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Accrual success is one key determining factor for the success of clinical trials. Global data analyses of all 
terminated trials reported that 55% of trials were terminated due to low accrual rates. Failure to meet 
accrual goals have a significant impact on costs for sponsors, academic institutions, investigators, 
and society at large. The ability to predict trial accrual success with high precision before the trial 
starts would be highly valuable, preventing the allocation of critical resources for trials unlikely to 
meet accrual goals. In the present study, we constructed a dataset for predicting clinical trial failure 
based on poor accrual using clinicaltrial.gov data containing information on 57,846 trials. Features 
of the dataset were informed by prior literature and constructed using data-driven natural language 
processing methods. We built predictive models for accrual failure using state-of-the-art supervised 
machine learning protocols and methods. Models resulted in good predictive performance that was 
stable over a 10-year time period, with predictive performance of cross-validation AUC = 0.744 (+/-
0.018) and prospective validation AUC = 0.737 (+/-0.038). We also improved model calibration and 
examined model performance with the reject option. These modifications enable model translation 
into decision support tools for various real-world settings. To the best of our knowledge, this is the first 
study to develop models for predicting clinical trial failure due to accrual based on a large dataset with 
a comprehensive set of trial features.
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Accrual success is a dominant determining factor for the success of clinical trials (CT). Global data analysis of 
all terminated trials reported 55% of trials terminated due to low accrual rate1. An Institute of Medicine report 
found 71% of phase III trials approved by the National Cancer Institute’s (NCI’s) Cancer Therapy Evaluation 
Program closed without meeting their accrual goals2. Failed accrual dramatically affects costs for sponsors 
(Pharma, National Institutes of Health), academic institutions, investigators, and society.

The ability to predict CT accrual success with high precision before the trials start is highly valuable. It 
allows for early identification of trials that are unlikely to meet accrual goals before allocating critical resources. 
Moreover, identifying these trials enables more focused and targeted efforts to improve accrual.

While several methods for predicting accrual are available, limitations exist. For example, Cohort identification 
tools3–5 forecast “best case scenario” accrual by estimating the number of available subjects that meet inclusion/
exclusion criteria using electronic health record (EHR) data. This method estimates the upper limit for accrual 
but fails to consider factors that limit accrual, such as the probability of consent, the complexity of the trial 
design, and the effectiveness of recruitment strategy. Existing accrual forecasting tools estimate accrual based on 
an estimated accrual rate (a parameter that is hard to determine before the start of the trial) or a limited number 
of associated factors6–13. Some commercial vendors14–16 have recently offered such tools, but these products 
often lack sufficient evidence supporting their efficacy. Academic studies are typically much more rigorous, 
have detailed description of methods and clearly stated statistical assumptions. Many studies address complex 
clinical trial designs such as the multi-center trials, considers accrual as well as randomization, and allows for 
adaptive adjustment as the trial progresses. Many of the studies leverages the Bayesian approach for predicting 
the average and variation of accrual (see Anisimov, 202017 for a comprehensive review). Earlier Bayesian 
approaches model the enrollment process as Poisson processes with accrual rate from a uniform distribution12. 
A more sophisticated approach, the Poisson-gamma model, was introduced to account for variations among 
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accrual rate in different centers in multi-center trials, where the prior distribution of accrual rate is a gamma 
distribution7,13. This was further extended to capture the situations where clinical centers can be initiated with 
random delays and also can be closed earlier6 and to model accrual in specific centers, regions, or countries18. 
For predicting accrual prior to the trial start, the main limitation of these and related approaches6–9 is that they 
rely on estimated accrual rate (or specifying a prior distribution), which can be difficult to obtain. Additionally, 
studies that investigate the relationship between accrual and trial-related factors often only examine a small 
number of trial-related factors. Also, these studies are often descriptive, without assessing the joint predictive 
capacity of these factors for accrual success10,11. In addition, many studies focus on trials from a specific medical 
domain where recruitment is particularly challenging, or for specific recruitment methods and scenarios19–21. 
A third category is the manual academic administrative review22–24. This approach uses experienced scientists 
and research staff to subjectively predict accrual success (i.e., in the context of feasibility assessment). However, 
it frequently suffers from incomplete knowledge and is susceptible to undesirable variability due to varying 
composition of committees and other biases. In addition, this method is resource intensive and not scalable.

A large number of barriers and facilitators for CT accrual have already been identified1,22–25, including 
trial design and complexity, number of eligible and available participants, experience of trial investigators, and 
characteristics of the institution hosting the trial (e.g. size, location, recruitment performance in prior trials). 
In principle, a model based on these factors can be constructed for predicting accrual failure. However, only 
a small fraction of the previously identified barriers and facilitators were examined simultaneously in prior 
quantitative studies6–11,26, partially because many of these factors are hard to obtain from a large number of 
CTs. Also, these studies are commonly based on trials that are collected in a single organization, which can 
result in bias. Moreover, prior studies on accrual failure risk utilized relatively simple statistical methods (e.g. 
parametric models capturing additive relationships, such as generalized linear models) that may not fully capture 
the complex relationships among the predictors and the prediction target. Furthermore, these studies focus on 
identifying the factors associated with accrual, but did not evaluate the predictive capacity of the derived models 
formally. Therefore, the ability of these models to assess accrual failure risk in the real world remains unclear.

To address the above challenges, we leveraged information reported on clinicaltrials.gov website and external 
sources, utilized both rule-based and data-driven machine learning natural language processing (NLP) methods 
to create a dataset for predicting clinical trial accrual failure. Our sample covers CTs across a large variety of 
disease types conducted in different regions in the US from 1995 to 2022. Importantly, we manually reviewed 
failed trials reported on clinicaltrials.gov and identified trials that failed due to accrual. These efforts make 
modeling accrual failure possible. To assess the generalizability of the model over time, we employed a pseudo-
prospective validation design, where models were built using historical data and validated on future data. 
We employed state-of-the-art predictive modeling techniques and protocols to capture complex, non-linear, 
interactive relationships among a large number of variables available before the trial starts, eliminating the need 
to estimate accrual rate, and to optimize predictive performance while avoiding overfitting. Further, we explored 
several methods to enable robust and cost-effective translation of the predictive model into the real world. We 
employed Markov boundary based feature selection methods which choose a minimum number of features 
with maximal predictive performance27,28, enabling the cost-effective implementation of decision support tools 
(DST). We examined and improved model calibration such that the model predicted probability of success 
better aligns with the actual probability of accrual failure. We also implemented prediction with reject option to 
improve predictive performance in the predicted cases.

Several recent publications also used clinicaltrial.gov information to construct predictive models for related 
tasks such as, predicting accrual rate categories (low, median, vs. high)29 and predicting trial termination30,31. 
The individual accrual rate categories from the study by Bieganek et al.29 were relatively broad, with low accrual 
rates defined as ≤ 25 participants/year, medium accrual rates defined as 25 < r ≤ 100 participants/year, and high 
accrual rates defined as > 100 participants year. This limits the models’ applicability in practical settings. The 
models reported by Elkin et al. and Kavalci et al.30,31 predict trial termination due to any reason, not specifically 
because of accrual failure. To the best of our knowledge, the current work is the first to focus on building a model 
specifically for predicting the binary outcome of trial failure due to accrual failure, which is defined as accrual 
that was too slow to meet accrual goals within a defined period. Accurately gauging the risk of trial failure due to 
accrual failures enables interventions to improve recruitment specifically for the trials that need them the most, 
ultimately enhancing the probability of trial success.

The accrual models developed here have resulted in good predictive performance that is stable over time, with 
predictive performance of cross-validation AUC = 0.744+/-0.018 and prospective validation AUC = 0.737+/-
0.038. Furthermore, these models are also enhanced by improving calibration and implementing prediction 
with reject option, which enables model translation into DST suitable for a variety of real-world settings. These 
models, which use less than fifty easy-to-construct features, demonstrated good predictive performance and 
calibration.

Method
Goal
The primary goal of our study was to construct and evaluate models for clinical trial accrual failure risk assessment 
using information available before the start of the trial. A high-level summary of the analytical processes used to 
achieve this goal is visualized in supplemental Fig. S1.

