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In the research of non-intrusive load monitoring (NILM), the temporal characteristics of V–I trajectories 
are often overlooked, and using a single feature for identification may lead to insignificant differences 
between similar loads. Based on this, this paper proposes a non-intrusive load monitoring method 
based on time-enhanced multidimensional feature visualization. By adding a time axis to the V–I 
trajectory, it integrates the rate of change in voltage and current, power factor, and third harmonic 
to form a three-dimensional spatiotemporal color V–I trajectory, addressing the gap in dynamic 
characteristics. The ECA-ResNet34 network model is used for load identification, avoiding the 
problems of network degradation and training difficulties caused by the excessive depth of traditional 
convolutional neural networks (CNN), and achieving efficient monitoring of household loads. The 
method was validated on the PLAID dataset, achieving an average F1 score of 97.3%. Furthermore, 
utilizing transfer learning, the model trained and tested on the PLAID dataset was further tested on 
the WHITED dataset to increase the model’s universality and generalization ability, showing significant 
effects in identifying loads with similar V–I trajectories and multiple states.
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As the economy and society develop, the demand for energy continues to grow globally. According to data from 
the International Energy Agency, global energy demand is expected to increase by 25% by 2040, with electricity 
demand projected to grow by 58% compared to 20181. Effective load monitoring is a necessary means to reduce 
energy consumption in households and industrial sectors2.

Intrusive Load Monitoring (ILM) requires the installation of sensors on each electrical device of users to 
gather data on electricity usage, which is high in implementation costs and poses a risk of leaking user privacy. 
Hart3 proposed Non-Intrusive Load Monitoring (NILM), which does not require installing measurement 
devices for each appliance4. By analyzing the total electricity meter data of homes or factories, it is possible to 
obtain information on the number, type, and electricity consumption of appliances, saving costs and protecting 
user privacy. NILM has become a hot topic among scholars and researchers, being a key technology in smart 
grids and modern energy management systems5.

Early researchers used single steady-state features for load identification. These steady-state features include 
active power, reactive power, current waveform, steady-state current harmonics, power harmonics6–9, and V-I 
trajectories10, among which V-I trajectories are widely used due to their good identification effects11. H. Y. Lam 
et al.12 proposed a method of classifying household appliances using the shape features of V-I trajectories. De 
Baets et al.13 utilized the differences in V-I trajectories to detect unknown devices, but the identification accuracy 
needs improvement. Hassan et al.14 extracted shape features like the area and cyclic direction of V-I trajectories 
for identification, but it lacks accuracy for loads with similar V-I trajectories.

Compared to steady-state features, transient features generated during load switching processes have 
a stronger correlation with device characteristics15 and can provide more information16. Common transient 
features include changes in power during transients, startup current waveform, voltage noise, and the edge size or 
steepness of current waveform spikes5. Cox et al.17 used transient voltage waveforms measured at power outlets 
to identify different loads, but the measurement results were not stable enough; Tsai et al.18 analyzed current 
transient signals by capturing the on and off transient responses of devices, identifying different operational 
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states of devices, but this approach demands high hardware costs and computational capacity for data collection; 
Liu et al.19 used the “direction” of voltage and current changes between two consecutive points to increase feature 
uniqueness; Zheng et al.20, Sun et al.21 effectively distinguished low-power loads using harmonic features.

The identification accuracy of single features is limited. Researchers have improved identification accuracy by 
integrating multiple features on the basis of V-I trajectories using visualization technology. Liu et al.19 integrated 
changes in voltage and reactive current, power factor, and V-I trajectories, visually representing the integrated 
features through color coding technology. Xiang Y et al.22 translated the power and current size of loads into 
color information through color coding and then integrated it with V-I trajectories, but the resulting image colors 
were monotonous, causing most loads with lower power or current to concentrate in the same color interval, 
affecting identification accuracy. Chen et al.23 integrated V-I trajectories, the magnitude and phase angle of odd 
harmonics, and fundamental amplitude into a feature matrix, constructing a matrix heatmap through colors to 
avoid feature masking, but it lacks universality.

In fact, V-I trajectories are dynamically formed, and some appliances have similar V-I trajectories, but the 
formation processes are different. Previous studies have overlooked the dynamic features of V-I trajectories. 
Visualizing the formation process of V-I trajectories would significantly improve the resolution ratio of V-I 
trajectory.

