dry contact model3–15. In the absence of lubricant within the joints, existing clearances 
may induce contact-impact behaviors among the moving components. The normal contact-impact force 
is characterized by modified Hertz contact theory3, as exemplified by Kelvin-Voigt4, Hunt-Crossley5, and 
Lankarani-Nikravesh models6–8, among others. The tangential friction force is characterized by modified 
Coulomb’s friction theory10. Li et al.6 employed a dry contact model to characterize the nonlinear contact forces 
of multi-planar rotating joints in a deployable solar array system. Subsequently, the impact of clearance on the 
dynamic characteristics and wear of the system was analyzed. Zheng et al.8 analyzed the motion of a flexible 
reciprocating slider confined between upper and lower boundaries, using the Lankarani-Nikravesh model to 
characterize the normal contact-impact force between the slider and boundaries. In the study of lubricated 
piston-liner translational joints, Guo et al.9 employed a dry contact model to simplify the calculation of the 
nonlinear contact force between the piston skirt and liners. The impact behavior and secondary motion of the 
piston were also investigated. Flore et al.10, however, noted that such simplifications could introduce erroneous 
spikes in the dynamic results.

When a fluid lubricant fills the clearance within a joint, it functions similarly to a nonlinear spring-damper 
element, imparting damping and stiffness to the system. This mechanism effectively dissipates unintended 
mechanical vibrations and prevents direct contact between moving parts, thereby attenuating friction and wear. 
Consequently, the second approach for simulating contact behavior at interfaces accounts for the presence of an oil 
film within the clearance and involves establishing a lubrication model16–39. In such a model, the normal contact 
force within joints is attributed primarily to the dynamic pressure and the squeezing effect of the lubricating film. 
The basic content of fluid lubrication analysis is the application and resolution for the Reynolds equation17, which 
is a specialized form of the Navier-Stokes equation16. Chen et al.18 employed an analytical model for oil film 
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forces and explored the influence of dynamic viscosity of lubricating oil, rotational speed, and clearance on the 
dynamic responses of mechanisms with multiple rotating joints. However, Daniel et al.19 observed a discrepancy 
between the analytical oil film force model, derived using Sommerfeld or Gumbel boundary conditions, and the 
numerical solution of the Reynolds equation. Liu et al.20–22 used the finite element method (FEM) to numerically 
solve the Reynolds equation for lubricated translational joints in low-speed engines, focusing on how the gap 
between the crosshead-guide pair affects frictional loss and vibration. In parallel, Ruggiero et al.23 utilized the 
finite difference method (FDM) to solve the Reynolds equation for artificial hip joints, subsequently predicting 
the unsteady oil film forces and material volume wear in the hip joints. In general, clearance joints in multi-body 
mechanical systems, whether modeled with dry contact or lubrication, can be considered as time-varying force 
elements rather than kinematic constraints of ideal joints.

With the evolution of applications in the automotive, maritime, robotics, medical device, and aerospace industries, 
research in multibody systems has increasingly extended to spatial flexible multibody systems, which account for 
the deformation of three-dimensional objects. In practical multibody mechanical systems subject to heavy loads, the 
oil film pressure within the joints can induce deformation in the moving parts. This deformation, in turn, leads to 
changes in the oil film pressure, thereby affecting the bearing capacity of the oil film. Dlugoš et al.40 developed a 
spatial multibody system model for a high-speed vehicle engine based on the floating coordinate method40–43 in MSC 
Adams software. In the subroutine, the FDM method was utilized to solve the average Reynolds equation for the 
lubricant, enabling tribo-dynamic coupling modeling of piston-cylinder liner joints. To address challenges in handling 
large component deformations with floating coordinate methods, the absolute nodal coordinate formulation (ANCF) 
utilizes absolute coordinates for describing the discrete nodes of flexible bodies1, proving effective in system modeling 
under large deformation conditions. This approach is regarded as a significant progress in the dynamic modeling of 
flexible multibody systems44–53. Gantoi et al.45 developed a more realistic model of the knee by employing the ANCF 
method, where the ligaments, muscles, and soft tissues surrounding the knee joint then are modeled as flexible bodies 
with large deformation. Upon applying the ANCF method, the mass matrix remains constant, and the incorporation 
of trigonometric operations in the constraint equations and Jacobian matrix is avoided, thereby simplifying the 
dynamic equations of spatial flexible multibody systems substantially.