Data
A total number of 111,494 clinical trials in the format of XML are collected from ClinicalTrial.gov, downloaded 
on 9/12/2022. We selected trials with four criteria: (1) U.S.-based; (2) interventional clinical studies; (3) the trial 
was initiated between 1995 and 2022; and (4) The trial recruitment status is either “Completed” or “Terminated”, 
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this removes trials that are on-going, suspended, or withdrawn. The application of these criteria resulted in 
57,846 trials in total.

Target of interest
The primary target of interest for this study was whether a trial is terminated due to accrual issues. To construct 
the target of interest, we first examined the recruitment status field from ClinicalTrials.gov. We started with all 
trials that have recruitment status of “Completed” and “Terminated”. The trials marked as “Completed” are the 
trials that ended normally, and participants are no longer being examined or treated (that is, the last participant’s 
last visit has occurred). None of these trials were terminated due to accrual issues. The trials that were marked as 
“Terminated” are the trials that have stopped early and will not start again. For the terminated trials, a text field 
provides unstructured data on reasons for termination provided by the responsible party. We manually reviewed 
the reason for termination for the remaining 7,965 terminated trials to determine if they were terminated due to 
accrual issues. One reviewer reviewed and labeled all 7,965 terminated trials, and a second reviewer randomly 
reviewed 1,000. The agreement between the two reviewers is 100%. The annotated outcomes of the 7,965 trials 
are described in supplemental Table S1.

We examined additional data fields on ClinicalTrials.gov to further assess if the outcome categories we 
assigned to the trials were valid. Specifically, we looked at the data fields “actual enrollment” and “estimated 
enrollment”. The estimated enrollment is the number of participants the trial planned to enroll. The actual 
enrollment is the actual number of participants enrolled, updated after the trial is completed or terminated. We 
computed for each trial the ratio of estimated enrollment minus actual enrollment over estimated enrollment 
(see Fig. 1 for distribution of the ratio for completed trials and terminated trials). For terminated trials, we expect 
this ratio to be positive. For completed trials, we expect this ratio to be fairly close to zero. There are 4,583 trials 
out of the 49,881 completed trials with the ratio greater than 0.5. We flagged these trials as abnormal since it is 
unlikely that a completed trial only recruited less than half of the participants originally planned.

We generated two datasets: one with the flagged abnormal trials included, one without the flagged abnormal 
trials. Our modeling procedure was conducted on both of the datasets as a sensitivity analysis. The model 
performance was very similar. We reported the results based on the dataset without the flagged abnormal trials 
in the main text. This dataset has 53,263 trials, consisting of 45,298 completed trials, 4,986 trials terminated due 
to non-accrual issues, and 2,979 trials terminated due to accrual issues. And the results on the other dataset in 
the supplemental file.

Feature construction
We are interested in predicting termination due to accrual failure before the trial starts. Therefore, we used 
information available before the initiation of the trials for feature construction. Some of the features constructed 
were informed by prior literature on related tasks30,31. Novel features were also constructed for this study. 
We categorize the constructed features into two broad categories: (1) Design Features: a small set of features 
capturing trial characteristics using hand-crafted feature construction methods designed specifically for this 
study. (2) Text Features: a large set of features capturing information in the text description of the trials using 
text and natural language processing methods.

The 87 Design Features (Table  1) are constructed to capture factors that have been previously reported 
to correlate with clinical trial accrual success. All of them are derived from the ClinicalTrials.gov XML data, 
except for the study population and institutional score. The study population feature represents the size of the 
population from which participants can be recruited32.The institutional score33 estimates the research capacity 
and output of the institution responsible for the clinical trial which was considered to be a facilitator of accrual 
success23,34–36. Detailed descriptions of the construction methods for these features are presented in our prior 
study29. Given the reported positive correlation between the complexity of eligibility criteria and risk for accrual 
failure23,25,37, we included features to capture high-level characteristics of the eligibility criteria of trials, such as 
average number of words per eligibility criteria, number of eligibility criteria, etc. We adopted the method for 
constructing these features from a related study on predicting trial termination30. All other design features were 
directly extracted from structured fields of ClinicalTrials.gov data, capturing information such as study design 
and study administration.

The 6,085 text features consist of 5,985 Medical Subject Headings terms (MeSH), and 100 word embedding 
vectors. We included the MeSH terms since they contain information regarding the research topic or target 
disease of the clinical trial, a factor reported to be related to accrual success in prior literature23,25,35,38. The word 
embedding features are constructed to capture the information contained in the “Detailed Description” field 
of ClinicalTrial.gov. The party responsible for a trial is instructed to provide the following information in this 
field: “Extended description of the protocol, including more technical information, if desired. Do not include 
the entire protocol; do not duplicate information recorded in other data elements, such as Eligibility Criteria or 
outcome measures”. NLP methods are ideal for capturing information in this field since it contains unstructured 
textual data. We used BioWordVec39, a pre-trained Doc2Vec model, to embed the “Detailed Description” of 
the trial into vectors of length 100. BioWordVec was derived from a biomedical corpus based on PubMed data 
contains 27,599,238 articles and MeSH terms. Benchmarking indicated that BioWordVec demonstrated superior 
performance to other embeddings for tasks in the biomedical domain.

Analytical strategy for predictive modeling
Overall design
To evaluate the performance of predicting future accrual failure based on historical data, we implemented a 
prospective cross-validation design, where clinical trial data from 1995 to 2022 were divided into discovery 
data and validation data. The discovery data consists of data from clinical trials that occurred earlier in time, 
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whereas the validation data consists of data from clinical trials that occurred later in time. To evaluate the model 
performance over time, we evaluated five pairs of discovery and validation datasets. The five discovery datasets 
are all trials initiated during and before 2012, 2014, 2016, 2018, and 2020. Their corresponding validation 
datasets are all trials initiated in 2013–2014, 2015–2016, 2017–2018, 2018–2020, and 2021–2022 (Fig. 1).

Fig. 1.  The number (a) and percentages (b) of the three type of trials over time. To access the generalizability 
of our models over time, we used a prospective cross-validation design (c) where historical data were used 
as discovery data (yellow) for model training and selection, whereas future data were used as validation data 
(red). x-axis represents time.
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Trial type

Completed Terminated due to other reason Terminated due to accrual

Study design: randomized allocation

 N/A* 23.3% 35.1% 35.7%

 Non-randomized 10.6% 15.1% 11.7%

 Randomized* 60.0% 47.6% 51.7%

 Missing 6.2% 2.2% 0.9%

Study design: intervention model

 Crossover assignment* 9.2% 4.9% 4.3%

 Factorial assignment* 2.1% 1.2% 1.0%

 Parallel assignment 49.2% 44.5% 48.5%

 Sequential assignment 1.3% 2.5% 1.3%

 Single group assignment* 31.6% 44.7% 43.7%

 Missing* 6.7% 2.3% 1.2%

Study Design: intervention type

 Behavioral* 19.4% 5.2% 4.2%

 Biological 7.2% 8.4% 6.7%

 Combination product 0.2% 0.3% 0.2%

 Device 9.3% 12.1% 10.9%

 Diagnostic test 0.3% 0.4% 0.4%

 Dietary supplement 3.2% 1.6% 2.5%

 Drug* 45.6% 58.5% 60.0%

 Genetic 0.2% 0.3% 0.2%

 Other* 9.3% 6.8% 5.7%

 Procedure* 4.8% 5.2% 7.1%

 Radiation* 0.6% 1.2% 2.1%

 Missing 0.01% 0.0% 0.0%

Study design: masking

 None (Open label)* 55.6% 66.6% 68.6%

 Single* 0.7% 0.3% 0.1%

 Single (Care provider) 0.3% 0.2% 0.1%

 Single (Participant)* 4.5% 3.9% 2.7%

 Single (Investigator)* 1.5% 0.9% 0.7%

 Single (Outcomes assessor)* 5.8% 2.2% 2.8%

 Double* 2.4% 1.8% 0.7%

 Double (Care provider, Investigator) 0.1% 0.1% 0.1%

 Double (Care provider, Outcomes assessor) 0.1% 0.0% 0.1%

 Double (Investigator, Outcomes assessor) 0.8% 0.4% 0.5%

 Double (Participant, Care provider) 0.7% 0.8% 0.8%

 Double (Participant, Investigator) 5.9% 5.5% 5.8%

 Double (Participant, Outcomes assessor) 1.7% 1.4% 1.4%

 Triple (Care provider, Investigator, Outcomes 
assessor) 0.2% 0.0% 0.2%

 Triple (Participant, Care provider, Investigator)* 2.8% 3.2% 4.4%

 Triple (Participant, Care provider, Outcomes 
assessor) 0.6% 0.5% 0.5%

 Triple (Participant, Investigator, Outcomes assessor)* 2.6% 1.9% 1.7%

 Quadruple (Participant, Care provider, Investigator, 
outcomes assessor) 8.3% 8.5% 8.0%

