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Gene microarray technology provides an efficient way to diagnose cancer. However, microarray gene 
expression data face the challenges of high-dimension, small-sample, and multi-class imbalance. 
The coupling of these challenges leads to inaccurate results when using traditional feature selection 
and classification algorithms. Due to fast learning speed and good classification performance, deep 
neural network such as generative adversarial network has been proven one of the best classification 
algorithms, especially in bioinformatics domain. However, it is limited to binary application and 
inefficient in processing high-dimensional sparse features. This paper proposes a multi-classification 
generative adversarial network model combined with features bundling (MGAN-FB) to handle the 
coupling of high-dimension, small-sample, and multi-class imbalance for gene microarray data 
classification at both feature and algorithmic levels. At feature level, a deep encoder structure 
combining feature bundling (FB) mechanism and squeeze and excite (SE) mechanism, is designed for 
the generator. So, the sparsity, correlation and consequence of high-dimension features are all taken 
into consideration for adaptive features extraction. It achieves effective dimensionality reduction 
without transitional information loss. At algorithmic level, a softmax module coupled with multi-
classifier are introduced into the discriminator, with a new objective function is distinctively designed 
for the proposed MGAN-FB model, considering encode loss, reconstruction loss, discrimination loss 
and multi-classification loss. We extend generative adversaria framework from the binary classification 
to the multi-classification field. Experiments are performed on eight open-source gene microarray 
datasets from classification performance, running time and non-parametric tests, which demonstrate 
that the proposed method has obvious advantages over other 7 compared methods.
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Accurate identification of cancer types contributes to the correct treatment of cancerous tumors. Gene microarray 
data provide advanced biological basis for cancer diagnosis, which is a more efficient way to diagnose cancer, 
compared with traditional ones based on morphological and clinical appearance1. The microarray technology 
based on gene expression gives more accurate results as the cancer is fundamentally a malfunction of genetics2. 
So, it has attracted a lot of attentions and various classification methods have been proposed to identify cancers 
based on gene microarray data3.

For multi-class classification tasks of gene microarray data, there are three main types of machine learning 
(ML) methods. The first type was based on traditional ML methods. One-versus-One (OVO), One-versus-Rest 
(OVR) and multiple binary classifiers were all tried to deal with this problem4. Their strategy is to transform 
the multi-classification problem into some binary classification problem, which is inefficient and unstable. The 

1Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China. 2Department of 
Information Technology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China. 3Department 
of Infectious Diseases, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China. 4College of 
Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China. 5Information Security Evaluation 
Center, Civil Aviation University of China, Tianjin 300300, China. email: hsui@cauc.edu.cn

OPEN

Scientific Reports |         (2025) 15:5239 1| https://doi.org/10.1038/s41598-025-89475-2

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-89475-2&domain=pdf&date_stamp=2025-2-11


second type was based on swarm intelligence algorithms, such as Particle Swarm Optimization (PSO), Firefly, 
Flower Pollination Optimization (FPO), Elephant Herding Optimisation (EHO) and Cuckoo Search (CS)5,6. They 
were always used with Gaussian Mixture Model (GMM) and well known for their efficiency and effectiveness 
as global search agents. However, their scalability for high-dimensional datasets is also challenging. In recent 
years, various architectures of deep learning (DL) were applied, including fully connected neural networks 
(also known as multi-layer perceptron NN, or MLP), convolutional neural networks (CNN), recurrent neural 
networks (RNN), graph neural networks (GNN), transformers neural networks (TNN)7, and extreme learning 
machine (ELM)1. Despite the recent progress in DL-based cancer classification, various problems remain to be 
addressed, including high-dimension, small-sample and class imbalance.

The characteristics of gene microarray data, such as high-dimension, small-sample and multi-class imbalance, 
pose serious challenges to its classification and analysis8. Humans have more than 30,000 genes, which means 
that the gene expression microarray data has tens of thousands of features. We must select hundreds, dozens, 
or even a few genes associated with a certain cancer from these genes, to guide the early diagnosis of cancer. 
Undoubtedly, it’s a great challenge for traditional methods, that is, curse of dimensionality9. Especially, when the 
sample size n and the feature dimension d satisfy the relation of n < < d, classical statistical methods encounter 
the performance degradation for classification10, which is a coupled problem high-dimension and small-
sample. More unfortunately, multi-class imbalance of gene microarray data further increases the complexity and 
extremity11. These factors are always coexisting, making cancer type identification based on gene microarray 
data as an acknowledged challenging issue.

Data preprocessing including feature selection and resampling and algorithm optimization are common 
methods to deal with high-dimensional, small-sample and multi-class imbalance problem. Feature selection 
is usually applied in gene microarray data evaluation12. However, when feature selection is carried out, class 
imbalance is usually not considered, and the selected features may be biased towards the majority category while 
ignoring the discrimination ability of the minority category. Furthermore, small-sample and imbalance often 
bring features overlap problem, which makes classifiers more difficult to deal with. Resampling can balance the 
dataset by generating a few minority samples or deleting most of the majority samples, so that the classifier can 
get better training13. Obviously, in the case of small-sample of the gene microarray data, oversampling methods 
are mainly used. However, when faced with multi-class imbalance, the number of samples to be generated is 
huge, and different sampling methods are needed for different minority class to achieve high quality sampling, 
both of which make it low efficiency. In addition to data preprocessing, some algorithm-level approaches have 
also been proposed to make the classifier more focused on feature learning of minority samples through some 
special mechanisms such as cost sensitivity14, or ensemble learning15. However, most of these methods are 
optimized for specific data sets, have limited scope of application, insufficient generalization ability, and are 
dependent on data quality.

It is urgent to propose a more robust method with more comprehensive advantages in features, samples and 
algorithms to realize cancer classification and diagnosis based on gene microarray data. Deep neural network 
auxiliary diagnosis technology has gradually become a research hotspot, with its adaptive processing ability16. The 
most representative deep learning method in imbalanced data learning is the generative adversarial network17. 
It carries out model training and parameter updating through the antagonistic game between the generator 
and the discriminator, so that the generator can generate samples more in line with the real distribution, and 
the discriminator can be more sensitive to anormal samples, which is suitable for small-sample and imbalance 
problem. However, the existing GAN models are always inefficient when dealing with high-dimensional 
features. Meanwhile, due to the restriction of discriminator mechanism, GAN model is mainly used in the field 
of binary classification, and cannot solve the multi-classification problem in gene microarray data. Therefore, 
a multi-classification generative adversarial network model combined with features bundling (MGAN-FB) is 
proposed in this paper, to improve the classification performance for high-dimension, small-sample and multi-
class imbalance gene microarray data to assist cancer type identification. The main contributions are as follows:

(1) We propose a multi-classification framework derived from generative adversarial network. It consists of 
two encoders in generator, and one multi-classifier in discriminator, which puts forward an effective model for 
high-dimension, small-sample and imbalanced gene microarray classification.

(2) A deep encoder structure combining feature bundling (FB) mechanism and feature squeeze and excite 
(FSE) mechanism, is designed for the generator. So, the sparsity, correlation and consequence of high-dimension 
features are all taken into consideration for adaptive features extraction. It achieves effective dimensionality 
reduction without transitional information loss.

