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Heart rate variability (HRV) is a widely recognized biomarker for autonomic nervous system regulation, 
applicable in clinical and athletic settings to monitor health and recovery. Despite its extensive use, 
HRV measurement reliability is influenced by numerous factors, necessitating controlled conditions 
for accurate assessments. This study investigates the reliability of short-term HRV measurements 
in various settings and positions, aiming to establish consistent protocols for HRV monitoring and 
interpretation. We assessed morning HRV in 34 healthy, physically active adults across supine and 
standing positions, at home and in the laboratory, over a 24-hour period. Environment significantly 
impacted standing HRV. Home measurements exhibited slightly lower variance compared to lab 
settings, underscoring the importance of environment control. Our findings confirm the high reliability 
of HRV measurements, indicating their robustness in capturing autonomic changes, provided a 
rigorous methodology is employed. Here we show that effective and reliable HRV assessment is 
possible across various conditions, contingent upon strict management of confounding factors. This 
research supports the utility of HRV as a non-invasive diagnostic tool, emphasizing its importance in 
health management and potential in broadening applications to diverse populations. Future studies 
are encouraged to expand these assessments to include varied demographic and clinical profiles, 
enhancing HRV integration into routine health evaluations.
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Abbreaviations
ANS	� Autonomic nervous system
AI	� Artificial intelligence
CER-VD	� Commission cantonale d’éthique de la recherche sur l’être humain
CV	� Coefficient of variation
HF	� High frequency
HFnu	� High frequency normalized units
HR	� Heart rate
HRV	� Heart rate variability
ICCs	� Intraclass correlation coefficients
LF	� Low frequency
LF/HF	� Ratio between LF and HF
LFnu	� Low frequency normalized units
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LOA	� Limits of agreement
MAD	� Median absolute deviation
MDC	� Minimal detectable change
NN	� Normal-to-normal
PNN50%	� Percentage of successive normal-to-normal intervals that differ by more than 50 ms
POMS	� Profile of mood states
PPG	� Photoplethysmography
RDI	� Relative deviation index
RM	� Repeated measures
RMSSD	� Root mean square of successive differences
SDNN	� Standard deviation of normal-to-normal intervals
SD	� Standard deviation
SEM	� Standard error of measurement
TP	� Total power
VLF	� Very low frequency

Heart rate variability (HRV) – the fluctuation in the time intervals between consecutive heartbeats – is an indirect 
measure of autonomic nervous system (ANS) regulation. Its significance in both clinical and non-clinical areas 
has grown considerably since its early application in fetal monitoring and post-myocardial infarction care in the 
70s and 80s1,2. Since then, HRV has been explored in diverse areas from mental health and sleep disorders to 
sports performance, as it provides a valuable window into an individual’s physiological and psychological states, 
including stress levels, recovery capacity, and overall health. In clinical settings, it serves as a sensitive biomarker 
in conditions such as sleep disorders3,4 and stress-related illnesses, depression, and anxiety5,6. Outside of strictly 
clinical applications, HRV has gained traction as a tool for monitoring training load, recovery, and readiness in 
athletes7,8. Recent research further underscores HRV’s pivotal role in capturing the dynamic interplay between 
the brain and heart during cognitive and emotional processes: error-related cardiac deceleration, or the transient 
slowing of the heart following an error, illuminates the tight coupling between performance monitoring and 
autonomic reactivity9, while fear-induced bradycardia has emerged as a psychophysiological measure of defensive 
responding in fear conditioning paradigms, offering fresh insight into stress-related and psychopathological 
conditions10,11. Together, these findings suggest that HRV—and more broadly cardiac variability—transcends a 
simple risk marker, instead serving as a key index of brain–body integration. Disruptions in this integration may 
underlie various psychiatric, physiologic and neurological disorders12,13.

Despite its wide utility, HRV analysis is not without challenges. One significant obstacle is that HRV can vary 
considerably depending on a host of psychological, physiological, methodological, and environmental factors. 
Over the past few decades, researchers have attempted to establish consensus guidelines for HRV data collection 
and interpretation—most notably through the foundational Task Force report in 1996 and more recently by 
Quigley and al. —but the field still lacks a universally accepted standard14,15. For instance, there remains debate 
over issues like the optimal timing of data collection (e.g., upon awakening, during nighttime, or pre/post-
exercise or intervention), the duration of recordings (e.g. 5-minute “short-term” vs. 24-hour monitoring), and 
the body position to be used (e.g. supine, standing, or seated)15–17. Each of these factors can influence HRV 
metrics, leading to inconsistencies and difficulties in comparing results across studies18–21. Hence, reliable and 
feasible protocols are urgently needed to enhance the robustness and reliability of HRV research.