 Missing* 5.5% 1.9% 0.8%

Study design: arm group

 Active comparator* 14.6% 13.8% 18.5%

 Experimental* 60.4% 68.0% 66.5%

 No intervention 2.9% 2.1% 2.3%

 Other 4.8% 4.0% 4.4%

 Placebo comparator 3.2% 3.0% 3.0%

 Sham comparator 0.3% 0.4% 0.3%

 Missing 13.8% 9.7% 4.9%

Continued
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Trial type

Completed Terminated due to other reason Terminated due to accrual

Study design: devices

 Studies a US FDA-regulated device product 3.8% 5.3% 4.9%

 Studies a US FDA-regulated drug product* 10.4% 17.3% 19.0%

 If has DMC* 33.2% 42.7% 49.1%

 If the Clinical Trial has expanded access 0.2% 0.1% 0.1%

 If the trial has DMC or FDA regulation* 42.3% 54.0% 60.8%

 If the trial has FDA drug or FDA device regulation, * 13.9% 22.1% 23.3%

Eligibility: Gender

 All 85.9% 87.2% 84.8%

 Female 10.0% 9.0% 10.8%

 Male 4.1% 3.8% 4.4%

 Missing 0.01% 0.0% 0.0%

Eligibility: healthy volunteer

 Accepts healthy volunteer* 30.8% 16.4% 10.5%

 No* 69.1% 83.5% 89.4%

 Missing 0.2% 0.1% 0.1%

Numerical eligibility features (continuous)

 Average words per eligibility criteria 11.9 (9.5) 12.9 (10.1) 12.6 (9.6)

 Average words per inclusion criteria 10.3 (11.3) 12 (12.4) 12 (12.7)

 Average words per exclusion criteria 11.4 (10.1) 12.2 (10.6) 11.7 (9.8)

Number of eligibility criteria* 13 (15) 18 (20) 17 (19)

 Number of numbers in eligibility* 10 (20) 15 (20) 15 (27)

 Number of words in eligibility* 159 (246) 226 (355) 214 (315)

 Number of inclusion criteria* 4 (6) 5 (8) 5 (8)

 Number of numbers in inclusion criteria* 3 (8) 5 (13) 5 (13)

 Number of words in inclusion criteria* 43 (87) 60 (143) 62 (136)

 Number of exclusion criteria* 8 (11) 10 (14) 10 (13)

 Number of numbers in exclusion criteria* 10 (20) 15 (29) 15 (27)

 Number of words in exclusion criteria* 96 (180) 130.5 (230) 120 (200)

 Minimum eligibility age 18 (0) 18 (0) 18 (0)

 Maximum eligibility age 85 (44) 99 (44) 99 (44)

Study administration: site and investigators

 Number of participated facilities 1 (1) 1 (1) 1 (0)

 Population 4,729,484 (9170123) 4,875,390 (11562753) 4,875,390 (7769983)

 Institution score 0 (42.88) 0 (23.59) 0 (41.63)

 Number of groups 2 (1) 2 (1) 2 (1)

 Number of collaborators* 0 (1) 0 (1) 0 (1)

 Number of officials 2(1) 2(1) 2(1)

Study administration: responsible party

 Principal investigator* 29.4% 25.1% 32.8%

 Sponsor 51.9% 60.1% 55.4%

 Sponsor and principle investigator* 3.8% 5.8% 6.8%

Text features: top mesh terms

Continued
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Classification
We considered the following classification methods: multinomial logistic regression, random forest (mtry = 
sqrt(number of variables), number of trees = 500), and Adaptive Boosting, i.e. Adaboost (number of trees = 500). 
We used the multi-class version of these algorithms to categorize the outcome into three categories: completed 
(class 0), terminated for reasons unrelated to accrual (class 1), and terminated due to accrual failure (class 2). We 
chose the multi-class setup since it gives better performance compared to directly predicting the binary outcome 
of if the trial terminated due to accrual in our initial exploration (Supplemental Table S2).

We provide brief descriptions of the three classification method below, and also supplied reference to more 
detailed discussions of them.

Multinomial logistic regression40 is a classification method that generalizes logistic regression to multiclass 
problems, where the outcome of the prediction is a categorical with more than two classes. The Multinomial 
logistic regression describe the probability of outcome Y  being in class c with a generalized linear combination 

of the predictors X . P (Y = c) = eβ cX∑
i
eβ iX , i ≤ C , where C  is the total number of outcome class.

The random forest41 is an ensemble learning method. It constructs an ensemble of decision trees and 
the prediction is made by voting using the ouput of all the decision trees. Specifically, the random forest is a 
ensemble e (X) of K  decision Trees T1 to TK : e (X) = (T1 (X) , T2 (X) , . . . , TK (X)), The estimated 
probability of an observation being associated with class c is determined by the proportion of the trees that 
returns class c as output, i.e., P (Y = c) =

∑
i
(T i(X)=C)

K  .The random in random forest comes from the 

fact that it uses bootstrap samples to build each decision tree and randomly select a subset of features when 
considering a candidate split.

AdaBoost42 is also an ensemble learning method where the predictions of many weak learners 
are combined into a weighted sum that represents the final output of the boosted classifier, i.e. 
e (X) = α 1T1 (X) + α 2T2 (X) + α 3T3 (X)…+ α KTK (X), where T  represent each individual weak 
learner and α  represents their weights. We used decision tree as the weak learner (hence the notation T ), since 
our outcome is categorical. AdaBoost is adaptive in the sense that subsequent weak learners are constructed to 
focus on those instances misclassified by previous classifiers.

Feature selection
For the feature selection, we use all features, fisher’s test43, and generalized local learning (GLL). The fisher’s 
test assesses the univariate correlation between the outcome and individual candidate predictors, whereas 
the GLL assesses the conditional dependence among the outcome and a candidate predictor conditioned on 
combinations of other candidate predictors. Under broad assumptions, GLL guarantees the selection of the 
most compact (i.e., minimal) set of variables that contain the maximal information regarding the prediction 
target. GLL in addition to being theoretically optimal, has also been shown to be highly successful in real world 
benchmarks and applications, and finally possesses causal interpretability under well-defined conditions27,28. 
Specifically, we used the GLL variant GLL-PC (K= 1, 2, 3).

Model selection and performance estimation
The models were developed on the discovery data. The performance of the models was validated with cross-
validation in the discovery data to estimate the model performance on data with a similar distribution as the 
discovery data. To test the generalization performance of these models to future data, the models were applied 
to validation data. To select the model that results in the best predictive performances among several model 
families and tune parameters for each, and obtain unbiased performance estimation on the discovery datasets, 
we used a five-fold nested-cross-validation procedure (NCV). The inner loop of the NCV is used to select the 
best classification, feature selection, and their hyperparameter combinations, and the outer loop of the NCV 
evaluates the performance of the selected models. The nested-cross validation procedures were repeated four 
times (we refer to each of them as a NCV repeat) to reduce the variation related to random cross-validation splits 
(see the “Imbalance” subsection below) and splitting the data into five folds. We conducted model selection and 

Trial type

Completed Terminated due to other reason Terminated due to accrual

 Breast neoplasms* 2.70% 3.60% 4.40%

 Leukemia* 2.50% 5.00% 4.80%

 Lymphoma* 2.20% 3.90% 4.30%

 Syndrome 2.20% 2.90% 2.90%

 Depression* 2.40% 1.50% 1.50%

Table 1.  Distribution of design features and the top 5 most frequent MeSH terms for completed trials, trials 
that terminated due to other reasons, and trials that terminated due to accrual reasons. We categorized the 
hand-crafted design features into 3 categories: study design, eligibility, and study administration. *Indicates 
a feature is statistically significantly associated with termination due to accrual vs. other trial completion/
termination types. For continuous variables, the t-test was used. For categorical variables, the chi-squared test 
was used.
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performance estimation based on the model’s ability to determine if the trial terminated due to accrual (e.g. AUC 
for distinguishing class 2 vs. the rest), since this is our outcome of interest. For detailed description of the NCV 
protocol can be found in here44.

