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Convolutional Neural Networks have been widely applied in fault diagnosis tasks of mechanical 
systems due to their strong feature extraction and classification capabilities. However, they have 
limitations in handling global context information. Vision Transformers, by leveraging self-attention 
mechanisms to capture global dependencies, have shown excellent performance in many visual tasks, 
but often come with high computational costs. Therefore, this paper proposes a lightweight and 
efficient intelligent fault diagnosis method based on the fusion of Convolutional Network and Vision 
Transformer features (FCNVT). This method combines the local feature extraction capability of CNNs 
with the global dependency capturing ability of ViTs, while maintaining computational efficiency. 
Random overlapping sampling (ROS) techniques are used to preprocess signals, generating two-
dimensional synchronized wavelet transform (SWT) images as inputs to the network. Experimental 
verification has shown that the proposed method achieves up to 100% classification accuracy, with 
the model having 7 million parameters and a computational cost of only 0.28 G, outperforming other 
state-of-the-art methods. Finally, a graphical user interface (GUI)-based mechanical equipment fault 
detection system was developed using this method, which holds positive implications for advancing 
the practical application of intelligent fault diagnosis in mechanical equipment.

Keywords  Mechanical equipment fault diagnosis, CNN-transformer, Random overlapping sampling, 
Synchrosqueezed wavelet transform, Graphical user interface

Equipment failure refers to an abnormal state where a component or assembly deteriorates and loses its ability to 
perform a specified function. Based on this inherent characteristic, it is possible to dynamically monitor, identify, 
and diagnose the operational model, status parameters, dynamic responses, and signs of failure to achieve the 
purpose of fault detection and prediction. Due to the presence of working frequency vibration, electrical noise, 
hydraulic system pulsation noise, and modulation and noise interference in transmission links, the characteristic 
information in online monitoring is weak, and the robustness of feature extraction methods is poor. Therefore, 
new solutions for mechanical equipment fault diagnosis have always been a focus and challenge in research both 
domestically and internationally1.

Artificial Intelligence (AI) fault diagnosis and prediction hold promise as a potent tool for ensuring the safe 
operation of equipment: using intelligent algorithms such as artificial neural networks to judge and predict the 
operational state of equipment to make reasonable maintenance decisions. Smart diagnosis and prediction break 
away from the traditional reliance on fault mechanisms, diagnosis experts, and professional technicians, making 
it a core technology of “Smart Industry”2,3. After decades of theoretical research, numerous learning algorithms 
have emerged within AI, with deep learning being the most prominent4. With the success of AlphaGo and 
ChatGPT, enhanced versions of deep learning5,6 have rapidly gained widespread research and application in 
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fields such as natural language processing, computer vision, smart marketing, augmented reality, and fault 
diagnosis.

Mainstream architectures in deep learning for fault diagnosis include Recurrent Neural Networks (RNNs)7 
and Convolutional Neural Networks (CNNs)8. While RNNs can handle sequential data, they cannot perform 
parallel computations and are unsuitable for training large datasets. Although Long Short-Term Memory 
networks (LSTMs)9, a variant of RNNs, mitigate some issues with long-range dependencies, they require manual 
extraction of features in time–frequency domains and lack inherent feature extraction capabilities. Compared 
to RNN models, CNN models adopt local connectivity and weight sharing designs, making them faster to train, 
with superior feature learning capabilities and broader applicability. However, CNNs lack the ability to model 
relationships between targets, treating all parts identically and lacking specificity, making it difficult to process 
data containing temporal information10. Additionally, while CNNs excel in deconstructing image information 
and extracting low-level features, they suffer from limitations such as restricted receptive fields in convolution 
operations and difficulty capturing global information from images, affecting overall model performance11.

To further improve these issues, researchers worldwide have conducted extensive studies and proposed 
various modified models. For example, Jia et al.12 introduced a multi-scale residual attention-based CNN model, 
utilizing a multi-scale residual attention mechanism to learn distinctive multi-scale features from vibration 
signals and enhance CNN’s effectiveness in identifying fault features by leveraging multi-scale feature denoising. 
Li et al.13 proposed a deep learning bearing fault diagnosis method combining CNN and LSTM, adding attention 
to input data segments to visualize learned weights and obtain interpretable diagnostic results, effectively mining 
fault features. Long et al.14 proposed a motor fault diagnosis method using a multi-sensor information-driven 
attention mechanism and an improved AdaBoost, enhancing the robustness, generalization capability, and 
accuracy of fault diagnosis. These methods alleviate some of the problems with CNNs and RNNs to some extent, 
but there is still a pressing need in actual production for more precise, stable, and faster inference speed methods 
for mechanical equipment fault diagnosis to minimize loss caused by failures.

The self-attention network based on Transformer architecture was first proposed in 201715, and due to its 
advantages such as parallel computation, capturing long-distance dependencies, and strong global feature 
learning capabilities, it quickly found wide application in natural language and machine vision fields. The Vision 
Transformer (ViT) model achieved performance comparable to CNNs16 and is considered a strong alternative 
to CNN models. Improved Transformer models like Swin Transformer (SwinT)17, Shuffle Transformer18, and 
Cswin19 continue to emerge. Consequently, Transformer-based fault diagnosis and prediction research have 
become a hotspot for scholars globally.