One promising strategy is the use of short-term HRV measures – often ≤ 5  min – that balance practical 
feasibility with sufficient diagnostic and research value22. A shorter recording period reduces participant burden, 
is easier to replicate in both clinical and athletic contexts, and may be less prone to artifacts introduced by 
movement or posture changes14,23. As portable technologies advance, short-term HRV measurements have 
become increasingly accessible, allowing assessments to be performed even in non-traditional settings such as 
homes, workplaces, or sports field. However, while short-term assessments are convenient, they still necessitate 
careful consideration of methodological variables to ensure consistency.

In this regard, a dual-position HRV protocol has gained particular attention24,25. This approach captures 
HRV in both supine and standing positions to account for the physiological challenges associated with each 
posture26. In the supine position, the cardiovascular system experiences minimal gravitational stress, generally 
resulting in higher parasympathetic activity. Conversely, standing requires orthostatic adaptation and typically 
increases sympathetic outflow to maintain blood pressure26. Monitoring HRV in both positions thus provides a 
more comprehensive snapshot of ANS function, capturing a balance between parasympathetic and sympathetic 
responses. Studies have suggested that this dual-position method is particularly useful for differentiating types of 
fatigue, as it allows researchers to observe changes in low-frequency (LF) and high-frequency (HF) bands under 
two contrasting autonomic loads24,27,28. If administered with rigorous standardization—ideally at consistent 
times, such as upon awakening—the dual-position protocol has the potential to yield reliable and context-rich 
data that inform tailored interventions in both healthcare and sport.

Nevertheless, questions remain about the stability and generalizability of these measurements across different 
environments and populations. Laboratory-based assessments offer controlled conditions, but the resulting data 
may not fully reflect an individual’s daily life, particularly when measurement timing varies29. Conversely, home-
based assessments provide ecological validity and convenience, but introduce potential uncontrolled variables, 
such as room temperature. Additional factors including participant familiarity with the measuring device and 
adherence to pre-measurement guidelines (e.g., abstaining from caffeine) can further influence results12,30,31. 
These considerations highlight the importance of reliability studies designed to examine how HRV measures 
vary under different conditions and over time, particularly when applying the dual-position approach.
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Against this backdrop, the present study aims to address a gap in the literature regarding the reliability 
and interpretative value of a standardized morning dual-position HRV protocol. Building on recent efforts 
to streamline short-term HRV assessments, our work investigates the performance of these measurements in 
healthy, physically active individuals across both at-home and laboratory settings. We hypothesize that this 
dual-position protocol will provide reliable indicators of autonomic function, regardless of the data collection 
environment, while also revealing trivial day-to-day variability. Specifically, our study focused on four main 
objectives: (1) assessing overall short-term HRV reliability over a 24-hour period; (2) analyzing day-to-day 
variance; (3) comparing at-home and in-laboratory measurements performed on the same day; and (4) evaluating 
short-term variance in lab conditions. By measuring HRV across multiple time points and settings, we aimed 
to assess whether the protocol reliably captures shifts in HRV between supine and standing positions, while 
accounting for potential effects of environmental stressors and participant comfort. If proven valid and reliable, 
this dual-position method could guide individualized interventions in healthcare and sports, enabling clinicians 
to track cardiac rehabilitation progress and coaches to optimize training and recovery. Moreover, establishing 
HRV reliability in a young, active population also establishes a basis the way for future investigations in clinical 
cohorts, with impaired autonomic regulation. This research aims to examine the reliability and applicability of 
this method in realistic scenarios. The findings will contribute to an evolving dialogue on HRV measurement 
best practices, potentially paving the way for broader adoption of dual-position assessments in routine clinical 
practice and athletic monitoring.