(3) A softmax module coupled with multi-classifier are introduced into the discriminator, which realizes the 
integration of discriminant and classification. It extends GAN framework from the binary classification to the 
multi-classification field, solving multi-class imbalance problem of gene microarray data classification.

(4) A new objective function is distinctively designed for the proposed GAN model. The encode loss of 
feature compression and the reconstruction loss of data generation are considered in the generator. Besides, the 
discrimination loss and data classification loss are considered in the discriminator. It realizes the accurate multi-
classification under imbalanced situation.

The remainder of this article is organized as follows. In Sect. 2, we review the related works. In Sect. 3, we 
outline the proposed MGAN-FB model in detail. In Sect. 4, we present the experimental methodology including 
benchmarked datasets, evaluation metrics and experimental design. Additionally, in Sect. 5, we report on and 
analyze the experimental results. Finally, we conclude this paper and look forward to the future work in Sect. 6.
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Related works
Feature selection methods
Feature selection is to select optimal feature subset, and discard irrelevant and redundant features to reduce 
data complexity for better classifier training. It can be divided into three main types: filter based, wrapper based, 
embedded and deep-learning methods.

Filter based methods only use the characteristics of the sample itself without the need to rely on subsequent 
models. The main idea is to use the evaluation function to calculate all the feature scores, then rank the scores 
from smallest to largest, and then intercept the top features. The evaluation criteria are generally the difference, 
correlation or information entropy among features. Difference evaluation criteria believes that the greater the 
difference, the higher the distinguishability of labels18. Method depending on correlation is generally driven 
from the correlation coefficient between each feature. And features with higher coefficient would be kept for 
model training19. Information entropy can measure the importance of a feature for a certain class label from the 
perspective of information theory. The typical method is to calculate the information gain of the feature column 
and label column20.

Wrapper based methods consist of a search algorithm and a classifier, which is to embed the feature selection 
process into the subsequent classifier learning. Common search algorithms are sequential forward/ backward 
selection (SFS/SBS)21. SFS starts with an empty set of features and adds the optimal features to the set one 
by one. While SBS starts with all features and progressively removes the worst remaining feature sequences. 
Biological swarm intelligence algorithm22 is also a typical wrapper-based method. It simulates the gathering 
behavior of organisms such as birds or fish, and searches for the optimal solution by constantly adjusting the 
position and speed of particles. Besides, annealing algorithm23 often have a better selection effect, however, the 
time complexity is usually high, especially for datasets with high-dimension features.

Embedded method is a compromise between filtering method and packaging method, whose main idea is 
to integrate feature selection process and model learning process24. For embedded methods, the feature selector 
can usually achieve better learning accuracy. However, they were always tied to specific classifiers to deal with 
imbalance and multiple classification problems, which is not flexible enough25. With the increasing expansion 
of genetic data, deep learning method plays a more important role in feature selection, for its better ability to 
describe the implicit relationship between features, such as fDNN26, DNP-AAP27 and forge net28. fDNN26 is 
composed of two parts: multiple decision trees (forest) to obtain features with higher weight, and DNN (deep 
neural network) for classification. DNP-AAP27 is also composed of two parts, namely DNP and AAP. DNP 
makes it possible to select features, and AAP is to evaluate the importance of the selected features. Forge net28 
is a forest graph embedded deep neural network model, which is an improvement of fDNN. The graph model 
mapped high-dimensional data into sparse space, which solves the problem sparsity well, while increases the 
utilization of computer memory space to a certain extent.

Multi-class imbalance process methods
Two main types of approaches have been tried to solve multi-class imbalance problem: data-level approaches 
and algorithm-level approaches29. The former focused on preprocessing to rebalance data30, whereas the latter 
provided guidance for classifiers to bias toward the minority samples31.

Clearly, how to rebalance the training dataset is the key issue in multi-class imbalance problem. In general, 
resampling approaches have well coped with imbalance, by improving the minority component ratio of the 
dataset. Considering the particularity of the small-sample gene microarray data, oversampling method is more 
suitable. The most classic oversampling method is the synthetic minority oversampling technique (SMOTE) 
with linear inter-potation. Then, several variants have been developed to overcome degeneration associated 
with noises by weighted cluster, such as noise-immunity majority weighted minority oversampling technique 
(NI-MWMOTE)32. Moreover, Zhu et al.33 divided the samples using position characteristic-aware interpolation 
algorithm, and different interpolation strategies were given to different class. Navarro et al.34 proposed a dynamic 
oversampling procedure in a memetic algorithm that uses neural networks. First, the examples of the minority 
classes are oversampled to partially balance the classes. Then, the memetic algorithm is applied to oversample 
the data and generate new patterns for the class with the least sensitivity. Wang and Yao35 studied the effect of 
multi-minority and multi-majority classes on the learning process, and additionally explored AdaBoost.Nc36 
with imbalanced, multi-class datasets. Their method used a negative correlation learning algorithm that utilizes 
an ambiguity term to add explicit diversity.

Recently, attention is drawn to the more challenging case of algorithm design learning from imbalanced, 
multi-class data. Xiao et al.37 applied deep learning to an ensemble framework that incorporates multiple different 
machine learning models. Data were selected by differential gene expression analysis and a deep learning method 
was employed to ensemble the outputs of the classifiers. Qi et al.38 integrated Adaboost with deep support vector 
machine. Adaboost is applied to select SVMs with the minimal error rate and the highest diversity. By stacking 
SVMs into layers, the method acquires a new set of deep features. Rasti et al.39 employed a mixture ensemble of 
convolutional neural networks for breast cancer detection. Each convolutional neural network is a modular and 
image-based ensemble, which stochastically partition the image space through simultaneous and competitive 
learning.

Generative adversarial network-based classification methods
In recent years, Generative Adversarial Network (GAN)-based methods have been developed for small-sample 
data classification, given their better ability to generate diversiform samples. Similarly, GAN can also be used to 
solve the problem of insufficient samples and unbalance from the two levels of samples and algorithms.

For sample level, the generation mechanism of GAN can supplement high-quality minority samples. 
Gayathri et al.40 used GAN with auxiliary information to further improve the diversity of generated samples. 
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Engelmann et al.41 employed Wasserstein distance into conditional GAN model to generate data of the specified 
class, optimizing the classification performance on strongly nonlinear datasets. Zheng et al.42 further introduced 
the penalty coefficients into GAN, which showed greater advantages in terms of model stability. Dlamini and 
Fahim43 put forward a conditional GAN model with KL-divergence. This method not only guided learning 
toward the minority class, but also overcame gradient vanish.