Fang et al.20 proposed the CLFormer self-attention model for bearing fault identification, demonstrating high 
classification performance under strong noise conditions; Liang et al.11 combined sub-domain adaptation with 
Vision Transformer, realizing bearing fault diagnosis under varying operating conditions based on the integrated 
Transformer network. Traditional Transformer models mostly adopt hierarchical frameworks, making feature 
integration across different layers difficult and weakening the learning capability of local features. Moreover, 
Transformer models have large parameter scales, requiring substantial computational resources, leading to 
lower efficiency and high computational costs, making rapid deployment challenging in industrial settings21.

As discussed, existing deep learning models such as CNNs and LSTMs excel in local feature extraction 
but face limitations when it comes to processing global information and long-range dependencies. Moreover, 
although Transformer models have achieved significant success in fields like natural language processing, vision, 
and fault diagnosis, their application in mechanical fault diagnosis is still hampered by high computational costs 
and the need for large amounts of data, making deployment in resource-constrained industrial environments 
challenging.

Based on the above, this paper proposes a lightweight and efficient intelligent fault diagnosis method 
(FCNVT) that integrates the characteristics of convolutional networks and vision transformers. The FCNVT 
constructs a network model that fuses the features of convolutional networks and vision transformers, 
employing random overlapping sampling techniques for data augmentation of vibration signals, and generating 
two-dimensional synchronized wavelet transform (SWT) images as inputs to the model. By utilizing the strong 
learning capabilities of FCNVT to automatically extract temporal and spatial features from the images, the 
diagnosis of the fault status of mechanical equipment can be achieved. Finally, a graphical user interface (GUI)-
based mechanical equipment fault detection system has been developed using this method, contributing to the 
advancement of practical applications in intelligent fault diagnosis for mechanical equipment.

The main contributions of this paper are as follows:

	(1)	� The FCNVT model is proposed for fault diagnosis in mechanical equipment, combining convolutional lay-
ers and Transformer layers to capture local and global features while maintaining efficiency, utilizing local 
connection patterns and sparse attention mechanisms to reduce computational load and parameter count.

	(2)	� The FCNVT model achieves the fusion of multi-scale features through multi-layer convolution operations 
and multi-head self-attention mechanisms. The convolutional layers are responsible for extracting local 
features, while the self-attention mechanism captures global dependencies, all while maintaining lower 
computational costs. This design of multi-scale feature fusion enables the model to more comprehensively 
understand and recognize complex fault patterns.

	(3)	� By adopting random overlapping sampling techniques to fully utilize the information in the original sig-
nal data and simulate the randomness of signals during fault occurrences, SWT is used to improve the 
time–frequency resolution and reduce redundant information, endowing the model with good diagnostic 
capability and generalization performance.
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	(4)	� A GUI-based mechanical equipment fault detection system is developed based on this method, facilitating 
the practical application and information management of intelligent fault diagnosis in mechanical equip-
ment.

The rest of the paper is organized as follows: Section “Theoretical foundations” outlines the relevant theoretical 
foundations; Section “Proposed method” elaborates on the proposed method; Section “Fault diagnosis 
experiment verification and analysis” validates and analyzes the model through fault diagnosis experiments; 
Section “Development and application of graphical user interface” discusses the development and application of 
the graphical user interface; Section “Conclusion” summarizes the work of this paper.

Theoretical foundations
Convolutional neural networks
The structural characteristics of Convolutional Neural Networks (CNNs) are reflected in three aspects: local 
connection, weight sharing, and spatial pooling. Unlike fully connected neural networks where neurons in each 
layer are fully interconnected, CNNs implement local connections between layers through convolutional kernels 
(filters) that are much smaller than the input size. The size of the convolutional kernel is referred to as the 
receptive field of that layer. The application of local connections significantly reduces the number of connections 
in the network and allows it to handle arbitrary-sized input data. Weight sharing means that the weights and 
biases of the convolutional kernels are shared across the same convolutional layer, meaning the parameter values 
remain constant during convolution operations at different positions in the input data. Spatial pooling is a down-
sampling method that reduces the dimensionality of the input data, thereby decreasing the computational load 
of the model. These three structural characteristics of CNNs overcome the shortcomings of fully connected 
neural networks, such as inability to handle large-scale data (like high-definition images), excessive parameter 
counts, and susceptibility to overfitting, enabling the training of networks with dozens or even hundreds of 
layers and achieving widespread application in the processing of various types of data22.