Missing values
Treatment for missing values was incorporated into the modeling pipeline so that imputation on the validation 
data is done according to the distribution of the discovery data. This prevents information leakage (i.e., to ensure 
that the error estimates are not biased). Median imputation was used for the continuous variables, and missing 
indicator columns were added to retain the missingness information. For the categorical variables with missing 
data, we added a “missing” level to the categories for that variable to represent the missingness information. 
Mesh and embedding variables are free of missingness. Out of 87 design variables the percentage of missingness 
ranges from 2 to 33%, among which 80 variables do not have any missing value. More than 91% of the variables 
have missingness less than 2%. The missingness are due to the corresponding values not being reported in 
clinicaltrials.gov.

Information content analysis
 To examine the predictive performance of the two different types of features in the dataset (design features 
and text features), we trained classifiers on them individually and compared the predictive performances to the 
model trained with all features.

Imbalance
The proportion of trials that terminated due to accrual failure in our dataset is 2,979, constituting 5.59% of the 
total number of trials. An imbalance in the proportions of different outcome classes often results in suboptimal 
performance45,46. Therefore, we explore if subsampling, a common technique to handle imbalanced data, 
improves performance. We explored four subsampling settings when training the models: (1) C1TO1TA1: 
sampling equal number of trials that were completed (C), terminated due to other reasons (TO), and terminated 
due to accrual issues (TA). (2) C2TO1TA1: sampling twice as many completed trials, compared to terminated due 
to other reasons, and terminated due to accrual issues (3) C5TO1TA1: sampling five times as many completed 
trials, compared to terminated due to other reasons, and terminated due to accrual issues (4) No subsampling. 
For the first three subsampling settings, the number of TA trials is the smallest of the three categories, so all of 
them were always sampled. For C trials and TO trial, a random subset of observations were sampled in each 
NCV repeat. For the last subsampling setting, i.e. no subsampling, all observations are used. The subsampling 
was only conducted on the discovery data when training the model. The validation data were not subsampled.

Performance metrics
We used area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and 
negative predictive value to evaluate the predictive performance of the models. We used the Brier score to 
evaluate model calibration. The perfect prediction will have AUC of 1, Brier score of 0. Random guess will result 
in AUC of 0.5 and Brier score of 0.25.

Improving predictive models for translation into decision support tools
Model calibration
The close correspondence between model predicted risk vs. observed risk is important if the model is to be 
deployed in a real world setting47. The deviation of model predicted risk from the actual risk can result in model 
misinterpretation and misuse. Therefore, we evaluated the calibration of our models with the Brier Score48. To 
improve model calibration, we applied isotonic regression, Platt scaling and spline calibration49 to recalibrate 
models prediction on the discovery data, and evaluated model calibration on the validation data with Brier 
Score.

Prediction with reject option
Prediction with reject option is a framework aiming to prevent misclassification by not making a prediction for a 
subset of observations50–52. When the cost of misclassification exceeds that of withholding a decision, prediction 
with reject option is preferred. In our application, the costs of misclassification include the cost of starting a 
trial when it would fail accrual and the cost of not starting a trial when it would succeed in accrual. The cost of 
withholding decision is the additional cost associated with deciding if the trial is to be started, such as, the cost 
of manual review by a group of experts that will lead to a decision outside the scope of the model. To explore 
if prediction with reject option improves predictive performance, we implemented a method termed “double 
threshold”. The intuition underlying this method is that, the model predicted score relates to the confidence 
of model prediction. And the confidence of model prediction are lower for observations with predicted scores 
that fall in the midrange of the predicted values. We empirically evaluate this by withholding prediction for the 
observations with predicted scores in the midrange and examine if the predictive performance improves for the 
rest of the observations. To achieve this, we introduced two thresholds on the predicted score, such that the trials 
with scores between these thresholds are classified as undecided. The trials with scores under the lower threshold 
are predicted to succeed in accrual. And the trials with scores higher than the upper threshold are predicted to 
fail in accrual. The selection of the thresholds is done by a grid search on the discovery data. The performance of 
the double threshold is evaluated on the validation data.
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Results
Characteristics of the data
Our dataset contains 45,298 completed trials, 4,986 trials terminated due to non-accrual issues, and 2,979 trials 
terminated due to accrual issues. Figure 1 shows the number and the distribution of the three trial categories: 
completed (C), terminated due to other reasons (TO), and terminated due to accrual issues (TA). It is notable 
that the percentages of trials in the three categories changed over time. This could be due to a combination of 
the following factors: (1) actual percentages of trials in different categories changed over time, (2) changes in 
the reporting requirements for clinical trials over time53,54, and (3) many of the trials that started in the more 
recent years are still ongoing, resulting in a bias in the estimated percentages of trials in different categories. 
For example, out of all the trials that started in 2021, we observed them for less than 2 years (up to the point of 
our data download on Sep, 2022). Supplemental Table S3 shows the percentages of trials that are completed or 
terminated till our data collection time out of the total number of trials started in a particular year. Table 1 shows 
descriptive statistics for key characteristics of the trials in our study.

Predictive modeling results
In this section we present predictive modeling results for predicting trial termination due to accrual. We first 
present sensitivity analysis for different level of potential noise in the outcome and for different subsampling. We 
than focused on reporting results for the dataset with low noise level in the outcome without subsampling. We 
presented results from models using all features, and compared that the models using design features and text 
feature respectively to assess the information content in different feature types.

Influence of noise in outcome category and subsampling on model performance
As stated in the method section, we faced two choices when deciding what trials to include when training our 
models. First, whether to include data from trials that potentially contain errors related to the outcome category. 
Second, whether to use subsampling to address class imbalance.

To assess the influence of potential noise in outcome category on predictive performances, we ran models 
based on data excluding and including the potentially problematic trials. The average validation AUC over all 
subsampling schema for the selected models determined by the model selection procedure on the discovery 
dataset was 0.714+/-0.033 and 0.706+/-0.022 respectively, for models built on data excluding or including the 
potentially problematic trials.

To assess the influence of subsampling on predictive performances, we applied different ratios of subsampling 
on the discovery datasets and evaluated the performance on the validation data where the proportion of different 
outcome categories were unaltered. We observed that when we train our models without subsampling (i.e. 
preserving the original proportion of outcome where 5.59% of trials terminated due to accrual), the performance 
on the validation data is on average nominally higher compared to when the three subsampling procedures 
were applied. Specifically, the average AUC for the model determined by the model selection procedure applied 
to validation datasets without subsampling is 0.732+/-0.028. Whereas, the average AUC for C1TO1TA1, 
C2TO1TA1, C5TO1TA1 are 0.693+/-0.032, 0.701+/-0.03, 0.721+/-0.015, respectively.

Given that excluding potentially problematic trials and without subsampling achieved nominally the best 
results, we focus on reporting results based on these models. The results on the dataset including potentially 
problematic trials, with subsampling C1TO1TA1, C2TO1TA1 and C5TO1TA1 can be found in supplemental 
Table S4.

Predictive performance of models built with all features
We first assess what is the best predictive performance can be achieved using all features. Using all 6,172 features, 
the model selected by the model selection procedure achieved good cross-validation predictive performance 
in the discovery datasets. The average cross-validation AUC over all discovery datasets are 0.733+/-0.03. The 
cross-validation performance is stable over the five discovery data sets, indicating consistent performance over 
time (Fig. 2c). Applying the models derived from the discovery dataset to the validation data resulted in similar 
performance. The average AUC for the prospective validation datasets are 0.732+/-0.028. The performance on 
the validation datasets increases over time (Fig. 2c). We hypothesize that this is largely due to the change of trial 
composition over time. Specifically, the more recent validation data contains more trials with shorter duration. 
When we applied our model to subsets of trials that completed or terminated within 2,4,6, and 8 years, the 
predictive performances decreased as the timespan increased, with average AUCs of 0.747, 0.728, 0.718, and 
0.704, respectively (details can be found in supplemental Table S5). This result is consistent with our hypothesis.