GAN models can also be used for direct classification due to their strong learning ability of sample distribution 
and deep interaction features. Donahue et al.44 introduced the encoder into the basic GAN model and built 
the BiGAN (Bidirectional GAN). This bidirectional generation mechanism enables the generator to learn the 
inverse mapping from hidden space to real data space and attach inverse mapping labels to the original data. 
Zenati et al.45 proposed a more Efficient Gan-based model, EGBAD (Efficient Gan-based Anomaly Detection), 
and proved that this method is not only applicable to image data, but also to network security data. Aiming at the 
discrete data classification, Chen and Jiang46 proposes a model based on BiGAN and the full-connected network 
of dropout to calculate the discriminant loss by weighted summation of residual loss. Jiang et al.47 proposed a 
GAN model for imbalanced data. The scoring function is composed of both apparent loss and potential loss, 
so as to realize fault classification of rolling bearing data. Li et al.48 combined GAN with LSTM and RNN to 
proposed a multivariate method, MAD-GAN (Multivariate Detection with Generative Adversarial Networks), 
which considered the interaction between hidden spatial features of the dataset. The existing GAN methods have 
achieved remarkable results in the classification of imbalanced data. However, they can only be used for binary 
detection, and the research on multi-classification of small-sample and imbalanced data needs to be further 
developed.

The proposed MGAN-FB method
Motivation
Studies have shown that high-dimensional, imbalanced and multi-classification coupling is a great challenge 
for cancer type identification based on gene microarray data. High dimension is difficult problem for feature 
selection, and imbalance is a problem for data the distribution, both of which are sample-level problems. 
However, multi-classification is a problem for model-level. In order to solve this comprehensive problem well, 
we need to consider from different aspects and put forward a more comprehensive framework.

The existing solution adopt a divide-and-rule and simply-splice strategy, with feature-selection for high-
dimensional, resampling for imbalance, and OvO or OvA schemes for multi-classification. As a result, there is still 
a lack of effective comprehensive method for the coupling problem. Although some of the above methods have 
achieved certain results, the stability of classification is not good. The effect is better for some datasets, however, 
it may be poor for other ones. The reason is that there may be contradictions or conflicts in the mechanism of 
this splicing solution. For instance, the sample distribution is not considered when feature selection is used for 
dimensionality reduction, which may lead to increased imbalance and even class overlap. In addition, without 
considering the imbalance problem in multi-classification may exacerbate the imbalance to higher level and 
further aggravate the small-sample problem.

The root cause of the aforementioned shortage is that the existing solutions are not under a unified 
architecture, with the multifaceted nature of the problem and the complexity of the unified architecture. In 
recent years, with the development of deep learning frameworks, their heuristic learning capabilities can well 
handle multiple difficult problems at the same time. Its adaptive learning of features avoids the dependence on 
researchers’ experience. The generation mechanism can also overcome the problem of imbalance and small-
sample effectively. A simple optimization of the output layer will handle multiple classification problem easily.

Therefore, aiming at the multi-faceted coupling problem faced by cancer type identification based on gene 
microarray data, this paper intends to design a deep learning framework with more comprehensive performance 
advantages.

MGAN-FE model design
Framework of MGAN-FE
Figure  1 illustrates the framework of our proposed MGAN-FE method, which contains two sub-networks: 
generator and discriminator.

In the generator, we use the “encoder + decoder + encoder” architecture, so it consists of a feature bundling 
module, two encoders, and a decoder. The generator learns the input data representation and reconstructs the 
input data via the use of an encoder and a decoder network, respectively. The generator G first reads an input 
data x, where x ∈ Rw×h×c, and forward-passes it to feature bunding module FB and encoder network EN1. EN1 
downscales x by compressing it to a vector E(x|c), where E(x|c) ∈ Rd. z is also known as the bottleneck features of 
G and hypothesized to have the smallest dimension containing the best representation of x. The decoder network 
is to upscales the vector E(x|c) to reconstruct the data x as x’. Based on these, the generator network G generates 
data x’ via x’=DE(E(x|c)).

The discriminator adopts the architecture of “coding + multi-classifier + softmax” to realize the combination 
of identification sample generation and multi-classification. To generate a specific class of samples in a directional 
manner, the input is not only a data x, but also with its class label c as an auxiliary condition, so as to finally 
generate a specific sample (x’, c). Essentially, it is a variant of the CGAN model with adversarial learning by a 
generator and discriminator. As stated before, the two core models in GAN are the generative model G and 
the discriminative model D. D can be treated as a binary classifier, which only has ability to judge whether 
the sample is from the real dataset or not. It does not have ability to further predict the classification of real 
samples. Additionally, most of classifiers for detection usually belong to the supervised learning, so we need 
to reconstruct a supervised learning framework based on GAN. In order to supply more information for the 
multiclass classifier, we take the output of the generative model G as the input of the classifier together with 
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the original training set. To improve the efficiency of the framework and further simplify the framework, we 
replace the discriminative model D with an encoder and a multiclass classifier. In this way, the classifier does not 
only undertake the task of classification, but also serves as the role of the discriminative model D to determine 
whether the sample is from G or the real dataset. The pseudo-code for the algorithm is shown as follows:

Fig. 1.  Framework of the proposed MGAN-FB model.
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Algorithm 1 .  Anomaly detection based on MGAN-FB.

Feature bundling module
High-dimension is a significant characteristic of gene microarray data. Subsequent deep encoder can adaptively 
extract features from the perspective of correlation, so as to achieve dimensionality reduction. However, there 
are still large numbers of features whose values is 0 in gene microarray data, which are called sparse features. 
While the others whose values are not 0 in all samples are called dense features. The subsequent deep encoder 
network is undoubtedly inefficient for processing sparse features, and it also increases the learning error. 
Therefore, we designed a FB module in the generator to process these sparse features in advance, facilitating 
subsequent learning and classification.

Obviously, we want to only deal with sparse features and keep dense features. The idea is to combine sparse 
features into one or a few dense features. Specifically, the sparse features are combined according to certain rules, 
that is, bundling, which is somewhat similar to the inverse process of one-hot, as shown in Fig. 2.

To avoid the impact of different feature value ranges on bundling, we need to normalize all feature value 
ranges first. As shown in Fig. 2, both Feature 4 and Feature 5 are normalized to the value range of 0–10. Then, 
when some sparse features are bundled, we adopt the downward binding principle. For example, when Data 1 
is performed of feature binding, it is bundled from Feature 2 to Feature 1, with a new feature value 10 + 3 = 13. 
Similarly, when Data 2 performs feature binding, it is bundled downward from the Feature 3, and its feature 
value is 20 + 5.2 = 25.2. In this way, when binding is carried out, the samples are dispersed to the greatest extent 
in the same feature dimension, and the sample overlap caused by dimension reduction can be avoided.

It should be noted that when we perform bundling operations, there may be two features with non-zero 
eigenvalues. For example, Data 3 has non-zero values on both Feature 2 and Feature 3, which is defined as feature 
conflict. Conflicts are inevitable because it is difficult to find a feature that has a value of 0 on all samples. In the 
case of completely excluded conflicts, there are very few features that can be combined, so we will presuppose a 
feature conflict ratio threshold. When the conflict ratio does not exceed the threshold, we ignore the conflict and 
bundle them together. While if the conflict ratio exceeds this value, they cannot be bundled into one new feature.
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We generally set the threshold as 1/1000, which means that the proportion of two features with non-0 values 
in all samples does not exceed 0.1%. This threshold can be optimized based on sample size. In this case, the 
value with the largest value among the two features that are not 0 is taken as the reserved value when bundling 
is conducted. For example, in Data 3, the value of Feature 2 is 5 and the value of Feature 3 is 3.7. We retain 5 and 
bundle it to Feature 1, so the eigenvalue after bundling is 10 + 5 = 15.