In summary, the study of tribo-dynamics, particularly concerning the coupling relationship between the 
three-dimensional deformation of moving components and lubrication pressure fields, represents a prominent 
research area in the analysis of clearance joints within multibody systems. A considerable volume of research3–34 
has investigated various types of clearance joints, including rotating, reciprocating, ball bearings, biological joints, 
among others. Nevertheless, some limitations remain. In spatial multibody systems, three-dimensional absolute 
coordinate representations are generally employed. In contrast, current lubrication models predominantly 
adopt a two-dimensional local coordinate representation. For the purpose of simultaneous solution, coordinates 
transformation is necessitated. This requirement renders the solution process for tribo-dynamics problems being 
sequential and interactive, posing significant challenges in accurately capturing the intense coupling effects 
between component deformation and lubrication pressure fields. In addition, a range of modeling methods and 
solution techniques exists for different clearance joints. To simplify the modeling and solving processes, it is 
crucial to develop a novel, general model that accurately captures the intense tribo-dynamic coupling behaviors 
in clearance joints within multibody systems.

Therefore, a novel, general tribo-dynamic coupling model for lubricated clearance joints in spatial 
flexible multibody systems is developed in this paper, utilizing an absolute coordinate framework. In Sect. 2, 
the equations of lubrication are then defined at spatial nodes on reference surfaces by employing the mixed 
Eulerian-Lagrangian approach. The motion equations for spatial flexible multibody systems are established 
using the ANCF method. In Sect. 3, the coupled model is discretized in space and time utilizing the FEM and 
a low numerical damping method. Subsequently, an integrated solving strategy is used to uniformly solve the 
discretized nonlinear algebraic equations. This approach ensures an accurate depiction of the strong coupling 
characteristics between deformation and pressure fields in lubricated clearance joints. In Sect. 4, the general 
model is applied to a translational clearance joint, for which an impact test rig is designed and constructed. By 
comparing the dynamical response signals from both the model and experiment, the versatility of the tribo-
dynamic model and the accuracy of the integrated solution strategy are further validated.

General tribo-dynamic model for lubricated clearance joints
In this section, a general tribo-dynamic coupling model based on an absolute coordinate framework has been 
developed for lubricated clearance joints within spatial flexible multibody systems. By employing this model, the 
strong coupling characteristics between the deformation of moving parts and lubrication pressure fields can be 
explored.

Mixed lubrication model under absolute coordinate framework
In lubricated clearance joints, the clearance is typically much smaller than the other geometric scales. When 
modeling, it is not desirable to directly represent the geometric shape of lubricating film. Instead, the governing 
equations of thin film lubrication ought to be applied to a specific surface within the model. By employing the 
mixed Eulerian-Lagrangian approach54,55, the equations of mixed lubrication are then defined at spatial nodes 
on reference surfaces, as depicted in Fig. 1. 

In Fig. 1, the reference plane remains static in space. The equations governing thin film lubrication are defined 
at spatial nodes on these reference surfaces, allowing for the solution of fluid pressure through the Euler method. 
Both the wall and base are moving part surfaces, capable of relative motion with respect to the reference surface. 
The normal and tangential forces generated by lubrication behaviors act simultaneously on the upper and lower 
surfaces. Due to the oil film forces, deformation occurs in both the wall and the base. The physical properties 
of these deformed regions can be characterized through the Lagrangian method. In general, by employing this 
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mixed Eulerian-Lagrangian approach, the need to represent the geometric shape of lubricating film is eliminated, 
and the governing equations of lubrication model can be directly defined on the reference surface.

Considering the working conditions of lubricated clearance joints, moving parts may pass through mixed 
lubrication zones. Building on existing research on the average Reynolds Eqs56–58 and applying the continuity 
equation to the finite control volume depicted in Fig. 1, the control equation for mixed lubrication within an 
absolute coordinate framework can be derived as,

	
∇ · (ρhv̄av) + ϕc

∂ (ρh)
∂t

= 0,� (1)

where ∇ denotes the Nabla operator. v̄av  is the average flow velocity on the reference surface. ϕc represents the 
contact factor. ρ is the density. h represents the height of the finite control volume, defined at spatial nodes on the 
reference surface. As h varies with the positions of the wall and the base, it can be expressed as,

	 h = hw + hb.� (2)

In Eq.  (2), hw and hb represent the distances from reference face to the wall and base, respectively. The flow 
velocity of the lubricant film along its thickness is affected by both Couette and Poiseuille flows. v̄av  can then 
be formulated as,

	

v̄av = 1
2ϕc

(
I − nrnT

r

)
(vw + vb) + 1

2ϕs
σ

h

(
I − nrnT

r

)
(vw − vb)