Information content in models with different feature types
To assess the information contained in the design features and the text features regarding accrual failure, we built 
models using features from these domains respectively. The performance of the models using the text features 
resulted in cross-validation AUC = 0.682+/-0.029 and prospective validation AUC = 0.681+/-0.029 over all the 
discovery datasets. It is significantly worse compared to the models using all features, with cross-validation AUC 
= 0.733+/-0.029 and prospective validation AUC = 0.732+/-0.028 (cross-validation AUCs: t=-11.2, p < 0.01; 
prospective validation AUCs: t=-2.87, p = 0.02). The performance of the models using design features resulted 
in cross-validation AUC = 0.744+/-0.018 and prospective validation AUC = 0.737+/-0.038, it is not statistically 
significantly different from the models using all features (cross-validation AUCs: t = 0.33, p = 0.756; validation 
AUCs: t=-0.19, p = 0.851). As shown in Fig. 2, the cross-validation performance of models using different feature 
types are also stable over time. These results indicate that the hand-crafted design features representing factors 
previously reported in the literature contain more information compared to the text features (mesh terms and 
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embedding vectors) we constructed. Further, models using both the design and text features do not result in 
better performance for accrual failure prediction compared to models using only the design features alone.

Improving models for decision support
In this section we describe several methods we employ to enhance various aspects of model translation, 
including reducing model size, refining model calibration, and improving predictive performance by introducing 
prediction with reject option.

Identifying models with a smaller set of input features
The models selected by our models selection procedure for all discovery datasets typically contain all 6,172 
features. These models can be converted to a decision support tool. However, the decision support tool requires 
relatively high resource commitment. It will require all 6,172 features as input, extracted and computed from raw 
data, adequate computational resources to store and execute the prediction model, and expert monitoring and 
maintenance. Though missing imputation can be conducted at prediction time if not all features are available, 
but that may reduce model performance55,56.

To improve the model with the goal of obtaining a cost-effective decision support tool, we examined if there 
are models with smaller numbers of features that achieve similar predictive performance. As mentioned in the 
previous section, using the design features achieved predictive performance that is not statistically significantly 
different from using all features. Therefore, using only design features is one solution to reducing the number 
of features while retaining model performance. In this section, we explore potential further reductions of the 
number of features in the model using GLL-PC feature selection. We chose the GLL-PC feature selection since 
in principle GLL-PC can identify the smallest feature set that preserves the maximal information regarding the 
target of interest27,28. As shown in Fig. 3b and d, the GLL-PC models applied to all 6,127 features resulted in 
models with, on average, 718 features, resulting in average cross-validated AUC = 0.722+/-0.003 (as compared 
to cross-validated AUC = 0.733+/-0.029 from the model with all 6,127 features) and prospective validation AUC 
= 0.706+/-0.029 (as compared to AUC = 0.732+/-0.028 from the model with all 6,127 features). The predictive 
performance difference between the GLL-PC vs. the full model is not statistically different on both cross-
validation set, with t = -1.52, p = 0.138 and prospective validation set, with t = 1.9306, p = 0.064. As shown in 
Fig. 3a and c, The GLL-PC models applied to the design features resulted in models with on average 42 features, 
resulting in average cross-validated AUC = 0.724+/-0.003, (statistically significantly different as compared to 
cross-validated AUC = 0.744+/-0.018 from the model with all 87 design features, t = -11.476, p < 0.01) and 
prospective validation AUC = 0.705+/-0.029 (not statistically significantly different compared to prospective 
validation AUC = 0.737+/-0.0383 from the model with all 87 design features t = 1.4972, p = 0.1753). Moreover, 
the GLL-PC models also demonstrated stable performances over time. Our results suggests that, reduction of 
the number of features can be achieved by using the GLL-PC feature selection impacting model performance 
marginally or not at all. Selected AUCROC (area under the receiving operating curve) plots are shown in Fig. 3e 
and f. The features selected in the most compact models (design features selected by GLL-PC) and feature 
importance are presented in supplemental Table S6a and b.

Fig. 2.  Predictive performance of Models Built with Different Feature Types: (a) Design Features, (b) Text 
Features, and (c) All Features (Design + Text Features). The AUC of the model selected by the models selection 
procedure were estimated with cross-validation on the discovery datasets (yellow lines) and prospectively on 
the validation datasets (red lines). X-axis tick label on top of the subplots indicate the timespan of the discovery 
datasets. X-axis tick label on the bottom of the subplots indicate the timespan of the validation datasets.
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Fig. 3.  Models Constructed with the GLL Feature Selection Showed Similar Predictive Performances Using 
a Smaller Number of Features. This is observed both in the cross-validated performance estimation in the 
discovery datasets (a, b) and the prospective validation performances (c, d). For models using design features 
(a, c) and all features (b, d). For (a–d), X-axis tick label on top of the subplots indicate the timespan of the 
discovery datasets. X-axis tick label on the bottom of the subplots indicate the timespan of the validation 
datasets. Panel (e), (f) shows ROC curves for model performance on the validation sets with design features 
and all features respectively. For legibility, we only show ROC curves for year 2017–2018, ROC curves on the 
other validation datasets looks similar and are included in supplemental Fig. S2.
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Model calibration
Another important consideration for a decision support tool is model calibration, which is how closely the 
model predicted probability of failure due to accrual aligns with the actual probability47. To assess the model 
calibration, we computed the Brier Score. The average Brier score for the models selected by the model selection 
procedure is 0.274+/- 0.005 and for GLL-PC is 0.274+/-0.005 on the validation data. To improve the calibration 
we applied the isotonic regression method, this resulted in significant improvement in calibration (p < 0.01). 
After model calibration, the average Brier score for the models is 0.068+/-0.017 and for GLL-PC is 0.071+/-0.021 
on the validation data. We also applied two other calibration methods Platt scaling and spline calibration. The 
three methods work similarly well, we report isotonic regression in the main result section and the results of 
other methods in the supplementary Table S7.

Prediction with reject options
To further improve model performance and applicability in real-world decision support settings, we investigated 
the model performance under learning with reject option (LRO). Specifically, we consider three potential 
decision-support recommendations given the prediction output of the predictive model: (1) model prediction 
has low reliability, recommend expert review; (2) model predicts with high confidence for accrual success, 
recommend proceeding with current accrual plan; (3) model predicts with high confidence for accrual failure, 
recommend delay the initiation of accrual and explore additional resources to improve accrual. We examined 
one simple method to categorize model predictions into the above three categories, i.e., implementing two 
threshold values on model prediction. The predictions that are lower than the lower threshold are considered 
to be in category (2), the predictions that are higher than the higher threshold are considered to be in category 
(3), and the predictions that are between the two thresholds are considered to be in category (1). Different 
values of the thresholds would result in different predictive performances for the trials in (2) and (3), and will 
also affect the number of trials needing manual review, increasing institutional burden. Therefore, the optimal 
threshold for different institutions might be different application settings, depending on the expectation of 
model performance and available resources, i.e. the trade-off between misclassification cost and rejection cost.

We illustrate this method by applying different thresholds to the model using all features, at 20%, 30%, and 
40% rejection rate of the total number of trials. In general, we found that as the percentage of rejects increases 
the predictive performance of the model also increases. The rejection rate of 20%, 30%, and 40% are AUC 
= 0.730+/-0.018, 0.747+/-0.019, and 0.759+/-0.022, respectively, averaged over the five prospective validation 
dataset. Among three rejection rates, 40%+/-2% showing significant improvement over that without rejection 
(AUC 0.732+/-0.028, p = 0.0498). These results indicate that model performance can be further improved by 
withholding decisions on trials with low prediction reliability. Supplemental Table S8 shows the AUC, sensitivity, 
specificity, positive predictive value (PPV) and negative predictive value (NPV) for all prospective validation 
data and different rejection rates. Performances are stable over time except for year 2021–2022. This is likely 
related to this validation set is small and has different trial proportions compared to the other validation sets 
(Fig. 1a and b).