Based on the above principles, we also need to find all exclusive features to perform the binding operation, 
which is a NP problem. Therefore, through the greedy algorithm, we only need to perform one feature traversal 
to achieve the binding of all sparse features.

Common sparse optimization needs to save non-zero value table, while after bundling, multiple sparse 
features are bundled into fewer dense features without non-zero value table, which saves memory and time 
consumption. At the same time, when the traversal is carried out among multiple sparse features, there is a low 
cache miss problem in each feature switching. After merging into one feature, the number of feature switching 
is reduced. In addition, the binding not only solves the problem of sparse features, but also realizes dimension 
reduction.

It is also obvious that we cannot restore the original features after bundling, because we cannot mark that the 
merged feature values are from those original features. It means that we lose some information when operating 
sparse feature bundling, which is inevitable for all feature extraction and dimensionality reduction. This part 
of the loss will be considered in the sample reconstruction. Besides, it should be noted that feature bundling 
is only applicable to numerical features and cannot be used directly for non-numerical ones. Fortunately, gene 
microarray data is precisely a numeric array, so feature bundling can be used directly.

Fig. 2.  Illustration of feature bundling principle.
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Encoder and decoder module
Not all of features are associated with a particular type of cancer, and we want to find the ones that were more 
important for a particular type of cancer. Encoder can automatically mine deep feature interactions to help us 
find the most important features for a certain cancer expression, which is essentially a heuristic adaptive feature 
selection.

The generator consists of two encoders and one decoder. The first encoder plays the role of dimensionality 
reduction to solve the problem of high-dimensional features, and the decoder generates specific class of samples 
by restoring features to solve the problem of imbalance and small-sample. The second encoder is to extract the 
depth feature of the generated sample, and its main function is to evaluate the quality of the generated sample. 
As for decoder, is has only one encoder. The subnet structure of the encoder and decoder is shown as Fig. 3.

As shown in Fig.  3(a), encoders are designed with 11 layers, including convolution (Conv), Bach Norm, 
Leaky Relu, squeeze and excite (SE), and full connection (FC). The convolution layer ensures that the connection 
can extract the features more effectively, and map low- to high-dimensional space for oversampling operation. 
Hence, it can improve the resolution of the model to the feature, and achieve higher accuracy through learning. 
The Bach Norm accelerates the convergence rate of the model and effectively avoids gradient disappearance. 
The scaling factor within the Bach Norm can effectively identify neurons that contribute little to the network, 
and some neurons can be automatically weakened or eliminated after the activation function. The Leaky Relu 
is used as the activation function, which will count the part of the input that is less than 0. Then the sawtooth 
problem in the gradient direction is avoided in the backpropagation process. The squeeze and excite (SE) block 
adopt feature recalibration strategy by feature compression, excitation and reweighting. It is of five-layer network 
structure, including global poling layer, two fully connected layers, Relu layer, and sigmoid layer. So as to the 
weight of effective features is increased, and the weight of invalid or small effect is reduced. By integrating 
feature representation into a value, it reduces the influence of feature location on the classification results, and 
improves the robustness of the entire network. As a result, MGAN-FE with encoders can learn the characteristics 
of sample data in the feature space, simplify the data representation, and then obtain effective patterns, further 
improving the generation ability. The second encoder network that compresses the data x’ that is reconstructed 
by the network G. With different parametrization, it has the same architectural details as EN1.

The subnet structure of the decoder is a multi-layer. And for better reconstruction of sample data, three types 
of activation function are used, including Leaky Relu, Relu and Tanh. The dimension of the vector E(x’|c) is the 
same as that of E(x|c) for consistent comparison. Unlike the prior autoencoder-based approaches, in which the 
minimization of the latent vectors is achieved via the bottleneck features, this sub-network explicitly learns to 
minimize the distance with its parametrization. During the test time, moreover, the detection is performed with 
this minimization. A standard multiclass classifier usually takes a sample x as input, and outputs a vector that 
can be turned into one of the possible class probabilities by applying the softmax function. In the supervised 
learning, such a model is then trained by minimizing the cross-entropy between the real labels and the predictive 
distribution to obtain the optimal parameters. The main parameters of the encoder and decoder is as follows.

Operation Kernel Strides Feature Maps/Units

Conv/Conv Transpose 3×3 2×2 128

FC Input-output
Optimizer
Batch size
Leaky ReLU slope
Weight, Bias Initialization

128 − 12
Adam (α = 10− 5, β1  = 0.6)
10
0.1
Isotropic gaussian (µ = 0, σ = 0.01)

Table 1.  Main parameters of the encoder and decoder.

 

Fig. 3.  Subnet structure of the encoder and decoder.
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For gene microarray data, convolutional layers have three functions. It is as a filter to perform noise reduction, 
which makes raw data smoother. In addition, it is also a “compressor” to reduce the dimensions of the gene 
microarray data, dealing with the dimension problem together with the feature binding module. Besides, the 
more important role is to capture the local characteristics correlation of the gene microarray data to. Because 
researches have shown that local expression relationships among gene microarray data may also contain cancer-
related information49.

After the introduction of adversarial training for intrusion detection, the generative model can continually 
generate ‘fake’ samples from a random distribution. In the adversarial training, the multiclass classifier identifies 
whether the sample is normal, or fake, or any one of the other classes, while the generative model dynamically 
adjusts the strategy for generating more similar fake samples according to the feedback (fake or real) from the 
multiclass classifier. Thus, the framework can train the classifier together with new augmented training set, 
which includes original class labeled samples and constantly generated new ‘fake’ samples.

MGAN-FB model training
To realize multiple classification for gene microarray data, the designed MGAN-FE model needs to be further 
trained. The key of this training is to determine the target, that is, the loss function of MGAN-FE model. We 
hypothesize that when a data is forward-passed into the network G, it is not able to reconstruct the abnormalities 
even though encoder manages to map the input x to the latent vector E(x|c). This is because the network is 
modeled only on samples of certain class during training and its parametrization is not suitable for generating 
samples of other classes. An output that has missed other classes can lead to the encoder network mapping it 
to a vector that has also missed certain feature representation, causing dissimilarity between them. When there 
is such dissimilarity within latent vector space for an input data, the model classifies them as a certain class. To 
validate this hypothesis, we formulate our objective function by combining four loss functions, each of which 
optimizes individual sub-networks.

According to the design of the generator, there are two main losses, namely, encoding loss Le in the 
process of feature extraction (dimensionality reduction) and generation loss Lr in the process of decoding and 
reconstruction of new samples. The two losses introduced above can enforce the generator to produce data that 
are not only realistic but also contextually sound. Moreover, we employ an additional encoder loss to minimize 
the distance between the bottleneck features of the input and the encoded features of the generated sample. 
Encoder loss is formally defined as:

	 Le = Ex∼px

∥∥E(x |c ) − E(x′ |c )
∥∥

2� (1)

The reconstruction loss is adequate to fool the discriminator D with generated samples. However, with only an 
adversarial loss, the generator is not optimized towards learning contextual information about the input data. It 
has been shown that penalizing the generator by measuring the distance between the input and the generated 
data remedies this issue. Isola et al.50 showed that the use of L1 yields less blurry results than L2. Hence, we also 
penalize G by measuring the L1 distance between the original x and the generated samples using a contextual 
loss defined as:

	 Lr = Ex∼px ∥x − G(x |c )∥1� (2)

In summary, the total loss of the generator is:

	 Lg = Ex∼px

∥∥E(x |c ) − E(x′ |c )
∥∥

2e
+ Ex∼px ∥x − G(x |c )∥1� (3)

The function of discriminator is to combine the two tasks of discriminating generated samples and multi-
classification. The difference in distribution between the initial sample and the generated sample is the 
identification adversarial loss La. Original sample class label and multiple classifiers get label differences for 
classification loss is Lc.