The convolutional layer is the core structure in a CNN network responsible for adaptive feature extraction. 
Typically composed of one or multiple convolutional kernels, the neurons in the convolutional layer connect 
locally with the preceding feature layer via the convolutional kernel. Each convolutional kernel independently 
performs convolution operations on the input features and calculates the final output features through linear 
superposition. The feature calculation process for the r-th layer of the convolutional layer can be expressed as 
follows:

	
Cr

n =
∑

r

f
(
Cr−1

m ∗wr
n + br

n

)
� (1)

where Cr−1
m  is the output of the previous layer of the neural network, m is the number of convolutional kernels 

in the r-th convolutional layer, * represents the convolution operation between the input feature and the 
convolutional kernel, wr

n is the corresponding parameters of the convolutional kernel, br
n is the bias term, and f 

is the activation function for the output features of the network. Activation functions are usually added after the 
convolutional network layers to enhance the model’s nonlinear modeling capability and the linear separability of 
features, thus improving the model’s learning ability for complex problems. In CNN networks, ReLU is the most 
popular activation function. The convolution operation is illustrated in Fig. 1.

Vision transformer neural network
The Vision Transformer (ViT)16 model utilizes a multi-head self-attention mechanism, which enables it to fully 
learn the global information of the input signal without being limited by local interactions, thereby addressing 
the issue of limited receptive fields in convolutional kernels23. Additionally, it can learn long-range dependencies 
within the signal. The model dynamically generates weights for different nodes through similarity measurements 
and aggregates information, possessing the ability to flexibly respond to changes in input information. This 
effectively avoids many inherent limitations of Convolutional Neural Networks. ViT replaces convolutional 
structures entirely with the Transformer architecture to accomplish classification tasks and has achieved 

Fig. 1.  Convolution operation.
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performance surpassing that of CNNs on superscale datasets24–26. As shown in Fig. 2, the Vision Transformer 
model primarily consists of three parts: input encoding, Transformer encoder, and classification module.

	(1)	� Input Encoding (Image Tokenization)

The ViT encoding consists of patch embedding and positional encoding. The image x ∈ iH×W ×C  is divided 
into patches and linearly transformed into a series of flattened Patches xp ∈ iN×(p2·c),where N is given by:

	 N = HW/P 2� (2)

where H is the height of the image, W is the width of the image, and (H, W) represents the image resolution; p is 
the height and width of a Patch, p2is the size of a Patch, and (p, p) represents the Patch resolution.

In Fig. 2, the patch embedding operation is:

	 z0 =
[
xclass; x1

pE; x2
pE; LxN

p E
]

+ Epos� (3)

In Fig. 2, positional encoding is generated using sine and cosine functions, specifically:

	

PE(pos+k,2) = sin
[
(pos + k) /100002i/dmodel]

PE(pos+k,2i+1) = cos
[
(pos + k) /100002i/dmodl]� (4)

where pos is the position in the input sequence; k is any fixed offset;dmode is the output dimension of the model’s 
sublayers and embedding layer; i is the dimension of the positional encoding vector.

	(2)	� Transformer encoder

The ViT encoder, as seen in Fig. 2, mainly includes a Multi-Head Self-Attention (MSA) mechanism layer and a 
Multilayer Perceptron (MLP).

The MSA, as shown in Fig. 2, is composed of linear layers, dot-product self-attention layers, Concatenate 
layers, and linear layers. It maps queries and a set of key-value pairs to outputs, where the output is a weighted 
sum of the values, with the weights assigned to each value computed using the keys. The calculation of MSA is:

	

MultiHead (Q, K, V) = Concatenate (Head1 · · · Headn) W T

Attention (Q, K, V) = Softmax
(

Q × KT

√
dk

)
× V

� (5)

where n is the number of heads; dk  is the dimensionality of the query or key; W is the weight matrix.

The attention function is calculated for a set of queries packed into matrix Q , and keys and values are also 
packed into matrices K and V . The Concatenate function is used to concatenate the outputs from multi-head 

Fig. 2.  Structure of the vision transformer model.
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self-attention calculations, and Softmax is used to obtain the weights of the values.To enable the network to 
improve fault diagnosis accuracy by increasing depth, residual connections are used within each sublayer, and 
layer normalization27 is applied at the end of each sublayer. Therefore, the output of each sublayer is:

	 Out = LayerNorm (X + Sublayer (X) )� (6)

where Sublayer(X) represents the processing function of the self-attention mechanism layer and the 1D 
convolution layer, and LayerNorm is the layer normalization function.

After passing through the Transformer encoder, the image is transmitted to the MLP. The MLP contains two Fully 
Connected (FC) layers and a non-linear layer with a GELU (Gaussian Error Linear Unit) activation function. 
The fully connected layers map the distributed features learned by the multi-head attention mechanism to the 
sample space, and the feature calculation process for the (l)-th layer is as follows:

	 ZL = MSA
(
LayerNorm

(
Z′

L

))
+ Z′

L� (7)

where L = 1, 2, . . . l.

The MLP performs a nonlinear mapping of the image matrix output from the Transformer encoder, and after 
passing through the Softmax layer, it achieves image recognition.

Proposed method
Network architecture description
The proposed lightweight and efficient network architecture that integrates the characteristics of convolutional 
networks and vision transformers, along with specific parameters, is illustrated in Fig. 3. This network consists 
of a convolutional module, Transformer Module 1, Transformer Module 2, an average pooling module, and a 
classifier. The approach aims to enhance the model’s efficiency and performance by combining local connectivity 
patterns with sparse attention mechanisms, while also reducing computational costs.