Results
Participants
Out of the initial 43 participants recruited for this study, 34 successfully completed five HRV measurements 
(measure A, B, C, D, E) under the designated conditions and were included in the final analysis. Nine participants 
were excluded due to non-compliance with the experimental protocol, incomplete measurements, symptomatic 
responses (orthostatism), or technical issues that affected data integrity. Additionally, three standing measurements 
from the included 34 participants were excluded due to similar reasons. Detailed justifications for these 
exclusions are provided in the supplementary materials. Figure 1 presents the study design. All measurements 
were conducted during two consecutive mornings, both at home and in the laboratory, with an average interval 
of 1h01 ± 15 min on the first day and 1h03 ± 19 min on the second day. Table 1 outlines the characteristics of 
the participants and the timing of the measurements. Importantly, none of the participants exhibited significant 
fatigue scores on the Profile of Mood States (POMS) questionnaire, ensuring the homogeneity of the fatigue state 
of the population studied.

Descriptive statistics
Absolute and ln-transformed data are presented in Tables 2 and 3. As expected, all absolute variables showed 
a skewed distribution. Only the standard deviation of normal-to-normal (NN) intervals (SDNN) standing was 
normally distributed. Of note, the ln-transformation aimed at normalizing the distribution failed for several 
variables (Total power (TP), low frequency (LF) normalized units (LFnu), high frequency (HF) normalized 
units (HFnu) supine, and heart rate (HR), very low frequency (VLF), ratio between LF and HF (LF/HF), LFnu 
standing). Logically, distinct physiological responses were observed between supine and standing positions 
suggesting substantial postural influences on autonomic balance26. Our HRV values are consistent with 
established norms for healthy, active individuals32. Environmental differences between at-home and in-lab 
settings also impacted HRV readings, suggesting that the measurement environment plays a substantial role in 
autonomic activity (see repeated measures analysis below).

Repeated measures analysis
For absolute data supine, only VLF showed significant differences between sessions (A vs. B (p = 0.012) and D 
vs. E (p = 0.022)). Standing, HR, LF, LF/HF, LF + HF, TP, LF/HR, LFnu and HFnu showed significant differences 
exclusively on home vs. lab analysis (p = 0.016 ,0.0001, 0.0005, 0.019, 0.035, 0.003, 0.0006, 0.0006, respectively). 
No differences were observed between daily successive measurements (24-h) performed at-home (A vs. D) 
and in-lab (B vs. E). For ln-transformed data supine, LF, LF + HF and LF + HF/HR (p = 0.041, 0.037, 0.032, 
respectively) showed significant interaction effects but multiple comparisons analysis did not allow for decisive 
separation between sessions, with only trends observed for B vs. E (in-lab 24  h, p = 0.0113, 0.09 and 0.078, 
respectively). Standing, HR, LF/HF, LFnu showed post-hoc significant differences with HR being lower in-lab 
(A vs. B, p = 0.016) and LF/HF and LFnu being lower in-lab (p = 0.0005 and 0.001 for A vs. B and D vs. E). To 
evaluate short-term physiological responses within the lab, paired comparisons between measurements B and C 
showed significant difference for absolute HR supine (+ 2.7 bpm for B; p < 0.0001). Supine root mean square of 
successive differences (RMSSD) was higher for C (p = 0.041). Standing, SDNN, RMSSD and VLF were higher for 
C (p = 0.012, 0.021, 0.034, respectively). ANOVA results are available in supplementary materials.

Fig. 1.  Study design.
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Relative reliability analysis
The exhaustive results of the relative reliability analysis are presented in Tables 4 and 5. The intraclass correlation 
coefficients (ICCs) across the five different sessions demonstrated varying degrees of reliability. Both absolute 
and ln-transformed data showed comparable reliability, with slightly higher values for ln-transformed data in 
the frequency-domain metrics.

In the supine position, time-domain variables such as HR, SDNN and RMSSD exhibited consistently good 
ICCs (> 0.75), indicative of robust autonomic signal detection, irrespective of transformation. Conversely, 
frequency-domain metrics displayed moderate reliability (ICCs < 0.75), suggesting some sensitivity to testing 
conditions, except for LF which showed good reliability (ICCs > 0.75). In the standing position, time-domain 
metrics and frequency-domain metrics LF and HF demonstrated moderate reliability (ICCs < 0.75), generally 
lower than in the supine position. Only HR, lnHR, and lnLF/HR reached good reliability, emphasizing the 
impact of postural changes on measurement stability.