Convolutional Neural Networks (CNN) are widely used in the field of image classification, and can still 
recognize images when they are rotated, inverted, or deformed24. Jia et al.25 employed convolutional neural 
networks (CNNs) to recognize reconstructed V-I trajectory images, verifying their excellent performance 
in household load classification. However, as the depth of the network increases, problems such as model 
degradation, gradient vanishing, or gradient explosion may occur. ResNet26–29 added a residual network on its 
basis to alleviate the phenomenon of gradient disappearance caused by increased depth. Madhushan et al.30, Zou 
et al.31 added the SE channel attention mechanism to ResNet, but it requires capturing the dependencies among 
all channels, which is inefficient. ECA-ResNet3432,33 captures cross-channel interactions directly through one-
dimensional adaptive convolution, dynamically adjusts attention to different channels, and flexibly adjusts the 
scaling of feature maps, both improving learning efficiency and saving computational resources.

In terms of model generalization, Liu et al.19 first applied transfer learning to NILM, achieving knowledge 
transfer between different domains34,35, and improving identification efficiency.

In summary, this paper proposes a non-intrusive load monitoring method based on time-enhanced 
multidimensional feature visualization. Firstly, it introduces the time dimension, converting two-dimensional V-I 
trajectories into three-dimensional ones; then, it uses the H, S, V channels to color-code the three-dimensional 
V-I trajectories: the H channel (hue) depicts the “direction” of voltage and current changes36, the S channel 
(saturation) represents power factor, and the V channel (value) represents the third harmonic20,21. The ECA-
ResNet34 network is used for load identification, and transfer learning is implemented with ECA-ResNet34. 
Simulation validation on the public datasets PLAID and WHITED proves the effectiveness of this method.

The main contributions of this paper are as follows:

	(1)	� Addressing the issue of recognizing loads with similar features, this paper integrates steady-state features 
(power factor, third harmonics), transient features (voltage and current rate of change), and dynamic fea-
tures (time) into a feature fusion approach. It proposes a time-enhanced multidimensional feature visuali-
zation method for load identification, significantly improving the accuracy of load recognition.

	(2)	� In terms of feature extraction, the use of visualization technology has enabled the construction of dynamic 
color V-I trajectories based on a time axis, enhancing the resolution of load features.

	(3)	� Utilizing ECA-ResNet34, the method achieves cross-domain transfer learning between different datasets, 
reducing the demand for training data and enhancing the model’s training efficiency. This approach demon-
strates strong generalizability and universality.

Data preprocessing method
This section describes how to obtain V-I trajectories, transform them into three-dimensional spatio-temporal 
trajectories, and then encode them into colored images in the HSV color space.

V-I trajectory collection
Under the NILM framework, aggregated power, current, and voltage information can be obtained through 
intelligent sensors. Assuming that only one load’s operational state changes at a certain moment, extracting 
the current and voltage signals before and after the load state change allows for the acquisition of the load’s V-I 
trajectory.

The steady-state current and voltage waveforms for T periods before and after the event are extracted, 
represented as von,  voff ,  ionand  ioff .Using the fundamental voltage phase angle as a reference, a fast Fourier 
transform is performed on the periodic voltage waveforms. The intersection of the fundamental voltage with the 
horizontal axis as the initial sampling point defines the load’s voltage an

	 v = (von + voff )/2� (1)

	 i = (ioff − ion)/2� (2)

The V-I trajectory can be formed by taking the voltage and current within a cycle as the abscissa and ordinate 
respectively37.
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Constructing three-dimensional spatio-temporal trajectories
The original V-I trajectories only retain their spatial shapes, and different loads may have similar trajectories. 
For example, as shown in Fig. 1, it is difficult to accurately distinguish between (a) a hairdryer and (b) a heater 
using only the shape of the trajectory.

 
Figure 2 reflects the formation processes of two types of loads. Although the trajectories appear consistent, 

the direction of the trajectory cycle differs. Dynamically displaying the V-I trajectories significantly enhances 
the feature details.

Constructing a three-dimensional coordinate system
First, define a three-dimensional coordinate system, where voltage (V), current (I), and time (t) correspond 
to the X-axis, Y-axis, and Z-axis, respectively. To ensure comparisons within a unified scale, it is necessary to 
normalize the voltage and current data.

The normalization formula for voltage is:

	
Vnorm =

V − Vmin
Vmax − Vmin

� (3)

Fig. 2.  The formation process of load V-I trajectory. (a) Hairdryer, (b) heater.

