Table 3 Multivariate logistic regression model.

From: Integrating radiological and clinical data for clinically significant prostate cancer detection with machine learning techniques

Variable

OR (95% C.I.)

p-value

Age (years)

1.059 (1.048,1.071)

< 0.001

rcs(PSA, 5) PSA

1.579 (1.355,1.850)

< 0.001

rcs(PSA, 5) PSA’

2.150 × 10− 7 (1.662 × 10− 11,2.425 × 10− 3)

0.001

rcs(PSA, 5) PSA’’

3.449 × 1015 (7.171 × 104,2.148 × 1026)

0.004

rcs(PSA, 5) PSA’’’

1.111 × 10− 10 (7.608 × 10− 19,1.464 × 10− 2)

0.016

PV

0.974 (0.971, 0.977)

< 0.001

DRE (suspicious)

2.599 (2.133,3.170)

< 0.001

FH (yes)

1.673 (1.227,2.278)

0.001

PNB (yes)

0.696 (0.579,0.835)

< 0.001

PI-RADS 2:1

1.279 (0.690,2.301)

0.421

PI-RADS 3:1

1.839 (1.288,2.662)

< 0.001

PI-RADS 4:1

6.755 (4.882,9.520)

< 0.001

PI-RADS 5:1

18.758 (12.994,27.515)

< 0.001

  1. rcs restricted cubic spline, PSA prostate specific antigen, PV prostate volume, PSAD PSA density, DRE digital rectal exam findings, FH family history of PCa, PNB previous negative biopsy.