Day-to-day analysis revealed variability in reliability. Supine absolute HR, RMSSD, LF, LF + HF, LF + HF/HR 
demonstrated good reliability across at-home measurements, while ln-transformed data showed lower ICCs in 
comparison. In-lab reliability (B vs. E) was significantly lower, especially for frequency-domain analysis. Supine 
RMSSD consistently exhibited good to excellent reliability across all testing conditions. In contrast, the LF/HF 
ratio exhibited moderate to poor reliability in certain conditions. For standing measurements, HR exhibited 
excellent reliability for in-lab comparisons (B vs. C). Most metrics in the standing position demonstrated 
moderate reliability (ICCs < 0.75), indicating reduced reliability compared to other metrics and conditions. This 
finding underscores the potential challenges of capturing reliable frequency-domain data in upright postures 
over extended intervals. Short-term in-lab (A vs. B) measurements showed good to excellent reliability in most 
of the variables used for clinical interpretation25 (e.g. HR, LF, HF), with ln-transformation trending to increase 
reliability.

Absolute reliability analysis
Table  6 presents absolute reliability data for all situations from absolute variables mainly used for clinical 
interpretation. In the supine position, Median Absolute Deviation (MAD) for HR ranged from 1.6  bpm 
to 2.4  bpm, indicating measurements with minor fluctuations. For SDNN and RMSSD, MAD values varied 
from 6.3 to 7.9 ms, reflecting modest variance. HF exhibited higher fluctuation with MADs up to 519.6 ms2, 
emphasizing the sensitivity of frequency-domain parasympathetic activity markers to measurement conditions. 
In the standing position, the MAD for HR demonstrated a range from 1.3 bpm to 3.3 bpm. The LF component 
showed noteworthy variance with MAD extending to 573 ms2. Relative Standard Error of Measurement (SEM) 
and Minimal Detectable Change (MDC) were significantly higher for frequency-domain variables, with ranges 

M/F 19/15

Weight (kg) 67.8 ± 12.5

Height (cm) 173.9 ± 8.6

BMI (kg/m2) 22.3 ± 3.1

Age (y) 30.3 ± 9.3

Training weekly hours 4.6 ± 3.3

Training weekly sessions 3.1 ± 1.7

Sport type

Badminton (1); Basketball 
(2); Biking (3); Dancing 
(1); Football (2); Gym (2); 
Hiking (1); Ice Hockey (1); 
Martial arts (1); Multisport 
(5); Running (8); Squash 
(1); Swimming (1); Tennis 
(1); Triathlon (1); Unknown 
(1); Volleyball (1); Yoga (1)

Tension 9.8 ± 4.1

Anger 8.4 ± 8.3

Fatigue 5.4 ± 4

Vigor 18.5 ± 4.8

Depression 5.9 ± 8.4

Confusion 7.0 ± 3.2

TMD 18.0 ± 24.3

Measure A 6h44 ± 51 min

Measure B 7h46 ± 50 min

Measure C 8h11 ± 50 min

Measure D 6h49 ± 51 min

Measure E 7h53 ± 48 min

Table 1.  Gender repartition, age, weight, and height of participants with POMS results and time of 
measurement. Data are presented as mean ± SD. TMD, total mood disturbance; POMS, profile of mood state.
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from 1.2 to 9.1% for time-domain and from 16.8 to 34.4% for frequency-domain. Conditions with the lowest 
SEM were at-home (A vs. D) and short-term in-lab (B vs. C).

Performing the measurement under strictly controlled laboratory conditions (A vs. B and D vs. E) revealed no 
significant improvement except in supine VLF and standing HR, LF/HF, and LFnu metrics. Conversely, relative 
reliability was generally superior and SEM inferior when data were collected at home. Our results validate the 
reliability of short-term heart rate variability measurements under various conditions among healthy, physically 
active individuals. They confirmed that HRV is a robust and stable biomarker, showing high consistency across 
different environments—both at home and in laboratory settings—and under varying postural conditions. 
The observed variations between different postures reinforce the sensitivity of HRV to physiological changes, 
supporting its broader application in health assessments and performance monitoring.

Discussion
HRV is a cornerstone measure for evaluating ANS function. Its non-invasive nature and ability to capture subtle 
fluctuations in cardiac autonomic regulation have spurred significant interest across diverse fields, including 
sports medicine, telehealth, and chronic disease management. However, debates persist regarding how best to 
measure and interpret HRV in real-world scenarios. Methodological inconsistencies such as posture, timing, 
environmental variations challenge the reliability of HRV findings18,19. To address these issues, this study aimed 
to assess the clinical reliability of short-term HRV measurements in supine and standing positions, comparing 
at-home and in-laboratory settings in healthy active individuals.