 

Fig. 1.  Partial load 2D V-I trajectory image. (a) Hairdryer, (b) heater.
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where  Vmax and  Vminrespectively represent the maximum and minimum values of the voltage. The 
normalization formula for current is:

	
Inorm =

I − Imin
Imax − Imin

� (4)

where  Imax and  Imin respectively represent the maximum and minimum values of the current. These 
normalization steps help to scale the voltage and current data of different dimensions to the same range, 
facilitating comparison and analysis.

Next, generate a sequence of equidistant timestamps from 0 to the total collection time T. The time interval  
∆t is determined by the sampling frequency  fswith the formula:

	
∆t = 1

fs
� (5)

Each point in the time series can be represented as:

	 ti = i · ∆t, i = 0, 1, . . . N − 1� (6)

where N is the total number of sampling points. This formula ensures that each voltage and current data point 
has a corresponding timestamp.

Finally, map each voltage and current reading to a point in three-dimensional space. Each point P (ti)
represents the state of voltage and current at time ti, defined as:

	 P (ti) = (Vnorm(ti), Inorm(ti), ti)� (7)

where P (ti)represents a point in three-dimensional space,  Vnorm(ti) and  Inorm(ti) are the normalized 
voltage and current values at time tiand tiis the corresponding timestamp.

Draw 3D trajectory plot
After the data has been mapped to three-dimensional space, the next step is to draw a three-dimensional trajectory 
graph by connecting these points. Considering the position of each  Pi = [Vnorm(i), Inorm(i), t(i)] in three-
dimensional space, we can construct a continuous trajectory that passes through these points. For any pair of 
consecutive points in the sequence,  [Vnorm(i), Inorm(i), t(i)] and  [Vnorm(i + 1), Inorm(i + 1), t(i + 1)], a 
line segment connecting these two points is constructed. For the line segment between two consecutive points, 
the parametric equation is

	
Linei(λ) =

(
Vnorm(i) + [Vnorm(i + 1) − Vnorm(i) × λ]
Inorm(i) + [Inorm(i + 1) − Inorm(i) × λ]

t(i) + [t(i + 1) − t(i) × λ]

)
, 0 ⩽ λ ⩽ 1� (8)

Here, λ is a parameter between 0 and 1, representing the interpolation from  Pi to  Pi+1.
The entire trajectory is formed by sequentially connecting these line segments. The mathematical 

representation of the trajectory can be considered as a collection of these line segment Eq. 

	
T rajectory =

∪n−1

i=1
Linei(λ)� (9)

where n is the total number of data points.
As shown in Fig.  3, after unfolding the electrical V-I trajectory along the time axis, the trajectory graph 

reveals more rich details and information. The trajectories of (a) incandescent light bulb (ILB), (d) hairdryer, (f) 
heater, and (h) air conditioner (AC) show significant differences, making it easy to distinguish them.

Color-coding technique
To enhance the feature representation of 3D V-I trajectories, the hue, saturation, and brightness19 are used 
to encode the V-I trajectory into a color image based on temporal features, as shown in Fig. 4. Translate the 
steady-state features (power factor, third harmonics), transient features (voltage and current rate of change), and 
dynamic features (time) into a feature fusion, forming a three-dimensional color VI trajectory.

(1) Voltage and current rate of change. The hue (H) represents the direction of trajectory movement, defined 
as

	
Hj = arg

(
Vj+1 − Vj

vmax
,

Ij+1 − Ij

imax
,

Tj+1 − Tj

tmax

)
, j = 1, 2, 3 . . . J � (10)

where the function  a tan 2(·) is a four-quadrant inverse tangent function, calculating the phase angle between 
two consecutive points in the trajectory, yielding an angle range from 0° to 360°.

A new temporal hue matrix  H(nx, ny) is defined, with elements calculated as the average hue of trajectory 
segments through grid  (nx, ny). It is expressed as
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H(nIj

, nVj ) =
(
∑

j∈A
)Hj

|A|
� (11)

where A = {a|aath point crosses grid  (nIj
, nVj )}, and  | · | is the cardinality of a set.

 H(nIj
, nVj ) includes temporal features, meaning it is calculated based on the rate of change of trajectory 

segments in the time series. This provides a time-variant hue value for each grid point in a 2 N×2 N matrix.
(2) Power factor. Saturation (S) represents the power factor of the load, which is the ratio of active power to 

apparent power

	
S

(
nIj ,nVj

)
=

Pactive

Papparent
=

1
N

∑N

1 vnin

VrmsIrms

� (12)

Here, N is the total number of sampling points, Pactive is the active power, and  Papparent is the apparent power,  
Vrms,  Irms are the effective values of load voltage and current respectively.