Discrimination loss
We use feature matching loss for adversarial learning. Proposed by Salimans et al.51, feature matching is shown 
to reduce the instability of GAN training. Unlike the original GAN where G is updated based on the output 
of D, here we update G based on the internal representation of D. Formally, let f be a function that outputs 
an intermediate layer of the discriminator D for a given input drawn from the input data distribution, feature 
matching computes the L2 distance between the feature representation of the original and the generated data, 
respectively. Hence, our discrimination loss is defined as:

	 La = Ex∼px ∥f(x |c ) − Ex∼px f(G(x |c ))∥2� (4)

Classification loss
It is assumed that (x’, c) is a sample from the training set that contains a k-class labels, where c ∈ {c1, c2, …, ck}. The 
generative model generates ‘fake’ samples (xf, cf), where cf =‘fake’. The samples (x, c) and (x’, c) are synthetic data 
samples and generated samples, where the label y contains k classes. For the multiclass classification problem, 
the classifier inputs a sample x and outputs the classification probabilities for the k classes pi (i = 1, 2, …, k). 
Assuming that p is the real probability distribution of the sample and q is the predicted probability distribution 
of the classifier, the cross-entropy for a given dataset x is defined as:
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CE(p, q) = −

∑
x∈X

p(x) log q(x)� (5)

The value of Eq. (5) indicates the error between the real classification and the predicted classification. The smaller 
the value is, the closer the predicted probability distribution is to the real probability distribution, and the more 
accurate the predicted result will be.

Under the multiclass classification task, the loss function is usually defined as cross-entropy loss. Let yj
xi

 
represent the real probability distribution of the sample xi, and let Pmodel(y = j|xi ) represent the predicted 
probability distribution of the sample xi, then the corresponding loss function can be defined as:

	
Lc = −

∑
j

yj
xi

log pmodel(y = j |xi ), j ∈ pi � (6)

For dataset X, which is synthetic data samples and generated samples, the corresponding loss function is defined 
as:

	
Lc = − 1

N

N∑
i=1

∑
j

yj
xi

log pmodel(y = j |xi ), j ∈ pi � (7)

After one-hot coding, the real category of the sample yj
xi

 is mapped into a K-dimension vector. For example, If 
the sample xi belongs to category c, then yj=c

xi
= 1. Besides, all the values of the remaining columns are 0, that 

is, yj ̸=c
xi

= 0. Therefore, the loss function of the multiclass classifier in the proposed framework can be further 
expressed as follows:

	

Lc = 1
N

N∑
i=1

[yj=c
xi

log pmodel(y = c |xi ) +
∑
j ̸=c

yj
xi

log pmodel(y = j |xi )]

= 1
N

N∑
i=1

[yj=c
xi

log pmodel(y = c |xi )]

= 1
N

N∑
i=1

log pmodel(y = c |xi )

� (8)

In summary, the total loss of the discriminator is:

	
Ld = La − Lc = Ex∼px ∥f(x |c ) − Ex∼px f(G(x |c ))∥2 − 1

N

N∑
i=1

log pmodel(y = c |xi )� (9)

Because the greater the classification difference, the smaller the discriminator loss, the negative sign is used for 
Lc. The generator and discriminator are optimally balanced through a binary zero-sum game, therefore, the 
objective function of MGAN-FE is:

	

min
G

max
D

V (D, G) = min(Lg − Ld)

= min[Ex∼px

∥∥E(x |c ) − E(x′ |c )
∥∥

2e
+ Ex∼px ∥x − G(x |c )∥1

+ 1
N

N∑
i=1

log pmodel(y = c |xi ) − Ex∼px ∥f(x |c ) − Ex∼px f(G(x |c ))∥2]

� (10)

About the stopping criterion for training, we set an epoch value of the training cycle, and generally the model 
stops training when the preset epoch is finished. However, in order to further improve the training efficiency 
and avoid overfitting caused by small-sample, we adopted the early stopping strategy. The dataset is divided into 
training set, validation set, and test set. Considering the small number of samples and the imbalance problem, 
the training set used all the data, while the verification set and the test set only selected 20% from raw dataset 
based on the proportion of each class. The criterion of early stopping is based on the average classification 
accuracy of all classes. When the accuracy increases less than 1% for 5 consecutive iterations, the training should 
be stopped.

As for avoiding the network overfitting, strategies such as early stopping, data set amplification, regularization 
and dropout are adopted generally. According to the specific situation of this paper, it mainly adopts the strategies 
of early stopping combining with dropout. The early stopping strategy is described above. For dropout strategy, it 
randomly ignores 40% of hidden layer nodes in each training epoch to avoid training the same nodes repeatedly.
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Experimental methodology
Benchmarked datasets
Eight gene microarray datasets were used in this paper to evaluate the performance of our approach and existing 
works. These datasets are all open-source datasets that are heavily used in the related works1,4,52. The details of 
these datasets are as listed in Table 2.

The imbalance degree is measured by the imbalance ratio (IR) that is defined as:

	
IR = max( #sample of classi )

min( #sample of classj ) � (11)

The imbalance ratio of these datasets varies from 1.4 to 23.17, and the number of classes varies from 3 to 11. And 
on each microarray dataset, the features are normalized into [− 1,1] for feature bunding.

Evaluation metrics
Experiments of classification, and non-parametric statistical tests were conducted, as to evaluate the proposed 
approach. For an in-depth investigation of the overall classification performance, we chose Accuracy, F1-score 
and G-mean as metrics. Further, we also focus on the classification performance on each minority class in multi-
classification problem. So, ROC curve and average AUC are also used for evaluation. All these metrics are based 
on four basic results, i.e., TP (True Positive), FP (False Positive), TN (True Negative) and FN (False Negative).

Accuracy is defined as:

	

Acc =

c∑
i=1

T Pi

c∑
i=1

(T Pi + F Ni)
� (12)

where, c is the number of classes in a dataset.
F1-score for multi-classification is evolved from the traditional F1 for binary classification. As known, F1 for 

a certain class i is defined as:

	
F1−i = 2P recisioni · Recalli

P recisioni + Recalli
� (13)

where, Recalli = T Pi
T Pi+F Ni

,P recisioni = T Pi
T Pi+F Pi

. Then F1-score can be defined as:

	
F1 − score =

c∑
i=1

F1−i

c

� (14)

G-mean is a main measurement in the field of data classification, which is very suitable for evaluating algorithm 
performance on datasets with different IR values, which is an index comprehensively considering recall rate and 
specificity:

	
G − mean = c

√∏c

i=1
(Recalli × Specificityi)� (15)

where, Specificityi = T Ni
T Ni+F Pi

. Moreover, the results were supported with non-parametric statistical tests. 
First, Friedman tests were conducted to detect differences among all methods. Then, the Nemenyi post hoc tests 
were utilized to distinguish the difference of the sampling methods. This test calculates the critical value (CD) of 
each average ranking mainly using Eq. (16).