	(1)	� Convolutional Module: The convolutional module employs four layers of 3 × 3 convolutions (with a stride 
of 2) to reduce the activation maps before feeding them into the Transformer layers. The strong inductive 
biases of convolutional layers allow the model to learn low-level information effectively at early stages, a 
capability that Transformers lack. Hence, several convolutional layers are stacked before the Transformer 
layers.

Fig. 3.  Proposed model architecture.
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	(2)	� Transformer Layers: The Transformer layers consist of two types of modules: Transformer Block 1 and 
Transformer Block 2. In the context of Vision Transformers, MLPs are generally more computationally 
expensive in terms of runtime and parameter count compared to attention blocks. In this paper, the MLP is 
implemented as a 1 × 1 convolution followed by standard batch normalization, and all non-linear activation 
functions are Hardswish. To reduce the computational cost at this stage, the expansion factor of the convo-
lutions is reduced from 4 to 2.

Transformer Block 1 versus Transformer Block 2: The difference lies in the type of attention blocks they use. As 
shown in Fig. 4, the left diagram represents regular attention, while the right diagram shows shrink attention, 
which halves the activation maps. Here, C × H × W denotes the size of the input activation map, D is the key 
matrix dimension, and N is the number of heads.

Traditional Vision Transformers and similar architectures use positional embeddings to provide positional 
information, adding a fixed positional encoding to each input token. However, positional embeddings are only 
appended to the input sequence, implying that positional information is not dynamically updated in higher-
level representations. This could lead to unnecessary consumption of representational capacity by positional 
information in intermediate representations. Therefore, our structure does not include a class token or positional 
encoding but introduces a new attention bias mechanism allowing each attention head to learn independent 
positional biases, thereby directly injecting relative positional information within each attention block.

The scalar attention value between two pixels (x, y) ∈ [H] × [W] and(x 0, y0) ∈ [H] × [W] in a head h ∈ [N] 
is calculated as:

	 Ah
(x,y),(x′,y′) = Q(x,y),: · K(x′,y′),: + Bh

|x−x′|,|y−y′|.� (8)

where Ah
(x, y)(x′, y′) represents the attention value between positions (x, y) and (x′, y′), indexed by the 

attention head. Q(x,y),: · K(x′,y′),: is the classical attention calculation, i.e., the dot product of Query and Key. 
Bh

|x−x′|,|y−y′|. is a learnable attention bias that is computed based on the relative position between (x, y) and 
(x′, y′). This bias is translation invariant, meaning it depends only on the relative distance between positions.

Each attention head has H × W parameters corresponding to different pixel offsets. Here, H and W are the height 
and width of the activation map, respectively. Through this approach, each attention head can learn specific 
relative positional relationships, such as those between adjacent pixels.

	(3)	� Average Pooling: Following the last Transformer layer, average pooling is introduced to progressively re-
duce the dimensions of the activation maps, thereby reducing the number of parameters and computational 
complexity of the model. This pooling operation helps maintain the depth of the model while reducing its 
width, contributing to higher computational efficiency.

Data division and transformation
Random overlapping segmentation
To make full use of the information contained in the original signal data and to simulate the randomness of signals 
when faults occur, this paper adopts a signal division method known as random overlapping segmentation. By 
“random,” it is meant that the positions at which samples are segmented are chosen randomly. “Overlapping 

Fig. 4.  Two types of attention blocks.
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segmentation” refers to the fact that adjacent samples share a portion of the same data points. Using random 
overlapping segmentation to construct the sample set, different batches of samples are generated each time, 
as shown in Fig. 5. With sufficient training, theoretically, signal segments from any position can be extracted, 
leading to better data augmentation effects and thus enhancing the generalization capability of the diagnostic 
model.

Synchrosqueezed wavelet transform (SWT)
Time–frequency analysis, as an effective method for analyzing time-varying signals, allows for a deeper 
understanding of the multiple components contained within real engineering signals and calculates the 
instantaneous frequency and amplitude at each moment28. However, constrained by the Heisenberg uncertainty 
principle, classical time–frequency analysis methods produce results with limited resolution in the time–
frequency domain, which is not conducive to their application in engineering. Synchrosqueezed Wavelet 
Transform is a special signal rearrangement method that sharpens the time–frequency curves of continuous 
wavelet transforms and improves the frequency accuracy of these curves by reassigning the values of wavelet 
coefficients W(t, s) at different local points (t′, s′) near (t, s).

Synchronous Squeezing Wavelet Transform is based on wavelet transform29. First, Continuous Wavelet 
Transform (CWT) is performed on the signal S(t) to obtain the wavelet coefficients Ws (a, b). Given a mother 
wavelet function ψ, the continuous wavelet transform of S(t) is:

	

Ws(a, b) =
+∞∫

−∞

s(t) 1√
a

ψ
(

t − b

a

)
dt� (9)

where ψ
(

t−b
a

)
 is the conjugate of the wavelet function ψ

(
t−b

a

)
; a and b are the scale and translation factors, 

respectively; Ws (a, b) is the calculated wavelet coefficient.