︸ ︷︷ ︸
Couette flow

− ϕi
h2

12µ
∇p

︸ ︷︷ ︸
P oiseuille flow

,
� (3)

Where p is the oil film pressure to be solved. vw and vb represent the oil film flow velocities over the wall and 
base, respectively. σ represents the combined roughness of upper and lower surfaces. nr is the normal vector of 

Fig. 1.  Schematic illustration of fluid flow in the clearance between moving parts, with the wall and base 
representing the upper and lower boundaries, respectively. A reference vector, nr, points from the wall 
towards the base. The reference plane is fixed in space, with the distances to the wall and base being hw and hb, 
respectively. A finite control volume is attached to the reference plane, with a height h varying depending on 
the positions of the wall and base. The outward normal vectors on the surfaces of this control volume are nw 
and nb, respectively. The projected area on the reference plane is denoted as dA.
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the reference surface. ϕi and ϕs correspond to the pressure flow factor and the shear flow factor, respectively, 
which characterize the influence of the rough surface on the fluid film flow. By combining Eqs. (1), (2), and (3), a 
mixed lubrication model is established for lubricated clearance joints within an absolute coordinate framework. 
Except in certain oil-starved conditions, the boundary oil film pressure can be set to ambient pressure. Upon 
imposing appropriate boundary conditions, the oil film pressure at each spatial node on the reference surface 
can be solved.

Asperities contact and forces transmitted to moving parts
In the mixed lubrication model, the forces exerted on moving part surfaces mainly include pressure and friction. 
During the state of mixed lubrication in a clearance joint, asperities contact often occurs on the surfaces. 
Consequently, pressure comprises both oil film pressure p and asperity contact pressure pc, together supporting 
normal loads and causing vibration and deformation of moving parts. Frictional forces comprise oil film shear 
stress τ and asperity shear stress τc, constituting a significant component of frictional losses in mechanical 
systems.

Based on the work of Greenwood and Tripp59, the asperity contact pressure pc is characterized as,

	 pc (h) = KE′F5/2 (Hσ) .� (4)

The G/T model posits that the distribution of asperities conforms to a Gaussian distribution. The heights of 
asperities (micro-contact peaks) on the surface follow a statistical distribution, such as a normal distribution. At 
each asperity, the local deformation upon contact adheres to Hertzian contact theory, where only the normal load 
is considered. The contact pressure exerted by these asperities is determined using Hertzian contact theory. In 
Eq. (4), K represents the elastic coefficient, with the value ranging from 0.0003 to 0.003. E′ is the comprehensive 
elastic modulus. Hσ is the film thickness ratio. F5/2(Hσ) represents probability distribution of asperity heights. 
Asperity shear stress τc is calculated as the product of friction coefficient µf and contact pressure pc:

	 τc = µf pc.� (5)

Under mixed lubrication conditions, velocity variation across the oil film thickness is extensive. The shear stress 
in the oil film, denoted as τ, is primarily determined by the velocity gradient in this direction. According to 
relevant studies on the average Reynolds Eqs56–58, the oil film shear stress τ is obtained as,

	




τz′x′ = µ

h

(
vw

x′ − vb
x′

)
(ϕf ± ϕfs) + ϕfp

2
∂p

∂x′

(
2z′ − hw + hb

)
,

τz′y′ = µ

h

(
vw

y′ − vb
y′

)
(ϕf ± ϕfs) + ϕfp

2
∂p

∂y′

(
2z′ − hw + hb

)
.

� (6)

In Eq. (6), the left and right terms represent the shear stresses caused by Couette and Poiseuille flows, respectively. 
The local coordinate system within the lubrication domain is denoted by x’, y’, and z’, where z’ corresponds to 
the direction of thickness, as illustrated in Fig. 1. vx′  and vy′  are the flow velocities in the directions of x’ and y’, 
respectively. ϕf, ϕfs, and ϕfp represent shear stress factors56–58. Considering oil film pressure p, asperity contact 
pressure pc, oil film shear stress τ, and asperity shear stress τc, the forces fw and fb on the upper and lower surfaces 
in the mixed lubrication model can be formulated in vector form within an absolute coordinate framework as,

	

{
fw = fw,τ + fw,τc + fw,p + fw,pc,

fb = fb,τ + fb,τc + fb,p + fb,pc,
� (7)

where

	




fw,τ = µ

h
(ϕf + ϕfs)

(
I − nrnT

r

) (
vb − vw

)
− ϕfp

h

2 ∇τ p,

fb,τ = µ

h
(ϕf − ϕfs)

(
I − nrnT

r

) (
vw − vb

)
− ϕfp

h

2 ∇τ p,

fw,τc =
(
I − nrnT

r

) (
vb − vw

)
|(I − nrnT

r ) (vb − vw)|
µf pc,

fb,τc =
(
I − nrnT

r

) (
vw − vb

)
|(I − nrnT

r ) (vw − vb)|
µf pc,

fw,p = pnw,

fb,p = pnb,

fw,pc = pcnw,

fb,pc = pcnb.