Datasets #Samples #Classes #Features IR Classes

Brain Tumor1 90 5 5920 15 Medulloblastoma (Me), Malignant Glioma (NG), AT/RT, Normal Cerebellum (NC), PNET

Brain Tumor2 50 4 10,367 2.14 Classic Glioblastomas (CG), Classic Anaplastic Oligodendrogliomas (CAO), Non-classic Glioblastoma (NG)

9_Tumors 60 9 5727 4.5 NSCLC, Colon, Breast, Ovary, Leukemia, Renal, Melanoma, Prostate, CNS

11_Tumors 174 11 12,533 4.5 Ovary, Bladder/ureter, Breast, Colorectal, Gastroesophagus (Ga), Kidney, Liver, Prostate, Pancreas, Lung 
Adeno (LA), Lung Squamous (LS)

Leukemia 1 72 3 11,224 4.22 ALL B-cell, ALL T-cell, AML

Leukemia 2 203 3 12,600 1.4 AML, ALL, MLL

Lung Cancer 203 5 12,601 23.17 Adeno, Normal, Squamous, COID, SMC

SRBCT 83 4 2308 2.64 EWS, RMS, BL, NB

Table 2.  Details of gene microarray data.
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CD = qα

√
k(k + 1)

6t
� (16)

where, qα is the critical value of the tukey distribution, k is the number of algorithms, and t is the number of 
datasets.

Experimental design and parameters
This paper aims to handle the high-dimension, small-sample and imbalanced gene microarray data. To evaluate 
the performance of the proposed approach, MGAN-FE is compared against two types of methods to handle this 
problem:

(1) Two embedded feature selection methods based on the nearest neighbor model combined with SVM 
classifier: µ-Relief + SVM (µR + SVM)53 and NCFS + SVM54. And the parameters of these conventional methods 
refer to their classical settings. And 30% features are selected for both of the two methods according to literature 
experience.

(2) Two methods have demonstrated advantages for gene microarray data: Weighted Extreme Learning 
Machine (WELM)1 and Probabilistic Neural Networks (PNN)4. And the parameters of these conventional 
methods refer to the corresponding references.

(3) Three GAN-based methods: BiGAN44, EGBAD47, MAD-GAN48. With regard to GAN models, the 
dimensionality of the latent noisy space was set to be 32. The Adam optimizer was selected with the 0.00001 
learning rate set and the gradient penalty coefficient to 5.

As for compressing the running time, we use the simple decision tree as the multi-classifier in discriminator. 
All of experiments were conducted with an Intel Core i7 9750  H processor and an NVDIA GeForce GTX 
1650, and were implemented in Python 3.6 using the TensorFlow 1.14.0 architecture. Each dataset is randomly 
partitioned into three subsets according to the data distribution and the 3-fold cross validation is performed to 
evaluate the classification performance. Each experiment is individually repeated 30 times. The result is averaged 
over these 30 runs. As for binary classification models in the experiments, the OvA mechanism is used to achieve 
multi-classification.

Results and discussion
Classification performance
(1) Accuracy results
Table 3 shows the comparison results of our MGAN-FB method with other classification methods in terms of 
accuracy. Compared with other two combinatorial solutions, GAN-based methods perform better in average 
performance. In this case, our proposed MGAN-FB method ranked first in 6 of the 8 gene microarray datasets, 
obviously superior to other GAN-based methods. This validates that it could improve the classification accuracy 
of the minority class while maintaining high accuracy for the majority class, especially for the coupling of high-
dimension, small-sample and imbalance. However, as for datasets with higher dimensions and lower IR value, 
such as SRBT, its performance is inferior to traditional feature selection methods µR + SVM and NCFS + SVM. 
µR + SVM is clearly better than NCFS + SVM in these 8 datasets. In addition, on 11_Tumors, the best method is 
WELM, which is also one of methods that have demonstrated advantages in the field of multi-class classification 
tasks for gene microarray data. It is with the most classes, so the specially designed classifiers perform better, 
while our MGAN-FB only optimized a multi-classification module. Compared to DAGSVM, which is also 
always used in multi-class classification tasks for gene microarray data, WELM performed better.

Moreover, the results show that it could achieve accuracy more than 0.95 on seven of the eight benchmarked 
datasets. Ostentatiously, the accuracy of MGAN-FB in 9_Tumors is only 0.8378, which is not satisfactory, 
although it is highest among methods of comparison. As shown in Table1 2,  9_Tumors dataset has only 50 
samples, but 9 classes, with 5727 features. It may be the most typical coupling problem of high-dimension, 
small-sample and imbalance for gene microarray data classification. So, in such difficult scenario, all methods 
degrade in performance. If we look at this problem from another aspect, it is not difficult to find that MGAN-
FB improves the accuracy more significant. As for all datasets, its improvement seems no more than 0.03. So, 

Datasets
µR+
SVM

NCFS+
SVM WELM DAGSVM BiGAN EGBAD MAD-GAN Ours

Brain
Tumor1 0.8379 0.8248 0.8626 0.8372 0.8889 0.9091 0.9444 0.9519

Brain
Tumor2 0.8898 0.8936 0.9136 0.8279 0.9211 0.9487 0.9450 0.9644

9_Tumors 0.7656 0.7067 0.8039 0.7967 0.7319 0.7293 0.7134 0.8378

11_Tumors 0.8035 0.8246 0.9729 0.9224 0.8889 0.9091 0.9444 0.9619

Leukemia 1 0.9623 0.9109 0.9555 0.9016 0.9236 0.9495 0.9602 0.9896

Leukemia 2 0.9619 0.9577 0.9621 0.9235 0.9602 0.9764 0.9644 0.9867

Lung
Cancer 0.9398 0.9249 0.9396 0.8795 0.9447 0.9485 0.9222 0.9524

SRBT 0.9992 0.9963 0.9885 0.9831 0.9464 0.9751 0.9750 0.9954

Table 3.  Accuracy results Acc on cancer gene microarray data.
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we can infer that MGAN-FB is more capable of reaching its potential in more comprehensive circumstances of 
high-dimension, small-sample and imbalance coupling.

(2) F-1score results
Table 4 shows the comparison results of our MGAN-FB method with other classification methods in terms of 
F-1 score, which has same trend shown in Table 3. And MGAN-FB also get the highest F-1 score among 5 of the 
8 cancer gene microarray datasets, with a prominent improvement.