Based on the one-to-one correspondence between the wavelet scale factor and frequency, the obtained wavelet 
coefficients Ws (a, b)) can be represented in the time–frequency domain, yielding the time–frequency plot of 
the wavelet transform. By reassigning Ws (a, b), one can extract the instantaneous frequency lines, resulting in 
a more concentrated time–frequency plot. When the signal is a harmonic wave function, s (t) = Acos (ωt) 
selects a wavelet that is zero in the negative frequency domain. According to the Plancherel theorem, performing 
continuous wavelet transform on a harmonic wave yields:

	
Ws (a, b) = 1

2π
∫ ŝ (ξ)

√
a ψ̂ (aξ)eibξdξ = A

4π

√
a ψ̂ (aω)eibω � (10)

where, when ψ̂ (ξ) is concentrated at ξ = ω0, the wavelet coefficient Ws (a, b) is correspondingly concentrated 
at scale a = ω0/ω. Taking the partial derivative of the wavelet coefficients, the instantaneous frequency can be 
obtained:

	
ωs (a, b) =

{
−i (Ws (a, b))−1 ∂

∂b
Ws (a, b) , |Ws (a, b) > 0|

∞, |Ws (a, b) = 0| � (11)

where transforming the wavelet coefficients Ws (a, b) from the time-scale plane to the time–frequency plane 
becomes Ws [ ωs (a, b) , b ]. The synchronous squeezing wavelet transform value Ts (ω, b) of the wavelet 
coefficients at discrete scales ak  can be obtained by squeezing the values in the frequency band centered at ωl 
with a bandwidth of [ωl − ∆ω/2, ωl + ∆ω/2], given by the formula:

Fig. 5.  Schematic of random overlapping segmentation of sample sets.
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Ts (ωl, b) = (∆ω)−1

∑
ak:|ω(ak,b)−ωl|≤∆ω/2

Ws (ak, b) a
−3/2
k (∆a)k � (12)

where ak − ak−1 = (∆a)k  is the discrete scale interval, and ∆ω = ωl− ωl−1 is the frequency interval.

As shown in Fig. 6, from top to bottom, the figures represent the time-domain plots, CWT plots, and SWT plots 
for different health states. It can be seen that the CWT plots generate a lot of redundant information because 
each scale produces a subplot on the time–frequency plane, and their energy distribution on the time–frequency 
plane is relatively blurred. The SWT plot, by reassigning the energy of the CWT, reduces redundant information 
and redistributes the energy to more precise locations on the blurred time–frequency plane, enhancing frequency 
resolution.

Network diagnosis process
The diagnosis process of the proposed scheme is illustrated in Fig. 7. The diagnostic process of the model can be 
summarized in three parts: sample set preparation, model training, and model evaluation.

	(1)	� Sample set preparation: Obtain vibration data from mechanical equipment under different operating con-
ditions. Use random overlapping segmentation technology to augment the original vibration data. Further 
divide the data into training and testing datasets. Finally, generate the corresponding SWT image samples 
through Synchronized Compressive Wavelet Transform.

	(2)	� Model training: After constructing the proposed model architecture and configuring the parameters, divide 
the training and testing datasets. Next, set the model training parameters, including the learning rate, loss 
function, and training batch size. During the training process, the learning rate is set to 0.001, and the Adam 
optimizer is used for parameter updates. Additionally, the loss function chosen is the categorical cross-en-
tropy loss function; the batch size for each step of the model’s training input is 64. After each round of 
model training, the model’s diagnostic accuracy is tested using the test set to further validate the diagnostic 
capabilities of the model.

	(3)	� Model evaluation: To further examine the model’s ability to learn fault features and the degree of mastery, 
the model is evaluated using values of the loss function, diagnostic classification accuracy, confusion ma-
trices, and t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm. The software environment 
used for the model to perform fault diagnosis is: PyCharm Community V2019.3.3, TensorFlow V2.13. The 
hardware environment is: Intel i7-12700H @ 2.3 GHz, RAM 32 GB, GPU RTX3060.

Fault diagnosis experiment verification and analysis
Experiment one

	(1)	� Description of dataset I

The Case Western Reserve University (CWRU) bearing dataset is one of the most widely used open-source 
datasets for mechanical equipment fault diagnosis. To enhance the reference value of our work, we chose to 
conduct experiments on this public dataset. The experimental setup of the CWRU bearing dataset is shown 
in Fig. 8. The bearing models include SKF-6205 drive end bearings and SKF-6203 fan end bearings. The 
sampling frequencies are 12 kHz and 48 kHz, with vibration acceleration signals of faulty bearings collected by 
accelerometers. The dataset is divided into four operational conditions, with motor loads of 0HP, 1HP, 2HP, and 
3HP, corresponding to rotational speeds of 1,797 r/min, 1,772 r/min, 1,750 r/min, and 1,730 r/min, respectively. 
Fault types are categorized into three major classes: inner race faults (IR), ball faults (B), and outer race faults 
(OR). Each fault type includes three fault diameters: 0.1778 mm, 0.3556 mm, and 0.5334 mm.