Main findings
Our study contributes to the growing field of HRV research by showing that HRV remains a reliable indicator 
of autonomic status in young, healthy, active adults, even under varied conditions — including supine and 

Measure A Measure B Measure C Measure D Measure E

Supine

SDNN (ms) 63.8 [47.6;82.4] 60 [42;86.5] 66.6 [45.8;94.3] 62 [51.7;84.8] 57.9 [47.2;75.4]

HR (bpm) 54.7 [50.7;61.1] 57.7 [52.3;63.2] 55 [50.4;60.8] 55.7 [51;63.8] 59.1 [54;67.6]

RMSSD (ms) 51.3 [33.2;81] 56.7 [35.4;88.3] 58.3 [34.7;107] 50.5 [35.6;86.5] 48.7 [31.2;74.2]

PNN50% 29.5 [9.5;53.2] 33 [12.1;60.1] 38.8 [13.4;62.7] 27.4 [16.8;50.6] 29.2 [8.7;51.7]

VLF (ms2) 1067.3 [507.9;2423] 515.4 [292.5;1462.9] 1141.4 [466.2;1525.5] 1066.6 [639.2;2505.8] 907.1 [585.4;1538.8]

LF (ms2) 1047.2 [468.1;2039.4] 1044 [409;3403.7] 1066.4 [466.9;2150.3] 952.3 [602.4;2302.5] 818.7 [462;1419.3]

HF (ms2) 793.6 [389.6;1620.2] 965.9 [471.8;2731.8] 834.3 [500.9;2938.2] 856.5 [379.4;1881.8] 869.3 [502.4;1637.7]

LF/HF 1.1 [0.6;2.5] 1.1 [0.5;3.1] 1 [0.5;2.1] 1.4 [0.7;2.3] 0.9 [0.5;3.2]

LF + HF (ms2) 1980.6 [1149.5;4154.6] 3042.1 [1273.9;5908.7] 2551.8 [968.2;6088.9] 2396.6 [1177.6;4041.1] 1970.3 [975.9;3574]

TP (ms2) 2684 [2092.2;6406.1] 3627.7 [1642.4;6840.4] 4090.1 [1908.5;9417.2] 4014.4 [2099.3;6031.3] 3130.9 [1795.5;5818.6]

HF/HR  13.6 [7;27.9] 17.2 [6.8;52] 12.7 [7.4;55.8] 13.6 [6.5;31.7] 15 [6.4;33.6]

LF + HF/HR 32.4 [21.7;76.4] 39.7 [19.6;103.6] 44.1 [14.5;129.5] 37.7 [21;73.7] 34.9 [15.7;63.3]

LFnu 53.5 [36.4;71.1] 53.1 [32;74.2] 48.7 [32.2;67.5] 58.3 [40.7;69.8] 46.9 [31.4;75.9]

HFnu 46.5 [28.9;63.6] 46.9 [25.8;68] 51.3 [32.5;67.8] 41.7 [30.2;59.3] 53.1 [24.1;68.6]

Standing

SDNN (ms) 55.3 ± 25 44.4 ± 19.2 50.8 ± 22.4 49.5 ± 18.5 43.4 ± 17.7

HR (bpm) 80 [77;93] 77.9 [69.2;84.3] 79.4 [70.4;83.5] 86.4 [76.1;91.2] 80.2 [71.5;88.6]

RMSSD (ms) 19.4 [13.5;25] 17.1 [13.6;25.5] 19.5 [14.5;29.6] 15.8 [11.3;25.2] 17.4 [12.4;23.6]

PNN50% 2.3 [0.3;4.3] 0.9 [0;5.3] 2.4 [0.3;7.4] 1.4 [0.1;4.7] 1.5 [0;4.1]

VLF (ms2) 833.3 [445;1729.3] 585 [329;1137.5] 869.4 [268.1;1216.5] 740 [515.5;1539.6] 435 [259.8;869]

LF (ms2) 1433.2 [508.4;2190.6] 713.6 [238.2;1123.7] 661.9 [342.5;1773.6] 1076.8 [515.6;2478.4] 507.7 [292.3;1065.3]