Discussion
The key contributions of this study are threefold. First, we constructed a dataset for predicting clinical trial failure 
due to accrual based on the clinicaltrial.gov data with information for 57,846 trials. We manually annotated the 
reasons for failure for 7,965 failed trials to construct our outcome of interest. We also extracted and constructed 
features informed by prior literature and using data-driven NLP methods. This dataset can benefit future studies 
with similar goals. Secondly, we successfully constructed models for predicting clinical trial accrual failure with 
good performance that generalizes well to prospective data through a 10-year span. To the best of our knowledge, 
this is the first study to develop models for predicting clinical trial failure due to accrual based on a large dataset 
with a comprehensive set of trial features. Thirdly, we demonstrated that enhancements can be made to the 
models to further improve their performance and applicability in real-world decision support settings.

Several directions for future work can address the limitations of the current study and may result in improved 
prediction performances. The first direction for future work is to evaluate the models built in the current study 
in a dataset with percentages of trials failed due to accrual that better approximate that of the real world. Our 
dataset, extracted from clinicaltrial.gov, has an accrual failure rate of 5.59%, which may not reflect the accrual 
failure rate in the real world due to bias in reporting53,54. We expect the model performance to hold if the 
trials failed due to accrual reported on clinicaltrial.gov was representative of all trials that failed due to accrual. 
Otherwise, our models are biased due to the bias in the data and may result in reduced model performance when 
applied in a real-world setting. Further, building models de-novo in a dataset with percentages of failed trials 
that better approximate the real-world can result in improved predictive performances. Secondly, constructing 
additional features regarding the trials can potentially improve the predictive performance. Many barriers and 
facilitators of accrual identified in prior literature were not captured in clinicaltrial.gov. Examples include patient 
compensation25,35,] patient burden25,35,57–59, the effectiveness of communication to patients23,35,57,58,60–62 and 
among the trial team35,36,57,58,61,63, concurrent trials competing for participants and the trial team25,35. These 
data are available and can be constructed from enterprise-level databases such as the clinical trial management 
systems. We are not aware of an existing dataset that is representative of the real-world accrual failure rate, 
contains a large variety of trials covering many diseases and geographical areas, and has a comprehensive set 
of trial characteristics. Constructing such a dataset can greatly enhance the ability to predict accrual failure. 
Thirdly, our models only flag the trials that are more likely to fail due to accrual, but do not point to interventions 
that can potentially lead to accrual improvement. The identification of intervention requires the knowledge 
of causal factors impacting accrual. In general, models and risk factors derived solely for predictive purpose 
are associative, and are not guaranteed to be causally relevant due to the potential presence of observed and 
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hidden confounding. Applying computational causal modeling techniques64,65 to a dataset that contains a large 
number of potential remediable causal factors for accrual can reveal trial-specific interventions for improving 
accrual. Lastly, our study identified models with good predictive performance and a small set of parameters 
that are cost effective to implement and maintain. In addition, adding the prediction with reject option further 
enhances the models performance. Our study provides a set of models that can be implemented in the real-world 
setting, however, the specific model of choice (e.g. percent of reject) depends on several aspects in the application 
setting that might be intertwined, including what decisions are to be made given the model output, the expected 
model performance, and the available resource. For example, an institution that have ample existing resource 
for improving accrual may choose a larger percent of reject value such that more trials will go through an expert 
review process for potential improvement of accrual. In general, institution-specific information about the cost 
of the following items can be leveraged to formally guide the choice of models44 : false positive (model judge the 
trial to be able meet accrual goal but in fact the trial would not), false negative (model judge the trial to not be 
able to meet accrual goal but in fact the trial would), expert review for the reject trials, and the institution’s goals 
and budget for clinical trials. The financial implications of model implementation in specific institutions should 
be evaluated in a case by case manner.

Conclusion
The current study produced predictive models for accrual failure with good predictive performance that is stable 
over a ten year period. We also identified models that are better suited for translation into a real-world decision 
support tool, characterized by great calibration, cost-effectiveness for implementation and maintenance, and an 
option to withhold prediction. This study demonstrated a first step towards a decision support tool for clinical 
trial resource allocation.

Data availability
The data used in this study can be downloaded from the following urls: ​h​t​t​p​s​:​/​/​c​l​i​n​i​c​a​l​t​r​i​a​l​s​.​g​o​v​/​c​t​2​/​r​e​s​o​u​r​c​e​s​/​d​
o​w​n​l​o​a​d​​​​​, ​h​t​t​p​s​:​​/​/​w​w​w​2​​.​c​e​n​s​u​​s​.​g​o​v​​/​p​r​o​g​r​a​m​s​-​s​u​r​v​e​y​s​/​p​o​p​e​s​t​/​t​a​b​l​e​s​/​2​0​1​0​-​2​0​1​8​/​s​t​a​t​e​/​t​o​t​a​l​s​/​P​E​P​_​2​0​1​8​_​P​E​P​A​N​
N​R​E​S​.​z​i​p​​​​​, https://www.​nature.com/n​ature-index/​institution​-outputs/generate/all/global/all. Derived ​m​o​d​e​l​s in 
Matlab format will be made available upon request for research purposes.

Received: 21 June 2024; Accepted: 28 January 2025

References
	 1.	 Desai, M. Recruitment and retention of participants in clinical studies: Critical issues and challenges. Perspect. Clin. Res. 11, 51–53. 

https://doi.org/10.4103/picr.PICR_6_20 (2020).
	 2.	 Cheng, S. K., Dietrich, M. S. & Dilts, D. M. A sense of urgency: Evaluating the link between clinical trial development time and 

the accrual performance of cancer therapy evaluation program (NCI-CTEP) sponsored studies. Clin. Cancer Res. 16, 5557–5563. 
https://doi.org/10.1158/1078-0432.CCR-10-0133 (2010).

	 3.	 Thadani, S. R., Weng, C., Bigger, J. T., Ennever, J. F. & Wajngurt, D. Electronic screening improves efficiency in clinical trial 
recruitment. J. Am. Med. Inform. Assoc. 16, 869–873. https://doi.org/10.1197/jamia.M3119 (2009).

	 4.	 Embi, P. J., Jain, A., Clark, J. & Harris, C. M. Development of an electronic health record-based clinical trial alert system to enhance 
recruitment at the point of care. In AMIA Annu Symp Proc, 2005 231–235 (2005).

	 5.	 Lai, Y. S. & Afseth, J. D. A review of the impact of utilising electronic medical records for clinical research recruitment. Clin. Trails 
16, 194–203. https://doi.org/10.1177/1740774519829709 (2019).

	 6.	 Anisimov, V. V. Statistical modeling of clinical trials (recruitment and randomization). Commun. Stat. Theory Methods 40, 3684–
3699. https://doi.org/10.1080/03610926.2011.581189 (2011).

	 7.	 Anisimov, V. V. & Fedorov, V. V. Modelling, prediction and adaptive adjustment of recruitment in multicentre trials. Stat. Med. 26, 
4958–4975. https://doi.org/10.1002/sim.2956 (2007).

	 8.	 Barnard, K. D., Dent, L. & Cook, A. A systematic review of models to predict recruitment to multicentre clinical trials. BMC Med. 
Res. Methodol. 10, 63. https://doi.org/10.1186/1471-2288-10-63 (2010).

	 9.	 Gajewski, B. J., Simon, S. D. & Carlson, S. E. Predicting accrual in clinical trials with bayesian posterior predictive distributions. 
Stat. Med. 27, 2328–2340 (2008).

	10.	 Carlisle, B., Kimmelman, J., Ramsay, T. & MacKinnon, N. Unsuccessful trial accrual and human subjects protections: An empirical 
analysis of recently closed trials. Clin. Trials. 12, 77–83. https://doi.org/10.1177/1740774514558307 (2015).

	11.	 Treweek, S. et al. Methods to improve recruitment to randomised controlled trials: Cochrane systematic review and meta-analysis. 
BMJ Open. 3, e002360. https://doi.org/10.1136/bmjopen-2012-002360 (2013).

	12.	 Carter, R. E., Sonne, S. C. & Brady, K. T. Practical considerations for estimating clinical trial accrual periods: Application to a 
multi-center effectiveness study. BMC Med. Res. Methodol. 5, 11. https://doi.org/10.1186/1471-2288-5-11 (2005).