(3) Third harmonic. Brightness (V) represents harmonic features. A Fourier transform (FFT) is used to 
decompose steady-state current signals

	 I=A1 sin(ωt + θ1) + A2 sin(ωt + θ2) + · · · + Ak sin(ωt + θk)� (13)

Here,  A1, A2, Ak  is the amplitude of each harmonic, and  θ1, θ2, θk  is the phase angle of each harmonic.
Harmonic amplitude and phase are numerically significant, and integrating them with the V-I trace requires 

data processing of voltage, current, and amplitude phase. To normalize the selected data, perform the following 
operation

	
K′ =

K − Kmin
Kmax − K′min

� (14)

Fig. 3.  Three-dimensional spacetime trajectory images of different electrical loads, including (a) incandescent 
light bulb (ILB), (b) laptop, (c) fridge, (d) hairdryer, (e) fan, (f) heater, (g) compact fluorescent lamp (CFL), (h) 
air conditioner (AC), (i) microwave, (j) vacuum cleaner, and (k) washing machine.
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where K represents the original value, Kmin represents the minimum value of the period, and  Kmax represents 
the maximum value of the period.  K′ is the normalized value.

Rounding off the normalized data is as follows:

	 Ksure = F loor(K′ × (N − 1))� (15)

	 A′
f = F loor(Af ) ÷ N = xf . . . yf � (16)

where  Ksure and  A′
f  represent the final feature values,  Af  represents the base magnitude, xf  represents the 

quotient, and  yf  represents the remainder.

Construction of the recognition network
ResNet26 effectively mitigates the issues of gradient vanishing and degradation in deep networks by introducing 
residual blocks and skip connections, significantly enhancing the model’s stability and feature extraction 
capabilities38. The residual structure increases the depth and accuracy of feature extraction, where the lower 
convolutional layers excel at extracting details such as edges and textures, and the middle layers are capable 
of capturing medium-complexity patterns like color and shape. ResNet34, compared to ResNet, can more 
effectively extract and distinguish features in a dataset, accurately capturing details of edges, colors, and shapes. 
It has fewer parameters than ResNet50 or ResNet10139, making it better suited for the data used in this study.

The network structure of ResNet34
Figure 5 presents both the standard network structure and the ResNet structure. The basic residual learning unit 
neither introduces new parameters nor increases computational complexity.

The principle of ResNet is as follows

	 xl = h(xl) + F (xl, WL)� (17)

	 xl+1 = f(y1)� (18)

Fig. 4.  Color V–I trajectory images of different electrical loads, including (a) incandescent light bulb (ILB), 
(b) laptop, (c) fridge, (d) hairdryer, (e) fan, (f) heater, (g) compact fluorescent lamp (CFL), (h) air conditioner 
(AC), (i) microwave, (j) vacuum cleaner, and (k) washing machine.
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Where  h() is the direct mapping, and  f() is the activation function.
The residual block can be represented as

	 xl+1 = xl + F (xl, W1)� (19)

The relationship between layer L and layer l is

	
xL = xl +

L−1∑
i=1

F (xi, Wi)� (20)

According to the chain rule of derivatives used in backpropagation, the gradient of the loss function  ε with 
respect to  xl is

	

∂ε

∂xl
= ∂ε

∂xL

∂xL

∂xl
= ∂ε

∂xL
(1 + ∂

∂xl

L−1∑
i=1

F (xi, Wi)) = ∂ε

∂xL
+ ∂ε

∂xL

∂

∂xl

L−1∑
i=1

F (xi, Wi)� (21)

During the entire training process, it is impossible for  ∂
∂xl

L−1∑
i=1

F (xi, Wi) to always be − 1, hence there is no 

issue of gradient vanishing in residual networks. Moreover,  ∂ε
∂xl

 implies that the gradient of the L layer can be 
directly transmitted to any shallower L layer.

The structure of ResNet34 is shown in Fig. 6.
The features extracted by the convolutional layers stacked in a CNN are high-dimensional. Some of these 

features may be lost, but the residual blocks in ResNet34 skip over some convolutional layers to extract features, 
blending the features from before layer n with the convolutional features after layer n, thereby preserving both 
high-dimensional and low-dimensional features and improving network performance. Global Average Pooling 
(GAP) is also used to replace the fully connected (fc) layers in classic CNNs. GAP enhances the correspondence 
between the feature maps on the fully connected layer and the categories, making it more suitable for 
convolutional structures. Additionally, there are no parameters to optimize in GAP, which avoids overfitting. 
Furthermore, GAP aggregates spatial information, making it more robust to spatial transformations in the input.