Fig. 6.  Time-domain plots, CWT plots, and SWT plots for different health states.
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The experiment selects the drive end bearing with a sampling frequency of 12 kHz and a motor load of 2HP, 
corresponding to a rotational speed of 1,750 r/min. It includes ten fault states, where labels 0 to 8 represent faulty 
bearing data, and label 9 represents normal bearing data. Each experiment uses a total of 1,000 samples, with 
each sample containing 1,024 data points. The data is split into training and testing sets in a 7:3 ratio. The specific 
experimental data is shown in Table 1.

	(2)	� Diagnosis results and analysis of dataset I.

•	 Analysis of diagnostic accuracy and loss function values

Fig. 8.  CWRU bearing fault diagnosis experimental platform.

 

Fig. 7.  Diagnostic process of the proposed scheme.
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Figure 9 illustrates the changes in accuracy and loss values during the training process. It can be observed that 
the method proposed in this paper demonstrates excellent diagnostic effectiveness for bearing faults, achieving 
nearly 100% accuracy after about six iterations, requiring very few iterations to reach a high level of accuracy. 
Around six epochs, the loss function converges towards 0. Additionally, the consistency in diagnostic accuracy 
and loss function values between the training and testing sets throughout the training process indicates that 
the model did not experience overfitting or underfitting during hyperparameter tuning. This shows that the 
proposed method has excellent diagnostic capability and can achieve accurate and stable recognition results for 
mechanical equipment faults.

•	 Analysis of t-SNE results

To verify the feature extraction capability of the proposed method, the t-distributed stochastic neighbor 
embedding (t-SNE) algorithm was employed to visualize the features of the input and output layers, characterizing 
the model’s feature learning ability. As shown in Fig. 10. From Fig. 10a, it can be seen that the original input data 
in the two-dimensional space are mixed together in a chaotic manner, with a high degree of confusion. From 
Fig. 10b, it can be observed that after the model extracts and learns the features of the input signal data, the data 
representing different health states are well grouped. The intra-class compactness and inter-class separability 
of the health state features in the output layer are significantly improved. The inter-class distances between 
different health states become clear and wide, while the data within the same class become more compact, and 
the confusion between different features disappears. This indicates that the proposed method can effectively 
extract and learn the features of different health states in bearing data and accurately identify the corresponding 
fault types.

•	 Analysis of confusion matrix results

To further illustrate the effectiveness and classification performance of the proposed method, a confusion matrix 
was used to analyze one of the test results on this dataset. Figure 11 visualizes the classification results of the test 
set using the confusion matrix. It can be seen that all prediction results are correct, achieving 100% diagnostic 

Fig. 9.  Loss function values and diagnostic accuracy.

 

Label Load / RPM Status Fault sizes(mm) Training set Testing set sample lengths

0 2HP, 1750 r/min B007 0.1778 70 30 1024

1 2HP, 1750 r/min B014 0.3556 70 30 1024

2 2HP, 1750 r/min B021 0.5334 70 30 1024

3 2HP, 1750 r/min IR007 0.1778 70 30 1024

4 2HP, 1750 r/min IR014 0.3556 70 30 1024

5 2HP, 1750 r/min IR021 0.5334 70 30 1024

6 2HP, 1750 r/min OR007 0.1778 70 30 1024

7 2HP, 1750 r/min OR014 0.3556 70 30 1024

8 2HP, 1750 r/min OR021 0.5334 70 30 1024

9 2HP, 1750 r/min Normal — 70 30 1024

Table 1.  Description of bearing experiment data.
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accuracy in the final diagnostic results, consistent with the results in Fig. 10. This further confirms that the model 
has excellent fault diagnostic classification performance.

•	 Verification of training sample extraction at random positions

To determine the optimal overlap ratio and segmentation parameters, we designed a series of comparative 
experiments. The experimental data came from the CWRU bearing dataset, covering different fault types and 
operating conditions. The specific experimental settings are as follows: overlap ratios: 0%, 25%, 50%, 75%; 
segmentation parameters: 128 points, 256 points, 512 points, 1024 points.

First, we fixed the segmentation parameter at 1024 points and varied the overlap ratio to observe its impact 
on the model’s generalization ability and diagnostic accuracy. The experimental results are shown in Table 2. 
From the table, it can be seen that when the overlap ratio is 50%, the model’s classification accuracy reaches the 

Fig. 11.  Confusion matrix.

 

Fig. 10.  Feature visualization.
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highest at 100%, with a computational complexity of 0.28 G. Therefore, an overlap ratio of 50% is a relatively 
ideal choice.

Next, we fixed the overlap ratio at 50% and changed the segmentation parameters to observe their effect on 
model performance. The experimental results are shown in Table 3. From the table, it can be seen that when the 
segmentation parameter is 1024 points, the model’s classification accuracy is the highest, and the computational 
complexity is relatively moderate. Therefore, in the experiments described in our manuscript, we adopted a 
segmentation parameter of 1024 points and an overlap ratio of 50%.