HF (ms2) 116.7 [62.5;226.2] 137 [62.9;207.6] 160.3 [101.4;263.3] 85.7 [45.9;173.1] 103.2 [78.9;230.9]

LF/HF 11.2 [5.9;17.7] 5.3 [2.1;12.7] 3.7 [2.7;9.8] 13.6 [8.3;20] 4.8 [3;7.6]

LF + HF (ms2) 1483 [637.4;2445] 1028.8 [356.2;1258.2] 906.6 [498;2036.4] 1184.1 [613.6;2611.5] 659.9 [355;1310.1]

TP (ms2) 2765 [1166.9;4423.7] 1422.9 [773;2548.4] 1970.4 [997.3;3450.7] 2537.9 [1162.2;3899.3] 1196.1 [751.1;2469.6]

LF/HR 17.5 [6.2;28] 9 [3.3;17.4] 9.1 [3.7;21.7] 13.1 [6.3;30.2] 6.9 [3.4;13.6]

LFnu 91.8 [85.4;94.7] 84 [67.4;92.7] 78.7 [72.7;90.7] 93.2 [89.3;95.2] 82.7 [74.7;88.4]

HFnu 8.2 [5.3;14.6] 16 [7.3;32.6] 21.3 [9.3;27.3] 6.8 [4.8;10.7] 17.3 [11.6;25.3]

Table 2.   Descriptive statistics for absolute HRV metrics across different measurement points and conditions. 
Data are presented either in mean ± standard deviations or median [25th;75th percentile]. SDNN (standard 
deviation of NN intervals), HR (heart rate), RMSSD (root mean square of successive differencess), PNN50% 
(percentage of successive NN intervals that Ddffer by more than 50 ms), VLF (very low frequency), LF l(ow 
frequency), HF (high frequency), TP (total power), LFnu (low frequency normalized units), HFnu (high 
frequency normalized units).
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standing postures and at-home and laboratory environments. Indeed, our findings show that short-term 
HRV measurements, when performed under standardized conditions with rigorous protocols, exhibit good-
to-excellent reliability for most of the relevant variables across these conditions. Day-to-day variability was 
minimal, underscoring the consistency of HRV measurements for monitoring autonomic function in healthy, 
active individuals. These results reinforce previous work highlighting the robustness of short-term HRV data 
under carefully controlled conditions33,34. Time-domain HRV metrics such as RMSSD and HR were particularly 
robust across all conditions, with ICCs often exceeding 0.75. Overall, these findings align with the existing 
literature reporting the reliability of HRV measurements across a variety of physiological states and settings, with 
intra-class correlation coefficients ranging from 0.69 to 0.90 across multiple sessions35,36. Particularly notable are 
the obtained ICCs for RMSSD (0.917) and for HR (0.88), which are similar or even better to those reported in 
adolescent athletes (0.71 and 0.88, respectively)37. Frequency-domain metrics, while moderately reliable, were 
more sensitive to variations in posture and environment, in line with previous reports indicating larger standard 
errors of measurement in certain conditions where controlling all confounding factors is more challenging, 
such as non-laboratory environments, short sampling intervals, or varying postures33,34. The comparison of 
our data with those obtained in elite athletes – who showed low variance and good reliability of HRV – further 
corroborates the stability of HRV measurements in strictly controlled conditions38. This underscores that HRV’s 
“signal” can be distinguished from methodological “noise,” contingent on consistent timing, posture control, 
and careful data handling. Additionally, our findings showed good-to-excellent in-lab short-term reliability 
particularly in the supine position (B vs. C), confirming previous findings performed across four consecutive 
5-minute measurements39. This short-term reliability of in-laboratory HRV provides strong support for its 
use in detecting true changes in cardiac autonomic regulation in pre/post intervention designs40. In contrast, 
the LF/HF ratio demonstrated moderate to poor reliability in certain conditions, underscoring its sensitivity 
to variations in environmental factors or measurement protocols. This sensitivity may limit its usefulness as 