Fig. 6.  ResNet34 architecture diagram.

 

Fig. 5.  (a) Shows the standard network structure; (b) shows the ResNet structure.
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ECA mechanism
As shown in Fig. 7, the ECA (Efficient Channel Attention) mechanism module is applied directly after the global 
average pooling layer using a 1 × 1 convolutional layer, eliminating the fully connected layer. This module avoids 
dimensionality reduction and effectively captures cross-channel interactions. It achieves significant results with 
only a few parameters involved.

Transfer learning
Transfer learning can be categorized into Appliance Transfer Learning (ATL) and Cross-Domain Transfer 
Learning (CTL). ATL refers to transferring from one device to another, while CTL involves transferring from 
one data domain to another. In this paper, the model trained and tested on the PLAID dataset will be transferred 
to the WHITED dataset for further testing, achieving cross-domain transfer learning.

Figure 8 illustrates the model transfer experiment scheme for NILM. By treating the convolutional and fully 
connected layers of the pretrained ECA-ResNet34 model as a cascaded feature extractor, it is assumed that 
the initial layers can be transferred between different tasks. As long as the load features are converted into 
visual representations, and the last fully connected layer is replaced with one that matches the size of the load 
categories, this experimental scheme can be generalized to any other dataset to achieve cross-domain transfer 
learning.

Identification process
The recognition process of this text is shown in Fig. 9, which includes data preprocessing, feature fusion, and 
load identification.

Firstly, voltage and current data from various household appliances are collected, and the data are normalized 
to standardize the data range. Then, the voltage and current waveforms are converted into three-dimensional V-I 
trajectories. At the same time, color coding technology is used to color the three-dimensional V-I trajectories, 
combining three types of feature data (trajectory motion information, power factor, and harmonic characteristics) 
to enhance the expressiveness of the data. Finally, these data are fed into the ECA-ResNet34 network for training 
and testing to achieve effective identification of household appliance loads.

Experiment analysis
All the test cases were conducted on a computer running Windows 10, Pytorch 1.7, and NVIDIA CUDA 11.8, 
with the following hardware configuration: Intel i5-13400 CPU and NVIDIA GeForce RTX 3060 Ti GPU.

Dataset
In this section, we use two public datasets, PLAID40 and WHITED41, to validate the proposed load signature 
and machine learning methods. In this paper, the model is trained and tested on the PLAID dataset and then 
transferred to the WHITED dataset for further testing. The PLAID dataset includes 1,074 current and voltage 
data samples from 11 different types of devices in over 55 households in Pittsburgh, Pennsylvania, USA, with 
a sampling rate of 30 kHz. The WHITED dataset is a global transient energy dataset for home and industrial 
applications, containing 1,259 data samples from 54 different types of devices from various regions around the 
world, with a sampling rate of 44.1 kHz. The PLAID dataset shows richer internal variations of devices, whereas 
the WHITED dataset covers a wider range of differences among devices. Both are recognized high-resolution 
electrical measurement datasets used for NILM assessment.

Fig. 7.  ECA structure diagram.
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Model parameter settings and training
The training process utilizes the Adam optimizer, with default parameters β1 = 0.9, β2 = 0.999, and a learning rate 
of 0.001. The specific fundamental parameters for training and transfer learning in all experiments are as shown 
in the Table 1.

Construct the sample set as described in this paper, extracting 80% of each device type to form the training 
set, with the remaining 20% serving as the test set. The loss function curve of the ECA-ResNet34 model trained 
on the PLAID dataset is shown in the Fig. 10.

Results on PLAID
The assessment uses confusion matrices42,43, where each row of the matrix represents instances in the predicted 
categories, and each column represents instances in the actual categories. The diagonal cells display the number 
of correct predictions for each category, that is, the quantity of matches between actual and predicted categories. 

Fig. 9.  Identification flowchart.

 

Fig. 8.  Transfer learning model.
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Values outside the diagonal indicate where the classifier made errors, allowing for a visual inspection of 
mispredictions. The values in the chart’s far-right column represent the accuracy of each predicted category, 
denoted as Precision (P), while the values in the bottom row of the chart represent the accuracy of each actual 
category, denoted as Recall (R). The cell in the bottom right corner of the chart shows the overall accuracy.