� (8)

Dynamic model of spatial flexible multibody systems
The motion and deformation of spatial flexible multibody systems are characterized using the absolute nodal 
coordinate formulation (ANCF)1,44–53 in this section. The discrete nodes of flexible bodies are described by 
absolute coordinates. The physical properties of deformable solids, including stress, strain, and deformation, are 
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characterized through a complete Lagrangian format and defined on the reference configuration at the initial 
moment. First, the dynamic equations for each component of spatial multibody systems are established, and can 
be expressed as,

	
ρ

∂2u
∂t2 = ∇X · PT + FV ,� (9)

where P represents the first Piola-Kirchhoff stress, defined in the initial reference configuration. ∇X  denotes the 
Nabla operator relative to the material framework X. FV represents the volume force vector. u is the displacement 
vector. ρ is the material density. The stress boundary conditions can be expressed as,

	 P · n0 = FA.� (10)

In the formula, n0 denotes the normal vector of undeformed surface. FA represents the boundary load vector. 
According to the energy conjugate relationship between stress and strain60,61, the equivalent integral weak form 
of dynamic Eq. (9) and stress boundary conditions (10) can be expressed as,

	

∫

V

[
−δE : S + δu · FV − ρδu · ∂2u

∂t2

]
dV +

∫

S

δu · FAdS = 0,� (11)

where δu represents the virtual displacement. S represents the second Piola-Kirchhoff stress tensor. E denotes 
the Green-Lagrange strain tensor. Based on the nonlinear FEM and ANCF method, the displacement field u can 
be discretized into the generalized nodal displacement in absolute coordinates. The dynamic equations for each 
body in the multi-body system can be derived as,

	 Mq̈ + Cq̇ + Kq = Q.� (12)

In Eq.  (12), q represents the nodal generalized coordinate vector. C denotes the Rayleigh damping. The 
expression of these coefficient matrices can be found in references60,61. Q represents the external force vector. 
In typical multibody systems, the components are primarily interconnected through various ideal joints. These 
joints are mathematically defined by kinematic constraints, which can be described as,

	 Φ (q, t) = 0,� (13)

where Φ represents the constraint vector. The constraint equations for various ideal joints, as formulated using 
the ANCF method, are detailed in references45–47. By integrating the motion equations of each component 
(12) and the constraint equations of each motion pair (13), the motion equations for multi-body systems can 
ultimately be formulated as,

	

{
Mq̈ + Cq̇ + Kq + ΦT

q (q) λ = Q,

Φ (q, t) = 0.
� (14)

In Eq. (14), λ represents the Lagrangian multiplier vector. Φq = ∂Φ/∂q denotes the Jacobian matrix. Different 
from the floating coordinate method used in previous studies, the ANCF method applied in this paper directly 
formulates the motion equations for spatial flexible multibody systems using absolute coordinates of spatial 
nodes. As the conversion between absolute and floating coordinates is unnecessary, the mass matrix remains 
constant. Furthermore, the incorporation of trigonometric operations in the constraint equations and Jacobian 
matrix is avoided, thereby simplifying the equations of motion substantially. Unlike ideal joints, clearance joints 
can be considered as time-varying force elements. In multibody systems, the mixed lubrication model affects 
by applying generalized forces to the surfaces of interconnected moving parts, rather than imposing kinematic 
constraints as in ideal joints.

Solution procedure for the tribo-dynamic model
This section discretizes the coupled model’s control equations through a unified approach for both spatial 
and temporal domains, using the FEM and generalized-α method. By integrating and solving the discretized 
nonlinear algebraic equations within one time step, the solution strategy ensures an accurate depiction of the 
strong coupling characteristics between deformation and pressure fields in lubricated clearance joints.