	13.	 Anisimov, V. V. & Fedorov, V. V. Design of multicentre clinical trials with random enrolment. In Advances in Statistical Methods 
for the Health Sciences: Applications to Cancer and AIDS Studies, Genome Sequence Analysis, and Survival Analysis (eds Auget, J.-L., 
Balakrishnan, N., Mesbah, M. & Molenberghs, G.) 387–400 (Birkhäuser, 2007). https://doi.org/10.1007/978-0-8176-4542-7_25

	14.	 Advarra Case Studies in Accrual Prediction (Advarra Whitepaper, 2021).
	15.	 Epic New Life Sciences Program Will Unify Clinical Research with Care Delivery (Epic Website, 2022).
	16.	 Cytel Forecast Enrollment Reliably. Cytel Website.
	17.	 Anisimov, V. V. Modern analytic techniques for predictive modeling of clinical trial operations. In Quantitative Methods in 

Pharmaceutical Research and Development: Concepts and Applications (eds Marchenko, O. V. & Katenka, N. V.) 361–408 (Springer 
International Publishing, 2020). https://doi.org/10.1007/978-3-030-48555-9_8.

	18.	 Anisimov, V. & Austin, M. Centralized statistical monitoring of clinical trial enrollment performance. Commun. Stat. Case Stud. 
Data Anal. Appl. 6, 392–410. https://doi.org/10.1080/23737484.2020.1758240 (2020).

	19.	 Unger, J. M., Xiao, H., LeBlanc, M., Hershman, D. L. & Blanke, C. D. Cancer clinical trial participation at the 1-year anniversary of 
the outbreak of the COVID-19 pandemic. JAMA Netw. Open. 4, e2118433 (2021).

	20.	 Watson, N. L., Mull, K. E., Heffner, J. L., McClure, J. B. & Bricker, J. B. Participant recruitment and retention in remote eHealth 
intervention trials: Methods and lessons learned from a large randomized controlled trial of two web-based smoking interventions. 
J. Med. Internet. Res. 20, e10351 (2018).

Scientific Reports |         (2025) 15:3879 13| https://doi.org/10.1038/s41598-025-88400-x

www.nature.com/scientificreports/

https://clinicaltrials.gov/ct2/resources/download
https://clinicaltrials.gov/ct2/resources/download
https://www2.census.gov/programs-surveys/popest/tables/2010-2018/state/totals/PEP_2018_PEPANNRES.zip
https://www2.census.gov/programs-surveys/popest/tables/2010-2018/state/totals/PEP_2018_PEPANNRES.zip
https://www.nature.com/nature-index/institution-outputs/generate/all/global/all
https://doi.org/10.4103/picr.PICR_6_20
https://doi.org/10.1158/1078-0432.CCR-10-0133
https://doi.org/10.1197/jamia.M3119
https://doi.org/10.1177/1740774519829709
https://doi.org/10.1080/03610926.2011.581189
https://doi.org/10.1002/sim.2956
https://doi.org/10.1186/1471-2288-10-63
https://doi.org/10.1177/1740774514558307
https://doi.org/10.1136/bmjopen-2012-002360
https://doi.org/10.1186/1471-2288-5-11
https://doi.org/10.1007/978-0-8176-4542-7_25
https://doi.org/10.1007/978-3-030-48555-9_8
https://doi.org/10.1080/23737484.2020.1758240
http://www.nature.com/scientificreports


	21.	 Kim, E., Yang, J., Park, S. & Shin, K. Factors affecting success of New Drug Clinical trials. Ther. Innov. Regul. Sci. 1–14. ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​1​0​0​7​/​s​4​3​4​4​1​-​0​2​3​-​0​0​5​0​9​-​1​​​​ (2023).

	22.	 Kost, R. G. et al. Accrual and Recruitment practices at Clinical and Translational Science Award (CTSA) institutions: A call for 
expectations, expertise, and evaluation. Acad. Med. 89, 1180. https://doi.org/10.1097/ACM.0000000000000308 (2014).

	23.	 Huang, G. D. et al. Clinical trials recruitment planning: A proposed framework from the clinical trials Transformation Initiative. 
Contemp. Clin. Trials 66, 74–79. https://doi.org/10.1016/j.cct.2018.01.003 (2018).

	24.	 Brown, R. F. et al. Enhancing decision making about participation in cancer clinical trials: Development of a question prompt list. 
Support Care Cancer 19, 1227–1238. https://doi.org/10.1007/s00520-010-0942-6 (2011).

	25.	 Fogel, D. B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. 
Contemp. Clin. Trials Commun. 11, 156–164. https://doi.org/10.1016/j.conctc.2018.08.001 (2018).

	26.	 Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273–286 
(2019).

	27.	 Aliferis, C. F., Statnikov, A., Tsamardinos, I., Mani, S. & Koutsoukos, X. D. Local causal and Markov Blanket Induction for Causal 
Discovery and feature selection for classification part I: Algorithms and empirical evaluation. J. Mach. Learn. Res. 11, 171–234 
(2010).

	28.	 Aliferis, C. F., Statnikov, A., Tsamardinos, I., Mani, S. & Koutsoukos, X. D. Local causal and Markov Blanket Induction for Causal 
Discovery and feature selection for classification part II: Analysis and extensions. J. Mach. Learn. Res. 11, 235–284 (2010).

	29.	 Bieganek, C., Aliferis, C. & Ma, S. Prediction of clinical trial enrollment rates. PloS One. 17, e0263193 (2022).
	30.	 Elkin, M. E. & Zhu, X. Predictive modeling of clinical trial terminations using feature engineering and embedding learning. Sci. 

Rep. 11, 3446. https://doi.org/10.1038/s41598-021-82840-x (2021).
	31.	 Kavalci, E. & Hartshorn, A. Improving clinical trial design using interpretable machine learning based prediction of early trial 

termination. Sci. Rep. 13, 121. https://doi.org/10.1038/s41598-023-27416-7 (2023).
	32.	 U.S. Census Bureau. Metropolitan and micropolitan statistical areas population totals and components of change: 20102019. https:​​​

//w​ww.cen​sus​.gov​/data/da​tase​ts/tim​​e-se​ries/d​​emo/p​opest​​/2010​s-t​o​tal-​metro-​and-m​icro-​statistical-areas.html.
	33.	 Nature index. https://www.natureindex.com/faq.
	34.	 McNair, A. G. et al. Maximising recruitment into randomised controlled trials: The role of multidisciplinary cancer teams. Eur. J. 

Cancer 44, 2623–2626 (2008).
	35.	 Kaur, G., Smyth, R. L. & Williamson, P. Developing a survey of barriers and facilitators to recruitment in randomized controlled 

trials. Trials 13, 1–12. https://doi.org/10.1186/1745-6215-13-218 (2012).
	36.	 Fletcher, G. F. et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. 

Circulation 128, 873–934. https://doi.org/10.1161/CIR.0b013e31829b5b44 (2013).
	37.	 Peterson, J. S. et al. Growth in eligibility criteria content and failure to accrue among National Cancer Institute (NCI)-affiliated 

clinical trials. Cancer Med. https://doi.org/10.1002/cam4.5276 (2022).
	38.	 Tang, C. et al. Clinical trial characteristics and barriers to participant accrual: The MD Anderson Cancer Center experience over 

30 years, a Historical Foundation for Trial Improvement. Clin. Cancer Res. 23, 1414–1421. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​5​8​/​1​0​7​8​-​0​4​3​2​.​C​C​
R​-​1​6​-​2​4​3​9​​​​ (2017).

	39.	 Zhang, Y., Chen, Q., Yang, Z., Lin, H. & Lu, Z. BioWordVec, improving biomedical word embeddings with subword information 
and MeSH. Sci. Data. 6, 52. https://doi.org/10.1038/s41597-019-0055-0 (2019).

	40.	 Friedman, J., Hastie, T. & Tibshirani, R. The Elements of Statistical Learning. Springer Series in Statistics (2001).
	41.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	42.	 Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. 

Sci. 55, 119–139 (1997).
	43.	 Fisher, R. Statistical Methods for Research Workers (Oliver and Boyd, 1925).
	44.	 Simon, G. J. & Aliferis, C. (eds) Artificial Intelligence and Machine Learning in Health Care and Medical Sciences: Best Practices and 

Pitfalls (Springer International Publishing, 2024). https://doi.org/10.1007/978-3-031-39355-6
	45.	 Branco, P., Torgo, L. & Ribeiro, R. P. A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. CSUR 49, 1–50 

(2016).
	46.	 Hasanin, T., Khoshgoftaar, T. M., Leevy, J. L. & Seliya, N. Examining characteristics of predictive models with imbalanced big data. 