This paper selects Precision (P), Recall (R), the harmonic mean of Precision and Recall (F1), and overall 
Accuracy (A) as evaluation metrics. From the confusion matrix, TP, FP, FN, and TN can be calculated, where 
TP indicates that the prediction is true and the actual result is also true; FP indicates that the prediction is true 
but the actual result is false; FN indicates that the prediction is false but the actual result is true; TN indicates 
that the prediction is false and the actual result is also false. Based on TP, FP, FN, and TN, P, R, F1, and A can be 
calculated. The formulas for each metric are as follows:

	
P = T P

T P + F P
� (22)

Precision (P): Measures the proportion of actual positives among instances predicted as positive.

	
R = T P

T P + F N
� (23)

Recall (R): Measures the proportion of actual positives that were correctly predicted as positive.

	
F 1 = 2 × P × R

P + R
� (24)

Fig. 10.  Loss function curve.

 

Train

Optimizer Adam

Maximum number of epochs 60

Batch size 128

Learning rate 0.001

Retrain of the last dense layers

 Batch size 128

 Maximum number of epochs 20

 Learning rate 0.001

Table 1.  Model parameter settings.
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F1-score (F1): The harmonic mean of precision and recall, serving as a balance between the two metrics. The 
F1-score is particularly useful when there is a need to balance precision and recall.

	
A=

T P + T N

T P + F N + F P + T N
� (25)

Overall Accuracy (A): Measures the proportion of correct predictions among all predictions, i.e., the proportion 
of instances (regardless of positive or negative class) that were correctly predicted by the model out of all 
instances.

The confusion matrix on the PLAID dataset is shown in the Fig. 11.
According to Table 2, the average F1 score reached 0.973. Among them, the F1 scores for compact fluorescent 

lamps and heaters reached 1 and 0.988, respectively. The V-I trajectories of heaters and hair dryers are very 
similar, with F1 scores of 0.988 and 0.987, respectively. Multi-state loads such as air conditioners, refrigerators, 
microwaves, and washing machines achieved F1 scores of 0.929, 0.870, 0.993, and 0.963, respectively.

The evaluation is based on Precision (P), Recall (R), harmonic mean of Precision and Recall (F1), and overall 
Accuracy (A). From the Table 2, The precision (P), recall (R), F1, and accuracy (A) for various types of loads 
mostly remain above 0.95, with averages of 0.977, 0.969, 0.973, and 0.997, respectively. Figure 12 visualizes the 
F1-score (%).

Fig. 11.  Confusion matrix for devices on the PLAID dataset.
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Comparative analysis
To verify that the inclusion of temporal information can significantly improve the accuracy of identification, 
experiments were conducted under the exact same conditions as this study, excluding temporal information, and 
the identification accuracy was represented using confusion matrices, as shown in Fig. 13.

Tables 2 and 3 indicate that the average F1 score was 0.850, which increased to 0.973 after incorporating 
time features, an improvement of 0.123. Additionally, the minimum F1 score increased from 0.494 to 0.87, 
an enhancement of 0.376. The F1 scores for multi-state loads like air conditioners, refrigerators, and washing 
machines were 0.771, 0.494, and 0.814, respectively, which improved to 0.929, 0.870, and 0.963 after adding 
time features, with respective increases of 0.158, 0.376, and 0.149. Heater and hair dryer trajectories, which are 
similar, had F1 scores of 0.702 and 0.917; these improved to 0.988 and 0.987 respectively upon the inclusion 

Fig. 12.  F1-score (%) visualization.

 

P R F1 A

AC 0.937 0.922 0.929 0.992

CFL 1 1 1 1

Fan 0.983 1 0.991 0.998

Fridge 0.938 0.811 0.870 0.992

Hairdryer 0.987 0.987 0.987 0.996

Heater 1 0.976 0.988 0.999

ILB 0.983 1 0.991 0.998

Laptop 1 1 1 1

Microwave 0.986 1 0.993 0.998

Vacuum 0.974 1 0.987 0.999

Washing 0.963 0.963 0.963 0.998

average 0.977 0.969 0.973 0.997

Table 2.  Evaluation metrics of the confusion matrix for the PLAID dataset.
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of time features, increases of 0.286 and 0.07, proving that incorporating time features can effectively enhance 
identification resolution.