Spatial discretization
The control Eq. (1) for mixed lubrication is spatially discretized employing the standard FEM method61–66. In 
comparison to the traditional FDM method67–70, the FEM method is better suited for irregular boundaries and 
ensures both convergence and computational efficiency. Based on the Green theorem, the equivalent integral 
weak form of Eq. (1) is obtained as,

	

∫

Ω
[(ρhv̄av) · ∇δp] dΩ −

∫

Ω

[
ϕc

∂ (ρh)
∂t

δp

]
dΩ = 0.� (15)
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To accurately determine pressure distribution across the entire lubrication area, it is necessary to subdivide the 
lubrication domain into either triangular or quadrilateral grids. Within an internal element Ωe, the pressure p 
can be expressed as,

	 p = NTpe.� (16)

In the formula, P denotes the nodal pressure. N represents the shape function. In the numerical examples later 
in this paper, the lubrication domain is discretized into quadrilateral grids. The shape functions are defined as,

	
Ni(ξ, η) = 1

4 (1 + ξξi) (1 + ηηi) , i = 1, 2, 3, 4,� (17)

where ξ and η are the natural coordinates in the parametric space, while ξi and ηi denote the local coordinates of 
node i. Combining Eq. (16) with Eq. (15) and taking into account the arbitrariness of δpe, the algebraic equations 
for determining the pressure within the element Ωe are expressed as,

	 Kepe = Fe.� (18)

In Eq. (18), Ke and Fe denote the element stiffness matrix and nodal load vector, respectively, represented as,

	





Ke = −
∫

Ωe

ϕi
ρh3

12µ

[(
∇NT)T∇NT

]
dΩ,

Fe =
∫

Ωe

{
ρh

(
∇NT)T

[1
2ϕc

(
I − nrnT

r

)
(vw + vb)

+ 1
2ϕs

σ

h

(
I − nrnT

r

)
(vw − vb)

]
− ϕc

∂ (ρh)
∂t

N
}

dΩ.

� (19)

In the formula, the derivatives with respect to the global coordinates x, y, and z, are calculated using the chain 
rule. The derivatives in the natural coordinate system are expressed as,

	
∂Ni

∂ξ
= 1

4ηi (1 + ηηi) ,
∂Ni

∂η
= 1

4ξi (1 + ξξi) .� (20)

The derivatives with respect to the global coordinates are obtained via the Jacobian matrix J, which relates the 
natural coordinates to the global coordinates:

	




∂Ni
∂x

∂Ni
∂y

∂Ni
∂z


 = JT(

JJT)−1
{

∂Ni
∂ξ

∂Ni
∂η

}
, J =

(
∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

)
.� (21)

By assembling Eq. (18), a set of nonlinear algebraic equations within domain Ω would be fully determined.

Temporal discretization
The differential-algebraic equations (DAEs) for three-dimensional multibody systems, as shown in Eq.  (14), 
requires further conversion into nonlinear algebraic equations through temporal discretization methods before 
solving. Common methods include the BDF method71–73, Newmark-β method74–76, HHT method77, and 
the generalized-α method78–83. For the computational results expected in this study, which include solutions 
with steep gradients such as vibration signals, the chosen temporal discretization algorithm should exhibit 
characteristics of low numerical damping.

Among these methods, the generalized-α method78–83 is a second-order implicit method, incorporating a 
parameter α to control the numerical damping. For the DAEs as presented in Eq. (14), the generalized-α method 
can be expressed as,

	

{
Mq̈n+1−αm + Cq̇n+1−αf + Kqn+1−αf + ΦT

q
(
qn+1−αf

)
λn+1 = Q

(
tn+1−αf

)
,

Φ (qn+1, tn+1) = 0,
� (22)

Where semi-discrete quantities can be expressed as,

	




q̈n+1−αm = (1 − αm) q̈n+1 + αmq̈n,

q̇n+1−αf = (1 − αf ) q̇n+1 + αf q̇n,

qn+1−αf = (1 − αf ) qn+1 + αf qn,

tn+1−αf = (1 − αf ) tn+1 + αf tn.

� (23)

The predicted values at time step n + 1 can be calculated as,
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



q̈n+1 = 1
β∆t2 (qn+1 − qn) − 1

β∆t
q̇n −

(
1

2β
− 1

)
q̈n,

q̇n+1 = γ

β∆t
(qn+1 − qn) −

(
γ

β
− 1

)
q̇n − ∆t

(
γ

2β
− 1

)
q̈n.

� (24)

The motion equations for multi-body systems, presented in Eq. (14), can be temporally discretized into nonlinear 
algebraic equations in Eqs. (22), (23), and (24). The generalized-α method ensures second-order accuracy78, with 
parameters selected as,

	




αm = 2ρ∞ − 1
ρ∞ + 1 , αf = ρ∞

ρ∞ + 1 , ρ∞ ∈ [0, 1],

β = 1
4(1 − αm + αf )2, γ = 1

2 − αm + αf .