Experiment two

	(1)	� Description of dataset II

To further validate the effectiveness of the proposed model, Experiment Two employs the SEU_gearbox dataset 
from Southeast University for experimental validation, with the experimental platform illustrated in Fig. 12. 
The SEU_gearbox dataset was collected from the transmission system dynamic simulator under two different 
operating conditions: one with the speed system load set at 20 Hz–0 V, speed at 1200 rpm, and load at 0 N × m; 
and the other with the speed system load set at 30 Hz–2 V, speed at 1800 rpm, and load at 10.97 N × m.

This dataset includes four gear fault conditions and one healthy condition (Normal). The gear fault conditions 
are: crack at the bottom of the gear (Chipped), missing one tooth (Miss), crack at the root of the gear (Root), and 
wear on the surface of the gear (Surface). The specific experimental data are shown in Table 4.

	(2)	� Diagnosis results and analysis of dataset II.

•	 Precision, recall, F1 score, and accuracy metrics of the model

Precision, recall, F1 score, and accuracy were selected as evaluation metrics to analyze the diagnostic performance 
of the model. These metrics are crucial references for assessing the performance of an AI model. As shown in 
Table 5, the proposed model can achieve up to 100% in all these metrics, which, to some extent, indicates that 
the model possesses excellent diagnostic classification performance.

•	 Scatter plot of diagnostic prediction vs. true values

Fig. 12.  Fault diagnosis test bench for gearbox at Southeast University.

 

Segmentation parameter (Points) Accuracy (%) Computational complexity (G)

128 96.3 0.20

256 98.5 0.22

512 99.2 0.25

1024 100.0 0.28

Table 3.  Impact of different segmentation parameters.

 

Overlap ratio (%) Accuracy (%) Computational complexity (G)

0 98.2 0.24

25 99.1 0.25

50 100.0 0.28

75 98.9 0.32

Table 2.  Impact of different overlap ratios.
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The experimental validation results are shown in Fig. 13, where the model’s recognition and prediction outcomes 
for various health statuses are consistent with the actual health statuses, and all predictions are correct. This once 
again demonstrates the superior diagnostic classification capability and stability of the proposed model.

•	 Confusion matrix analysis

Furthermore, to further illustrate the effectiveness of FCNVT, a confusion matrix analysis was conducted on 
one of the test results from this dataset, as shown in Fig. 14. The proposed method accurately predicted all three 
health statuses of the mechanical equipment, achieving a maximum diagnostic accuracy of 100% in the final 
diagnostic results, which aligns with the findings in Fig. 13. This shows that the FCNVT model has excellent fault 
diagnosis classification accuracy.

•	 t-SNE analysis

To verify the feature extraction capability of the proposed method, the t-distributed Stochastic Neighbor 
Embedding (t-SNE) algorithm was employed to visualize the features of the input layer and output layer, 
characterizing the model’s feature learning ability. As shown in Fig. 15. In Fig. 15a, it can be observed that the 
original input data of various types are mixed together in the two-dimensional space, with a high degree of 
confusion. From Fig. 15b, after feature extraction and learning of the input signal data by the model, different 
health status data are well grouped during the learning process. The intra-class compactness and inter-class 
separability of the health status features at the output layer have significantly improved, with the inter-class 
distances between different health statuses becoming clear and wide, and the data within the same class 

Fig. 13.  Scatter plot of diagnostic predicted values versus actual values.

 

Status Precision Recall F1-score Support

Chipped 1.00 1.00 1.00 10

Miss 1.00 1.00 1.00 10

Root 1.00 1.00 1.00 10

Surface 1.00 1.00 1.00 10

Normal 1.00 1.00 1.00 10

Accuracy – – 1.00 50

Macro avg 1.00 1.00 1.00 50

Weighted avg 1.00 1.00 1.00 50

Table 5.  Diagnostic performance of the proposed model.

 

Label Load Status Training set Testing set sample lengths

0 20_0/30_2 Chipped 70 30 1024

1 20_0/30_2 Miss 70 30 1024

2 20_0/30_2 Root 70 30 1024

3 20_0/30_2 Surface 70 30 1024

4 20_0/30_2 Normal 70 30 1024

Table 4.  Data description of the test gearbox.
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becoming more compact, while the confusion between different features has disappeared. This also indicates 
that the method proposed in this paper can effectively extract and learn the features of different health statuses 
from bearing data and accurately distinguish the corresponding fault types.

Comparison of model parameters and computational costs
As shown in Table 6, among the compared models, the proposed method has the smallest number of parameters 
and computational cost, with the computational cost being only 0.28 G. In contrast, the traditional ViT has the 
largest number of parameters and computational cost, significantly higher than those of other models. Improved 
Transformer models such as Swin, ShuffleT, and Cswin, compared to the ViT, exhibit better performance, lower 
computational costs, and fewer parameters. Conventional Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) have notably lower numbers of parameters and computational costs compared to 
models like ViT and Swin. The aforementioned comparative analysis demonstrates that the proposed method 
has a significant advantage in terms of both the number of parameters and computational cost.

Comparison of diagnostic accuracy with state-of-the-art algorithm models
Diagnostic accuracy is a core metric in the process of mechanical equipment fault diagnosis. As shown in 
Fig. 16, we compare the diagnostic accuracy results of the FCNVT model proposed in this paper with other 
state-of-the-art algorithm models. These algorithms include CNN, LSTM, CNN-LSTM, Dconformer30, TST31, 
Diagnosisformer32, and TFT10.