J. Big Data 6, 1–21 (2019).
	47.	 Van Calster, B. et al. Calibration: The Achilles heel of predictive analytics. BMC Med. 17, 230. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​8​6​/​s​1​2​9​1​6​-​0​1​

9​-​1​4​6​6​-​7​​​​ (2019).
	48.	 Brier, G. W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1–3 (1950).
	49.	 Huang, Y., Li, W., Macheret, F., Gabriel, R. A. & Ohno-Machado, L. A tutorial on calibration measurements and calibration models 

for clinical prediction models. J. Am. Med. Inform. Assoc. 27, 621–633. https://doi.org/10.1093/jamia/ocz228 (2020).
	50.	 Bartlett, P. L. & Wegkamp, M. H. Classification with a reject option using a Hinge loss. J. Mach. Learn. Res. 9, 1823–1840 (2008).
	51.	 Saria, S. & Subbaswamy, A. Tutorial: Safe and reliable machine learning. arXiv preprint https://doi.org/10.48550/arXiv.1904.07204 

(2019).
	52.	 Chow, C. On optimum recognition error and reject tradeoff. IEEE Trans. Inf. Theory 16, 41–46 (1970).
	53.	 Tse, T., Fain, K. M. & Zarin, D. A. How to avoid common problems when using ClinicalTrials.gov in research: 10 issues to consider. 

BMJ 361, k1452. https://doi.org/10.1136/bmj.k1452 (2018).
	54.	 Mitra-Majumdar, M. & Kesselheim, A. S. Reporting bias in clinical trials: Progress toward transparency and next steps. PLoS Med. 

19, e1003894. https://doi.org/10.1371/journal.pmed.1003894 (2022).
	55.	 Li, J., Wang, M., Steinbach, M. S., Kumar, V. & Simon, G. J. Don’t do imputation: Dealing with informative missing values in EHR 

data analysis. In 2018 IEEE International Conference on Big Knowledge (ICBK) 415–422. https://doi.org/10.1109/icbk.2018.00062 
(2018).

	56.	 Saar-Tsechansky, M. & Provost, F. Handling missing values when applying classification models. J. Mach. Learn. Res. 8, 1623–1657 
(2007).

	57.	 Ross, S. A., Tildesley, H. D. & Ashkenas, J. Barriers to effective insulin treatment: The persistence of poor glycemic control in type 
2 diabetes. Curr. Med. Res. Opin. 27(Suppl 3), 13–20. https://doi.org/10.1185/03007995.2011.621416 (2011).

	58.	 Nipp, R. D., Hong, K. & Paskett, E. D. Overcoming barriers to clinical trial enrollment. Am. Soc. Clin. Oncol. Educ. Book 105–114. 
https://doi.org/10.1200/EDBK_243729 (2019).

	59.	 Subbiah, V. The next generation of evidence-based medicine. Nat. Med. 29, 49–58. https://doi.org/10.1038/s41591-022-02160-z 
(2023).

	60.	 Siembida, E. J. et al. Systematic review of barriers and facilitators to clinical trial enrollment among adolescents and young adults 
with cancer: Identifying opportunities for intervention. Cancer 126, 949–957. https://doi.org/10.1002/cncr.32675 (2020).

	61.	 Unger, J. M., Vaidya, R., Hershman, D. L., Minasian, L. M. & Fleury, M. E. Systematic review and meta-analysis of the magnitude 
of structural, clinical, and physician and patient barriers to cancer clinical trial participation. J. Natl. Cancer Inst. 111, 245–255. 
https://doi.org/10.1093/jnci/djy221 (2019).

	62.	 Pinto, H. A., Mccaskill-Stevens, W., Wolfe, P. & Marcus, A. C. Physician perspectives on increasing minorities in Cancer clinical 
trials: An Eastern Cooperative Oncology Group (ECOG) Initiative. Ann. Epidemiol. 10, S78–S84. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​S​1​0​4​7​-​2​
7​9​7​(​0​0​)​0​0​1​9​1​-​5​​​​ (2000).

Scientific Reports |         (2025) 15:3879 14| https://doi.org/10.1038/s41598-025-88400-x

www.nature.com/scientificreports/

https://doi.org/10.1007/s43441-023-00509-1
https://doi.org/10.1007/s43441-023-00509-1
https://doi.org/10.1097/ACM.0000000000000308
https://doi.org/10.1016/j.cct.2018.01.003
https://doi.org/10.1007/s00520-010-0942-6
https://doi.org/10.1016/j.conctc.2018.08.001
https://doi.org/10.1038/s41598-021-82840-x
https://doi.org/10.1038/s41598-023-27416-7
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html
https://www.natureindex.com/faq
https://doi.org/10.1186/1745-6215-13-218
https://doi.org/10.1161/CIR.0b013e31829b5b44
https://doi.org/10.1002/cam4.5276
https://doi.org/10.1158/1078-0432.CCR-16-2439
https://doi.org/10.1158/1078-0432.CCR-16-2439
https://doi.org/10.1038/s41597-019-0055-0
https://doi.org/10.1007/978-3-031-39355-6
https://doi.org/10.1186/s12916-019-1466-7
https://doi.org/10.1186/s12916-019-1466-7
https://doi.org/10.1093/jamia/ocz228
https://doi.org/10.48550/arXiv.1904.07204
https://doi.org/10.1136/bmj.k1452
https://doi.org/10.1371/journal.pmed.1003894
https://doi.org/10.1109/icbk.2018.00062
https://doi.org/10.1185/03007995.2011.621416
https://doi.org/10.1200/EDBK_243729
https://doi.org/10.1038/s41591-022-02160-z
https://doi.org/10.1002/cncr.32675
https://doi.org/10.1093/jnci/djy221
https://doi.org/10.1016/S1047-2797(00)00191-5
https://doi.org/10.1016/S1047-2797(00)00191-5
http://www.nature.com/scientificreports


	63.	 Townsley, C. A., Selby, R. & Siu, L. L. Systematic review of barriers to the recruitment of older patients with cancer onto clinical 
trials. J. Clin. Oncol. 23, 3112–3124. https://doi.org/10.1200/JCO.2005.00.141 (2005).

	64.	 Pearl, J. Causal inference in statistics: An overview. Stat. Surv. 3, 96–146. https://doi.org/10.1214/09-SS057 (2009).
	65.	 Kummerfeld, E., Andrews, B. & Ma, S. Foundations of causal ML. In Artificial Intelligence and Machine Learning in Health Care and 

Medical Sciences: Best Practices and Pitfalls 197–228 (Springer, 2024).

Acknowledgements
This work is partially supported by Grant UL1TR002494.

Author contributions
Conception of the work: S.M., C.A., J.W., S.J., S.P. Design of the analytical experiments: S.M., Y.W., C.A. Data 
acquisition, processing, execution of the experiments: Y.W. Manuscript preparation and review: S.M., Y.W., J.W., 
S.J., S.P., C.A.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​8​8​4​0​0​-​x​​​​​.​​

Correspondence and requests for materials should be addressed to S.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |         (2025) 15:3879 15| https://doi.org/10.1038/s41598-025-88400-x

www.nature.com/scientificreports/

https://doi.org/10.1200/JCO.2005.00.141
https://doi.org/10.1214/09-SS057
https://doi.org/10.1038/s41598-025-88400-x
https://doi.org/10.1038/s41598-025-88400-x
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Predicting accrual success for better clinical trial resource allocation
	﻿Method
	﻿Goal
	﻿Data
	﻿Target of interest
	﻿Feature construction


	﻿Analytical strategy for predictive modeling
	﻿Overall design
	﻿Classification
	﻿Feature selection
	﻿Model selection and performance estimation
	﻿Missing values
	﻿Information content analysis
	﻿Imbalance
	﻿Performance metrics

	﻿Improving predictive models for translation into decision support tools
	﻿Model calibration
	﻿Prediction with reject option

	﻿Results
	﻿Characteristics of the data
	﻿Predictive modeling results
	﻿Influence of noise in outcome category and subsampling on model performance
	﻿Predictive performance of models built with all features
	﻿Information content in models with different feature types


	﻿Improving models for decision support
	﻿Identifying models with a smaller set of input features