� (25)

In the formula, ρ∞ represents the numerical dissipation, with the dissipation decreasing as the value approaches 
1. When both αm and αf are equal to 0, the generalized-α method degenerates into the Newmark-β method. The 
temporal discretization based on the generalized-α method offers low numerical damping, allowing for accurate 
dynamic response calculations.

Integrated solving strategy for the coupled model
The tribo-dynamic coupling model proposed in this paper uses a unified absolute coordinate framework, 
enabling simultaneous solutions for mixed lubrication and spatial multibody dynamics without requiring 
coordinate transformation. Therefore, an integrated numerical solution strategy is adopted for the coupled 
model. By integrating and solving the discretized nonlinear algebraic equations within one time step, this 
strategy ensures an accurate depiction of the strong coupling characteristics between deformation and pressure 
fields in lubricated clearance joints. Through progressive time-stepping, the calculation results for the unknown 
variables can be yielded at each time step.

Combining Eqs. (18)-(24), the nonlinear algebraic equations for unknown physical fields such as displacement 
and pressure in lubricated clearance joints can be integrated and expressed as,

	
f =

( Kp (uq) 0
0 Kq (uq)

) {
up

uq

}
−

{
bp (uq)
bq (up)

}
,� (26)

where the unknown physical field variables are uniformly denoted by up and uq. The subscripts p and q represent 
pressure and generalized displacement, respectively. In Eq. (26), the strong coupling characteristics between the 
deformation of moving components and the pressure in mixed lubrication is effectively integrated. The terms K 
and b symbolize the coefficient matrices and load terms, encapsulating the interactions between the two fields.

In one time step, the nonlinear algebraic equations of the tribo-dynamic coupled model, as depicted in 
Eq. (26), are iteratively solved utilizing the Newton-Raphson method. As time progresses, the oil film pressure 
and dynamic responses of multibody systems can be solved for the entire duration. The detailed solution 
procedure for the coupled model is illustrated in Fig. 2. 

Experimental verification of the general tribo-dynamic model
This section applies the proposed general tribo-dynamic model to a translational clearance joint with reciprocating 
motion, for which an impact test rig is designed and constructed. By comparing the dynamical response signals 
obtained from both the model and the experiment under dry contact and lubrication conditions, the versatility 
of the tribo-dynamic model and the accuracy of the integrated solution strategy has been validated.

Impact test rig for translational clearance joint
In the impact test rig to be constructed, a slider and a guide constitute a basic translational clearance joint. The 
guide is fixed at both ends to a rigid base using bolts. The slider, operating under various lubrication conditions, 
is driven by a motor, enabling it to reciprocate along the guide. An impact hammer delivers the impact load 
to the slider at specific locations, exciting vibrations in both the slider and the guide. The design schematic of 
the impact test rig is shown in Fig. 3. To validate the accuracy of the general tribo-dynamic model, dynamical 
response signals from both the model and the experiment are compared under the same impact load from the 
hammer, encompassing conditions of dry contact and lubrication. 

In a similitude treatment for a crosshead-guides translational joint in low-speed marine engines, dimensional 
parameters of the slider and guide used in the test rig are determined and presented in Table 1. More specifically, 
the dimensions of the slider are determined by the similarity in lubrication states, characterized by the pressure 
ratio. Furthermore, the dimensions of the guide are determined by their similarity in first-order natural 
frequency. 

As shown in Fig. 3, a guide rod, supported by a linear bearing, is connected to the slider through a double 
hinge joint. This configuration ensures that the slider is subjected only to the lateral impact load applied by 
the hammer, minimizing the influence of the driving mechanism on the vibration measurement of both the 
slider and guide. Force and acceleration sensors are assembled to measure the impact load of the hammer and 
vibration signals of the slider and the guide, respectively. To satisfy the requirements for high-frequency output, 
piezoelectric sensors that generate Integrated Electronics Piezo-Electric (IEPE) voltage signals were employed in 
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the experiment. These sensors mainly include a force sensor below the hammer head, a three-way acceleration 
sensor on the slider, and uniformly distributed acceleration sensors under the guide. Dynamic signals of the test 
rig are collected in real-time by the DH8303 dynamic signal acquisition system. The measurement and control 
system, consisting of 32 signal channels and capable of a maximum signal acquisition frequency of 256 kHz, 
satisfies the experimental requirements. Finally, the impact test rig for experimental research is shown in Fig. 4. 