Fig. 15.  Feature visualization.

 

Fig. 14.  Confusion matrix.
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From Fig. 16, it can be observed that among the seven algorithms compared with the proposed model, the TFT 
model has the highest diagnostic accuracy at 99.94%, while CNN has the lowest diagnostic accuracy at 93.03%. 
The FCNVT model proposed in this paper has the highest diagnostic accuracy among all models, improving 
by 6.97% over CNN and still showing an enhancement compared to TFT. Therefore, we can conclude that the 
proposed model is better at extracting and learning the characteristic information of mechanical equipment 
faults, giving it a higher diagnostic accuracy and better classification capability.

Development and application of graphical user interface
Graphical user interface (GUI)
A GUI (Graphical User Interface) is a type of user interface that allows users to interact with electronic devices 
(such as computers, smartphones, tablets, etc.) through graphical elements like icons, buttons, windows, etc. 
Unlike command-line interfaces (CLIs) that rely solely on text commands, GUIs are more intuitive and user-
friendly, enabling users to control and utilize software through visual cues and mouse clicks. This significantly 
reduces the learning and usage costs for non-professionals, thereby accelerating the dissemination and 
application of related technologies.

Therefore, based on the fault diagnosis method proposed in this paper, we have developed a GUI-based 
mechanical equipment fault detection system to promote the practical implementation and information 
management of intelligent fault diagnosis for mechanical equipment.

GUI-based mechanical equipment fault detection system

•	 Login interface of the diagnostic system

To ensure data security and manage permissions, the system requires entering an account and password for 
login. The login interface is shown in Fig. 17.

•	 Main interface of the diagnostic system

Upon entering the correct account and password, the user logs into the main interface of the mechanical 
equipment fault diagnosis system, as shown in Fig. 18. The main interface of this system includes functions for 
data access and reading, intelligent diagnosis, and monitoring of diagnostic results. Below, we will introduce 
these three functional areas and their implementation methods.

	(1)	� Data access and reading: The system provides three modes for data access and reading. The first mode is 
selecting a single piece of data for a single fault diagnosis; the second mode involves accessing and reading 

Fig. 16.  Comparison of diagnostic accuracy with other state-of-the-art algorithms.

 

Models Parameters/M Computational Costs/G

ViT16 86 55.4

Swin17 29 4.5

ShuffleT18 28 4.5

CSwin19 23 4.3

CNN 13.4 1.6

RNN 18.0 3.2

Proposed method 7 0.28

Table 6.  Parameter counts and computational costs of various models.
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data in folder form to achieve batch detection and identification of faults; the third mode is accessing and 
reading data in video file form, which allows for dynamic fault detection and thus possesses certain object 
detection capabilities.

	(2)	� Intelligent diagnosis and monitoring of diagnostic results: Once the data is loaded into the system, fault 
diagnosis and recognition are performed. As shown in Fig. 19a, the image data after loading is displayed 
on the right, with the diagnostic results, duration, and confidence level shown in the lower-left corner.As 
shown in Fig. 19b, the system can record the detected data and allow viewing of historical diagnostic results 
individually. Additionally, the system offers the export of recorded diagnostic results, facilitating the infor-
mation management of diagnostic outcomes.To improve work efficiency, we have integrated an AI assistant 
function into the system, as shown in Fig. 19c. It leverages powerful AI models like ChatGPT and Kimi to 
provide assistance.

Conclusion
This study proposes a lightweight and efficient intelligent fault diagnosis method (FCNVT) that integrates 
the characteristics of convolutional networks and vision transformers, and successfully develops a GUI-based 
mechanical equipment fault detection system. The main conclusions of this paper are as follows:

	(1)	� The FCNVT model is proposed for the fault diagnosis of mechanical equipment. It combines convolutional 
layers and Transformer layers, capturing both local and global features while maintaining efficiency. The 
model utilizes local connection patterns and sparse attention mechanisms to reduce computational costs 
and the number of parameters.

Fig. 18.  Main interface of the diagnostic system.

 

Fig. 17.  Login interface of the diagnostic system.
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	(2)	� The FCNVT model achieves the fusion of multi-scale features through multi-layer convolution operations 
and multi-head self-attention mechanisms. The convolutional layers are responsible for extracting local 
features, while the self-attention mechanism captures global dependencies, all while maintaining lower 
computational costs. This design of multi-scale feature fusion enables the model to more comprehensively 
understand and recognize complex fault patterns.

	(3) 	� The original signal data’s information is fully utilized and the randomness of signals when faults occur is 
simulated through the use of random overlapping segmentation technology. The synchrosqueezed wavelet 
transform (SWT) is adopted to improve the time–frequency resolution of images and reduce redundant 
information, thereby enhancing the model’s diagnostic capability and generalization performance.

	(4)	� Based on this method, a GUI-based mechanical equipment fault detection system has been developed. This 
system facilitates the practical implementation and information management of intelligent fault diagnosis 
for mechanical equipment.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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