Figures 11 and 13 show the confusion matrices for the two methods on the PLAID dataset, demonstrating 
that adding time features can effectively reduce recognition confusion. Refrigerators, as multi-state loads, 
showed more confusion with air conditioners, representing 1.0% (11 instances), but this was reduced to 0.2% (2 
instances) after adding time features, significantly lowering the confusion probability. The hair dryer and heater, 
being devices with similar trajectory characteristics, had confusion incidents of 0.9% (10 instances) and 0.3% 
(3 instances), which dropped to only 0.1% (1 instance) after incorporating time features. Moreover, confusion 
between refrigerators and incandescent bulbs, and between laptops and compact fluorescent lamps, occurred at 
rates of 0.6% (6 instances) and 1.3% (14 instances), respectively, with no confusion after adding time features. In 
summary, incorporating time features can make trajectory differences more pronounced, providing significant 
advantages in distinguishing multi-state devices and devices with similar trajectories.

Evaluation is based on precision (P), recall (R), the harmonic mean of precision and recall (F1), and overall 
accuracy (A). From Table 3, the average values for P, R, F1, and A for various loads are 0.856, 0.856, 0.850, and 
0.983, respectively. These values have decreased compared to the scores with added time features, which are 
0.977, 0.969, 0.973, and 0.997. Figure 14 visualizes the F1-scores (%).

Comparison of the features of this paper with other methods
To verify the universality of the features, this study utilized the feature set described herein, combined with the 
identification models from references19,23, to conduct experimental validations on the PLAID dataset, using the 

Fig. 13.  Confusion matrix without time information on the PLAID dataset.
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F1-score as the evaluation metric. The results are shown in Fig. 15. The F-macro scores for the three models 
using this article’s feature set were 97.3%, 95.1%, and 94.6%, respectively, demonstrating the effectiveness and 
universality of the features. The F1-score of this study’s model were higher for all devices compared to the other 
two models, indicating the superiority of our identification model. Among the three models, air conditioners and 
fridges generally had lower F1-score compared to other devices. This is because continuously variable devices 
have variable power consumption characteristics and do not have a fixed number of states, making them more 
prone to confusion with other loads; air conditioners, with various operational conditions such as cooling and 
heating modes, are easily confused with refrigerators and hair dryers; refrigerators’ working frequency usually 
changes with temperature, leading to uncertain V-I trajectories.

Fig. 14.  F1-score (%) visualization.

 

P R F1 A

AC 0.839 0.712 0.771 0.974

CFL 1 0.92 0.953 0.987

Fan 0.917 0.861 0.888 0.977

Fridge 0.465 0.526 0.494 0.962

Hairdryer 0.870 0.969 0.917 0.974

Heater 0.8 0.625 0.702 0.984

ILB 0.971 0.877 0.922 0.984

Laptop 0.915 1 0.956 0.985

Microwave 0.986 0.993 0.989 0.997

Vacuum 0.925 0.974 0.949 0.996

Washing 0.727 0.923 0.814 0.990

average 0.856 0.853 0.850 0.983

Table 3.  Evaluation metrics of the confusion matrix without time information on the PLAID dataset.
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Results on WHITED
To verify the feasibility of transfer learning, the transfer model described in Sect.  3.3 of this article was 
experimentally validated on the WHITED dataset. In the ECA-ResNet34 model, trained on the PLAID dataset, 
all layers except the last fully connected layer were extracted, and a new fully connected layer replaced the 
original model’s last one for a new device classification task.

The WHITED dataset contains 54 types of loads. To assess the classification performance for each device, we 
chose to use the F1-score. As shown in Fig. 16, it is clear that our method has excellent classification performance 
for all loads, with most F1-scores remaining above 99% and an F-macro of 98.8%. Among them, the LaserPrinter 
exhibited irregular waveform fluctuations, resulting in lower accuracy. Unlike the results on the PLAID dataset, 
air conditioners and fridges had high accuracy, which is because this dataset only included one working mode 
for these devices.

Fig. 16.  F1-score (%) visualization.

 

Fig. 15.  Comparison of different recognition models.
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Example analysis
Compare methods that use the same dataset but select different features or different recognition models, and 
evaluate the effectiveness of each method. The results are shown in Table 4.