Parameters Descriptions Values

Lr Length of slider 40 (mm)

Wr Width of slider 40 (mm)

Hr Height of slider 30 (mm)

Lg Length of guide 340 (mm)

Wg Width of guide 50 (mm)

Hg Height of guide 5 (mm)

Table 1.  Dimensional parameters of the slider and the guide used in the impact test rig.

 

Fig. 3.  Design schematic of an impact test rig for a translational clearance joint with reciprocating motion: 
(1) impact hammer; (2) hammer head with an integrated piezoelectric force sensor; (3) guide; (4) acceleration 
sensors; (5) lubricating medium; (6) slider; (7) three-way acceleration sensor; (8) guide rod; (9) hinge joints; 
(10) bolts; (11) linear bearings; (12) digital signal acquisition and control system; (13) connecting rod; (14) 
drive motor; (15) rigid foundation.

 

Fig. 2.  Workflow for solving the tribo-dynamic coupling model. Through time stepping, unknown physical 
fields are determinable for the entire simulation period.
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Tribo-dynamic model for translational clearance joint
A tribo-dynamic model for the translational clearance joint, which fundamentally aligns with the experimental 
setup, has been established by applying the previously proposed general tribo-dynamic model. The schematic 
diagram of the model is illustrated in Fig. 5. In the figure, the slider reciprocates along the guide. Both components 
are treated as three-dimensional flexible bodies. The motion equations of the system are presented in Eq. (14). 
Constraints on the slider and the guide, such as the fixed constraint of the guide and the motion speed of the 
slider, are reflected in the constraint vector Φ. The force vector Q includes the measured impact load from the 
hammer and forces from mixed lubrication, such as pressure and friction forces. The measured impact load of 
the hammer, as depicted in Fig. 5, is applied within 10 ms and recorded at a sampling frequency of 20 kHz. 

The lubrication behaviors of the translational joint are characterized by Eq. (1), which is defined at spatial 
nodes using the Euler method, as depicted in Fig. 5. Both the boundary pressure and the initial pressure are set 
equal to the ambient pressure. The film thickness h is described as,

	 h = h0 + hprof + hs + dr + dg,� (27)

where h0 is the initial oil film thickness. hprof represents the profile at the bottom of slider. hs denotes the film 
thickness variation induced by the secondary motion external to the reciprocating movement of the slider. dr 

Fig. 5.  Schematic diagram of the tribo-dynamic model for the translational clearance joint. The model 
fundamentally aligns with the experimental setup. The slider reciprocates along the guide, with both 
components treated as three-dimensional flexible bodies. The lubrication domain is divided into these 
quadrilateral grids, where xyz represent absolute coordinates. The measured impact load of the hammer is 
applied within 10 ms, reaching a maximum of 298.6 N.

 

Fig. 4.  Impact test rig for experimental research: (a) slider-guide translational joint; (b) drive mechanism; (c) 
signal acquisition system; (d) layout of bench and acquisition system.
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and dg correspond to the film thickness variations arising from elastic deformations of the slider and guide, 
respectively. Correspondingly, the physical properties of both the slider and the guide can be described using 
the Lagrangian method.

In addition, a dry contact model for the translational joint is introduced in this section, as a substitute for the 
lubrication model. This modification aims to facilitate a comparative analysis of the vibration responses in the 
joint, both in the presence and absence of an oil film. Such a comparison further substantiates the universality 
and precision of the coupled model proposed in this study. The normal contact force, included in the force vector 
Q, is characterized using the Lankarani-Nikravesh dry contact model6–8 and is defined as,

	 FN = Kgδn + ηδnδ̇,� (28)

where the normal contact force consists of both elastic and damping forces. δ represents the generalized 
penetration depth. Kg and η are the generalized stiffness coefficient and viscous damping factor, respectively. 
There expressions are available in reference8. The index n for metal contact is typically set to 1.5. The main input 
data of the coupled model for the translational clearance joint is presented in Table 2. 

Comparison between model and experiment
Before applying the impact load, sliders in both the model and the experiment exhibited a stable state of 
reciprocating motion. The points selected for extracting vibration signals in the model correspond to the 
locations of vibration sensors on the impact test rig, as depicted in Fig. 3. Additionally, the calculation frequency 
for vibration signals in the model is set to 20 kHz, matching the experimental sampling frequency. Under dry 
contact conditions without oil film, the comparison of vibration signals between the model and the experiment 
is illustrated in Fig. 6. 