On some datasets, the F-1 score is degraded by proposed method slightly, compared to the result on Brain_
Tumor2 obtained by EGBAD. It may be caused by the decrease of the majority class. Analysis of classification 
performance of the minority classes in a multi-class problem is complicated because the impact of imbalance 
to the discriminant among classes is usually heterogeneous. In addition, it is not trivial to characterize the class 
layout especially for high dimensional scenarios. So as for F-1 score is a comprehensive classification result for 
the high-dimension, small-sample and imbalanced gene microarray data. In these datasets, the recalls of these 
classes are improved but the precisions maybe decreased. The classification performance of the classifier on this 
dataset is hard improved. When improving the F-1 measure of some classes, the F-1 measure of other classes may 
be degraded. On 11_Tumors and SRBT, µR + SVM performed best, it may a result of better features selection. 
More cancer-related features were picked out, so there were fewer false positives and missed positives in the 
classification.

Nevertheless, MGAN-FB obtains higher F-1 score for each class on most of datasets. And the result on Brain_
Tumor2 is still comparable to the best one. Our approach obtains the best result on the cancer microarray data 
except Leukemia2. The F-1 scores are respectively improved from about 0.02 and 0.05 on average when it is 
compared with others. It also should be noted that the F-1 measure results of Prostate class on 9_Tumors were 
not obtained, because this class only has 2 samples, and there is always no sample in training or testing set during 
cross validation.

(3) G-mean results
Table 5 shows the comparison results of our MGAN-FB method with other classification methods in terms of 
G-mean. It keeps a similar situation with Accuracy and F-1 score results. And the difference is that the MGAN-
FB method is not the preferred plan for Lung Cancer and 11_Tumors dataset, considering G-mean result. With 
the other 6 datasets, it is the best choice.

Since the IR value of Lung Cancer dataset is 23.17, which is the highest in the benchmarked datasets. So, it 
is a highly imbalanced dataset, which is more sensitive to G-mean result. As a comprehensive solution, MGAN-

Datasets µR + SVM NCFS + SVM WELM DAGSVM BiGAN EGBAD MAD-GAN Ours

Brain
Tumor1 0.9194 0.8635 0.9465 0.9028 0.9442 0.8286 0.8706 0.9623

Brain
Tumor2 0.9291 0.8092 0.9230 0.9143 0.9691 0.8730 0.8304 0.9890

9_Tumors 0.8037 0.8094 0.8120 0.8145 0.8101 0.8411 0.8223 0.8537

11_Tumors 0.9233 0.9385 0.9786 0.9365 0.9488 0.8503 0.9488 0.9676

Leukemia 1 0.9391 0.8856 0.9148 0.9036 0.9681 0.8849 0.9569 0.9691

Leukemia 2 0.9039 0.9101 0.8996 0.8780 0.9104 0.8294 0.5542 0.9392

Lung
Cancer 0.8812 0.8916 0.9215 0.9214 0.9006 0.9656 0.9283 0.9586

SRBT 0.9944 0.9958 0.9855 0.983 0.1879 0.9201 0.9769 0.9922

Table 5.  G-mean results on cancer gene microarray data.

 

Datasets
µR+
SVM

NCFS+
SVM WELM DAGSVM BiGAN EGBAD MAD-GAN Ours

Brain
Tumor1 0.8235 0.8163 0.8791 0.8311 0.8018 0.8237 0.8441 0.8800

Brain
Tumor2 0.9094 0.8925 0.9176 0.8875 0.9201 0.9575 0.9304 0.9542

9_Tumors 0.7956 0.7040 0.8833 0.8662 0.7981 0.8248 0.8473 0.8844

11_Tumors 0.9559 0.8766 0.9233 0.8399 0.9089 0.9218 0.9403 0.9455

Leukemia 1 0.9176 0.8693 0.9436 0.9465 0.9211 0.9385 0.9406 0.9735

Leukemia 2 0.9078 0.9063 0.9379 0.9214 0.9587 0.9778 0.9654 0.9867

Lung
Cancer 0.8924 0.8650 0.9103 0.9094 0.9219 0.9391 0.9248 0.9642

SRBT 0.9998 0.9923 0.9975 0.9811 0.9749 0.9980 0.9896 0.9996

Table 4.  F-1 score results on cancer gene microarray data.
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FB is more suitable for the coupling problem of high-dimension, small-sample and imbalance. If one aspect of 
the problem is extremely prominent, more targeted special solutions will have better results. Besides, for 11_
Tumors, although its IR value is only 4.5, it has 11 classes. So, the problem of relative imbalance between any two 
classes is more complicated. As a result, its performance is a little inferior to WELM, but still very competitive. 
In addition, it is important to note that despite large average accuracy is achieved by our MGAN-FB method, 
its G-mean results remain very competitive. It shows that our method has better stability for small-sample and 
imbalanced data.

Based on the G-mean results obtained by MGAN-FB, we also found that some datasets are sensitive to class 
imbalance but others are not. If the accuracy value is much larger than the G-mean value on a dataset, the 
corresponding classifier is significantly affected by the imbalance distribution. This situation was observed on 
several datasets, including Brain_Tumor1, Brain_Tumor2, 9_Tumors, Leukemia1 and Lung Cancer. Leukemia2 
and SRBCT are both slightly sensitive to class imbalance. These results are actually related to multiple factors, 
such as the sample imbalance among classes, the class overlapping and small disjuncts, etc.

(4) ROC and AUC results
In the multi-classification problem, the AUC values of different classes in one dataset are always different. In 
order to comprehensively reflect the classification performance of a certain classifier, we adopt the average AUC 
values of all classes in the same dataset as the evaluation metrics, as shown in Fig. 4.

Figure 4 shows the average AUC results. In this case, the results of our proposed MGAN-FB method with 
decision tree multi-classifier are ranked first in 6 of the 8 datasets. In addition, GAN-based deep learning 
methods performed better than the traditional combinatorial solutions for highly imbalanced dataset. Feature 
selection-based methods perform better on high-dimension data. For dataset with more classes, WELM reflects 
advantages.

In the case of the Brain Tumor1 dataset, the AUC value of MGAN-FB is 0.9764, which is improved about 0.1 
compared to DAGSVM; and it also improved by 0.0184, in the next best WELM method, whose AUC value is 
0.9580.

However, nor is the improvement evident across all datasets. For instance, in 11_Tumors dataset, MGAN-FB 
seems to be no obvious advantage. It only came in third place, not as good as µR + SVM and WELM. A similar 
situation can be seen on SRBT. As known in Sect. 4.1, 11_Tumors dataset has 11 classes, which is the most among 
the 8 benchmarked datasets. And the more classed there are, the greater the possibility of misclassifying a class. 
So, the average AUC value maybe pulled down by these few misclassifying classes. From another aspect, the 

Fig. 4.  AUC results cancer gene microarray data.
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proposed MGAN-FB completes a multi-classification task with more classes, with maintaining or even slightly 
improving overall performance. It also fully proves the superiority of this method in multi-classification task.

Running time
Furthermore, we compare the running time of various hybrid methods in Table 6. The computational cost is a 
major consideration in the employment of ensemble learning algorithms. With the iterative training scheme, 
it usually takes longer time than any single classifier, which becomes an issue when dealing with large, high-
dimension datasets. This section evaluates the computation cost of each method by measuring the training and 
testing time. Each experiment also runs 30 times. The running time are averaged over the 30 runs. It can be 
observed that our MGAN-FB method ranks as a leading and efficient method in all 8 datasets.