Chen et al.23 fused V-I trajectories, the amplitude and phase angle of odd harmonics, and fundamental wave 
amplitude into a feature matrix. A heatmap was constructed based on the magnitude of values to effectively 
address the issue of feature masking caused by feature fusion, achieving an F-macro of 96% on both the REDD 
and PLAID datasets. Han et al.45 proposed a CGAN algorithm for monitoring unknown and identifying known 
devices, inputting V-I trajectory features and generating probability capsules through a capsule network in the 
generator to represent the latent features of devices. It ensures their separation in the feature space by learning the 
feature distribution of each known device through multiple learnable Gaussian priors, achieving an F-macro of 
95.3% and 98.31% on the PLAID and WHITED datasets, respectively. Wang et al.46 uses the VGG16 convolutional 
neural network for the preliminary classification of V-I trajectories of loads, combined with maximum relevance 
minimum redundancy feature selection and support vector machine algorithm for a two-stage identification, 
achieving an average F1 score of 0.982 on the PLAID dataset. However, as a deeper convolutional network, 
VGG16 is parameter-intensive and computationally complex, and is less computationally efficient than the 
method described in this paper. Shi et al.47 utilizes an LSTM denoising autoencoder to decompose the mixed 
current signals of home busbars, obtaining independent load current signals and combining them with voltage 
signals to generate multi-cycle color V-I trajectories, recognized through an optimized CNN network, with 
results of 0.87. Lu et al.48 proposes a Siamese network that combines a fixed CNN and backpropagation network 
for online retraining, extracting low-dimensional features of V-I trajectories and fine-tuning the BP network, 
achieving an average F1 score of 0.992 on the PLAID dataset. Although this method’s average F1 score is slightly 
higher than that in this paper, it does not employ transfer learning and has limited generality. Ou et al.49 proposes 
a residual convolutional neural network model based on energy normalization and squeeze-excitation blocks 
(EN-SE-RECNN), using weighted V-I trajectories, Markov transition fields, and GAF images based on current 
spectral sequences, achieving average F1 scores of 0.9744, 0.9543, and 0.9684 on the PLAID, WHITED, and 
HRAD datasets, respectively. Li et al.50 combines short-time Fourier transform (STFT) to extract time-frequency 
features and optimizes feature extraction through a sparse stacked autoencoder (SSAE), using a Bi-LSTM and 
DTW model to construct a load identification architecture, with an average F1 score of 0.9578 on the PLAID 
dataset. The average F1 scores of the method proposed in this paper are 0.973 and 0.988, which are better results 
compared to other control groups.

Conclusion
This paper proposes a NILM technique based on time-enhanced multi-dimensional feature visualization, which 
fuses color coding and temporal characteristics based on V-I trajectories to form three-dimensional spatio-
temporal V-I trajectories, achieving the visualization of steady-state, transient, and dynamic features. This 
improvement is particularly crucial for distinguishing V-I trajectories that appear similar but have different 
formation processes. With the addition of the time dimension, it is possible to intuitively observe the formation 
process of V-I trajectories, effectively distinguishing similar loads that are difficult to identify with traditional 
methods. In terms of image recognition, a transfer learning-based ECA-ResNet34 network recognition model 
is constructed, which avoids the gradient descent problem of CNNs and achieves the use of a single classifier 
model to recognize multiple loads, reducing training time and improving computational efficiency. Finally, 
using PLAID and WHITED datasets for validation, the results prove that the proposed method has better 
accuracy compared to other methods. However, designing more appropriate NILM for multi-state loads remains 
a challenging problem, requiring more advanced modeling methods to be solved in future work.

Data availability
The datasets generated and/or analyzed during the current study are available in the DataSet repository, ​h​t​t​p​s​:​/​/​
g​i​t​h​u​b​.​c​o​m​/​Y​y​m​2​1​2​6​1​2​/​D​a​t​a​S​e​t​​​​​.​​

Received: 19 March 2024; Accepted: 3 February 2025

Ref. Characteristic Training model

setResult (%)

PLAID WHITED REDD HRAD
23 V-I + harmonic SE-ResNet 96 – 96 –
45 V-I CGAN 95.3 98.31 – –
43 V-I VGG16 + SVM 98.2 – – –
44 Color-encoded V-I BOA + CNN 87 – – –
45 V-I CNN + Siamese + BP 99.2 – – –
46 WVI + MTF + I-GAF EN-SE-RECNN 97.44 95.43 – 96.84
47 Time-frequency features DOSL 95.78 – – –

Proposed Three-dimensional space-time color V-I ECA-ResNet 97.3 98.8 – –

Table 4.  Comparison of average F1 scores among different methods.
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