In Fig. 6, the vibration acceleration signals of components from both the model and the experiment exhibit 
good alignment within the initial 30 ms. The vibration amplitudes of both components approximate to 400 m/
s². Beyond 30 ms, however, notable discrepancies are observed in the vibrational acceleration signals obtained 
from the model and the experiment. The dry contact model employed in this study evidently falls short in fully 
representing the high-frequency and high-amplitude vibration responses observed in the experiment. However, 
the goal of demonstrating the general model’s adaptability across various conditions is achieved, even if some 
details are less precise under dry contact conditions.

Under oil film lubrication conditions, the comparison of vibration signals for the general model, conventional 
model40–43, and experimental data is shown in Fig. 7. It is noteworthy that the oil film pressure beneath the slider 
can be calculated at any given moment. The pressure distribution of oil film at 28 ms is illustrated in Fig. 8.  

In Fig. 7, the vibration acceleration signals from the general model, conventional model, and experimental 
data under lubrication conditions are compared, demonstrating a high degree of agreement throughout the 
entire response duration. The amplitude and frequency of the vibration signals depicted in Fig. 7 are nearly 
identical, thereby validating the versatility of the proposed tribo-dynamic model for lubricated clearance joints 
and the accuracy of the integrated solution strategy. The conventional model exhibits higher computational 
damping, leading to slightly larger errors. While the precision of both models is acceptable, the most notable 
advantage of the general model lies in its universality.

As emphasized in the Introduction, conventional methods for systems such as rotational joints and ball-
bearing are often inconsistent and rely heavily on specific local formulations. In contrast, the proposed general 
model offers a unified framework that simplifies the modeling process and enhances its applicability across 
diverse systems.

Parameters Descriptions Values

µ Viscosity of lubricating oil 0.045 (Pa·s)

ρ Density of lubricating oil 889 (kg/m3)

h0 Initial oil film thickness 40 (um)

p0 Ambient pressure 1.013e5 (Pa)

λ Connecting rod ratio 0.64

n Rotate speed of drive motor 60 (r/min)

mr Mass of slider 0.374 (kg)

mg Mass of guide 0.663 (kg)

ρs Density of components 7800 (kg/m3)

E Elastic modulus of components 210e9 (Pa)

ν Poisson’s ratio of components 0.30

Kg Generalized stiffness coefficient 70e6 (N/m1.5)

η Viscous damping factor 50e7 (N·s/m2.5)

Table 2.  Input data of the tribo-dynamic model for the translational clearance joint.
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Conclusions
In this paper, a novel, general tribo-dynamic coupling model for lubricated clearance joints in spatial flexible 
multibody systems has been developed, utilizing an absolute coordinate framework. In the model, mixed 
lubrication equations are defined at spatial nodes on reference surfaces by employing the mixed Eulerian-
Lagrangian approach. The equations of motion for flexible multibody systems are formulated based on the 
absolute nodal coordinate formulation.

The coupled model uses a unified absolute coordinate framework, enabling simultaneous solutions for mixed 
lubrication and spatial multibody dynamics without requiring coordinate transformation. In solving the coupled 
model, the control equations are discretized through a unified approach for both spatial and temporal domains, 
using the FEM and generalized-α method. By integrating and solving the discretized nonlinear algebraic 
equations within one time step, the solution strategy ensures an accurate depiction of the strong coupling 
characteristics between deformation and pressure fields in lubricated clearance joints.

Finally, the general model is applied to a translational clearance joint, for which an impact test rig is designed 
and constructed. A comparative analysis of dynamical response signals from both the model and experiment 
under dry contact and lubrication conditions is conducted. The goal of demonstrating the general model’s 
adaptability across various conditions is achieved, even if some details are less precise under dry contact 
conditions. Under lubrication conditions, the vibration acceleration signals from both the models and the 
experimental setup demonstrate a high degree of agreement throughout the entire response duration. The 
conventional model exhibits higher computational damping, leading to slightly larger errors. While the precision 
of both models is acceptable, the most notable advantage of the general model lies in its universality.

Fig. 6.  Comparison of results between model and experiment under dry contact conditions: (a) vibration 
acceleration signals of the slider; (b) vibration acceleration signals at the middle position of the guide.
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Data availability
The original codes and data used to support the findings of this study are available from the corresponding 
author upon request.
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Fig. 8.  Pressure distribution of oil film beneath the slider at 28 ms.

 

Fig. 7.  Comparison of results for the general model, conventional model, and experimental data under oil film 
lubrication conditions: (a) vibration acceleration signals of the slider; (b) vibration acceleration signals at the 
middle position of the guide.
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