Table 4 Optimal hyperparameters for machine learning models for crop suggestion.

From: Incorporating soil information with machine learning for crop recommendation to improve agricultural output

Model

Hyperparameters

ETC

min_samples_split=2, max_depth=6, n_estimators=7, random_state=0

MLP

max_iter=100, hidden_layer_sizes=10, random_state=0

RF

max_depth=9, n_estimators=2, min_samples_split=9

DT

max_depth=4, min_samples_leaf=4, Criterion=’entropy’, min_samples_split=70, random_state=0

LR

solver=’lbfgs’, multi_class=’auto’, random_state=0, C=1.0, max_iter=10

XGB

random_state=0, n_estimators=6, max_depth=2, learning_rate=0.1