In the Brain Tumor1 dataset, the average time of the comparison GAN-based algorithms is approximately 
0.8s, while our method can improve the speed to 0.1498 s, which is approximately 80% improvement; in the 
Brain Tumor2 dataset, the average time of the comparison GAN-based algorithms is approximately 1.2 s, while 
our method can improve the speed to 0.6445 s, which is approximately 45% improvement. In other dataset, the 
average time difference of the comparison algorithms is also high, with the fastest being 10− 1 s magnitude and, 
the slowest being 1s magnitude, while our method still ranks the highest.

Since µR + SVM and NCFS + SVM, 30% of the useful features need to be pre-selected, so a lot of relevant 
calculations need to be done. As a result, it seems to take a longer time to complete training. For DAGSVM, large 
number of directed acyclic graphs need to be built for multi-classification, so it seems take the most time. WELM 
takes less time, because as a DNN model, feature selection and multiple classification tasks can be carried out 
by itself, which is similar to MGAN-FB. In Lung Cancer, it only needs 0.4445s, which is the best. However, with 
complexity of the coupling problem increases, using GAN as the base classifier also requires less training time. It 
is evident that our proposed method is very predictable in its superior efficiency among all methods. In average, 
our proposed method reduces the training time by more than 50%.

Non-parametric statistical tests
To reflect the difference in generalization performance between our MGAN-FB method and other methods, we 
used the Friedman test for a comprehensive comparison, and the average ranking results in Fig. 5.

Fig. 5.  Friedman’s test rankings for various evaluation metrics with decision tree multi-classifier.

 

Datasets µR + SVM NCFS + SVM WELM DAGSVM BiGAN EGBAD MAD-GAN Ours

Brain
Tumor1 2.7051 2.0654 0.3158 2.7052 0.797 0.8321 0.8621 0.1498

Brain
Tumor2 2.2198 1.7982 0.9935 2.1203 1.444 1.199 1.022 0.6445

9_Tumors 2.3992 1.9614 0.4680 2.2582 1.238 1.467 1.297 0.2172

11_Tumors 4.6554 3.2581 0.7814 4.5871 0.795 1.178 1.202 0.5760

Leukemia 1 2.7435 0.773 0.3548 2.2279 0.386 1.113 0.658 0.2803

Leukemia 2 3.1089 1.336 0.5548 2.3918 3.850 1.363 1.159 0.539

Lung
Cancer 3.1698 0.60802 0.4445 1.9268 1.359 1.029 0.78 0.4610

SRBT 0.9265 1.3164 0.5560 1.6856 0.605 0.654 0.659 0.465

Table 6.  Running time (s) of various methods.
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It can be inferred that all obtained results by each method for four evaluation metrics rejected the Friedman 
test at the α = 0.05 confidence level (all significance is less than 0.05), which indicates a significant difference 
between the performance of all the methods. MGAN-FB obtains high rankings on four metrics with decision 
tree multi-classifier.

Then, the Nemenyi post hoc tests were utilized to distinguish the difference of the sampling methods. This 
test calculates the critical value (CD) of each average ranking mainly using Eq. (16). The CD value is the same 
for each metric because k and t in Eq. (16) are constants. In general, if the average ranking of an algorithm is 
greater than the CD value, the hypothesis is rejected with the corresponding confidence level. We have k = 9, 
t = 8, and qα=0.05 to get CD value. The results are shown in Fig. 6. MGAN-FB has outstanding advantages as a 
control method in most cases.

To verify that it is the effect of the framework of MGAN-FB in this paper and not the effect of the decision 
tree multi-classifier themselves, we conducted a supplementary experiment with BP multi-classifier replacement 
decision trees in the discriminator and obtained similar results, as shown in Figs.  7 and 8. Thus, it can be 
concluded that the MGAN-FB method has more positive variability compared to other methods.

Ablation experiments
MGAN-FE has three key modules: Feature Bundling (FB), Encoder and Decoder (ED), and Multiclass 
Classifier Softmax (MCS). For ablation experiments, we set up four comparable methods on three metrics 

Fig. 7.  Friedman’s test rankings for various evaluation metrics with BP multi-classifier.

 

Fig. 6.  Nemenyi test rankings for various evaluation metrics with decision tree multi-classifier.
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for ablation experiments. MGAN-FE model is equal to GAN + FB + ED + MCS, three comparable methods 
are GAN + ED + MCS (without FB), GAN + FB + MCS (without ED), and GAN + FB + ED (without MCS), 
respectively. The results are as shown in Table 7.

Conclusions and future works
As gene expression data face high dimension, small-sample and multi-class imbalance. A hybrid deep learning 
method named MGAN-FE is proposed to handle this coupling problem of cancer gene microarray data at both 
feature and algorithmic levels. This method is based on GAN and tries to obtain better classification results than 
GAN. At feature level, the feature bunding mechanism is applied to merged sparse feature for dimensionality 
reduction. At algorithmic level, an optimal framework is devised by modifying the subnet structure of GAN, 
in which deep encoders and decoder are introduced into generator, and a softmax module coupled with multi-
classifier are introduced into the discriminator. With a new objective function is distinctively designed for 
the proposed MGAN-FB model, considering encode loss, reconstruction loss, discrimination loss and multi-
classification loss, it extends generative adversaria framework from the binary classification to the multi-
classification field.

Datasets

Brain Tumor1 Brain Tumor2 9_Tumors 11_Tumors Leukemia 1 Leukemia 2 Lung Cancer SRBCT

Acc

GAN+
ED+
MCS

0.8547 0.8212 0.6871 0.7566 0.8854 0.8801 0.8015 0.9422

GAN+
FB+
MCS

0.8345 0.9245 0.6779 0.7562 0.8964 0.9533 0.7869 0.9552

GAN+
FB + ED 0.9135 0.9554 0.7119 0.8336 0.9764 0.9744 0.9264 0.9635

GAN+
FB + ED + MCS 0.9519 0.9644 0.8378 0.9619 0.9896 0.9867 0.9524 0.9954

F-1

GAN+
ED+
MCS

0.8348 0.8134 0.8377 0.8264 0.8569 0.8477 0.8299 0.9653

GAN+
FB+
MCS

0.8114 0.9022 0.8106 0.8016 0.8498 0.9466 0.8021 0.9668

GAN+
FB + ED 0.8521 0.9306 0.8019 0.8633 0.9611 0.9682 0.9213 0.9732

GAN+
FB + ED + MCS 0.8800 0.9542 0.8844 0.9455 0.9735 0.9867 0.9642 0.9996

Table 7.  Ablation experiment results on Acc and F-1.

 

Fig. 8.  Nemenyi’s test rankings for various evaluation metrics with BP multi-classifier.
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Experiments are conducted on eight open-source cancer gene microarray datasets. Our approach is compared 
against 7 recent works including combinatorial solutions with feature selection and multi-classifier, and GAN-
based methods. Experimental results show that it has obvious advantages over other 7 compared methods in 
classification performance, running time and non-parametric tests. In the future, the proposed MGAN-FE 
should be further optimized considering class overlap and label missing, which are also typical problems for 
gene microarray data. Other future work includes introducing more kinds of GAN variants into consideration, 
and applying the proposed method to more datasets with large variety in class distribution.

Data availability
All data supporting the findings of this study are available within the paper.
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