Measure A Measure B Measure C Measure D Measure E

Supine

SDNN (ms) 4.18 ± 0.48 4.11 ± 0.51 4.19 ± 0.48 4.19 ± 0.39 4.07 ± 0.45

HR (bpm) 4.04 ± 0.15 4.08 ± 0.19 4.02 ± 0.17 4.03 ± 0.15 4.09 ± 0.19

RMSSD (ms) 3.95 ± 0.56 3.98 ± 0.67 4.04 ± 0.66 3.97 ± 0.54 3.85 ± 0.7

PNN50% N/A N/A N/A N/A N/A

VLF (ms2) 7.06 ± 1.09 6.48 ± 1.1 6.87 ± 1.02 7.1 ± 0.87 6.76 ± 1.07

LF (ms2) 6.87 ± 1.32 6.98 ± 1.39 6.92 ± 1.21 7.09 ± 1.02 6.72 ± 1.14

HF (ms2) 6.72 ± 1.14 6.82 ± 1.3 6.94 ± 1.33 6.83 ± 1.04 6.59 ± 1.5

LF/HF 0.15 ± 0.99 0.16 ± 1.2 -0.02 ± 1.14 0.26 ± 1 0.13 ± 1.24

LF + HF (ms2) 7.6 ± 1.16 7.75 ± 1.24 7.77 ± 1.2 7.77 ± 0.91 7.52 ± 1.19

TP (ms2) 7.89 [7.65;8.76] 8.2 [7.4;8.83] 8.32 [7.55;9.15] 8.3 [7.65;8.7] 8.05 [7.49;8.67]

HF/HR 2.68 ± 1.18 2.75 ± 1.36 2.92 ± 1.38 2.8 ± 1.11 2.5 ± 1.58

LF + HF/HR 3.56 ± 1.2 3.67 ± 1.31 3.74 ± 1.27 3.74 ± 0.98 3.43 ± 1.28

LFnu 3.98 [3.6;4.26] 3.97 [3.47;4.3] 3.89 [3.47;4.21] 4.07 [3.71;4.25] 3.85 [3.45;4.33]

HFnu 3.84 [3.36;4.15] 3.85 [3.22;4.22] 3.94 [3.48;4.22] 3.73 [3.41;4.08] 3.97 [3.18;4.23]

Standing

SDNN (ms) 3.91 ± 0.48 3.7 ± 0.47 3.83 ± 0.47 3.82 ± 0.42 3.69 ± 0.4

HR (bpm) 4.38 [4.34;4.53] 4.36 [4.24;4.43] 4.37 [4.25;4.42] 4.46 [4.33;4.51] 4.38 [4.27;4.48]

RMSSD (ms) 2.86 ± 0.64 2.88 ± 0.56 3.01 ± 0.55 2.79 ± 0.57 2.86 ± 0.52

PNN50% N/A N/A N/A N/A N/A

VLF (ms2) 6.73 [6.1;7.45] 6.37 [5.8;7.03] 6.77 [5.59;7.1] 6.61 [6.24;7.34] 6.08 [5.56;6.77]

LF (ms2) 7.04 ± 1.23 6.41 ± 1.19 6.6 ± 1.13 6.99 ± 1.07 6.43 ± 1.11

HF (ms2) 4.68 ± 1.12 4.84 ± 1.1 5.03 ± 0.97 4.54 ± 1.15 4.84 ± 0.94

LF/HF 2.41 [1.77;2.88] 1.66 [0.72;2.54] 1.3 [0.98;2.28] 2.61 [2.12;3] 1.56 [1.09;2.03]

LF + HF (ms2) 7.15 ± 1.2 6.68 ± 1.1 6.85 ± 1.04 7.11 ± 1.05 6.66 ± 1.04

TP (ms2) 7.77 ± 1.01 7.28 ± 1.02 7.52 ± 1 7.7 ± 0.92 7.23 ± 0.87

LF/HR 2.61 ± 1.32 2.05 ± 1.25 2.25 ± 1.22 2.55 ± 1.13 2.05 ± 1.19

LFnu 4.52 [4.45;4.55] 4.43 [4.21;4.53] 4.37 [4.29;4.51] 4.53 [4.49;4.56] 4.41 [4.31;4.48]

HFnu 2.13 ± 0.74 2.76 ± 0.86 2.78 ± 0.8 2.04 ± 0.79 2.79 ± 0.67

Table 3.   Descriptive statistics for ln-transformed HRV metrics across different measurement points and 
conditions. Data are presented either in mean ± standard deviations or median [25th;75th percentile]. SDNN 
(standard deviation of NN intervals), HR (heart rate), RMSSD (root mean square of successive differences), 
PNN50% (percentage of successive NN intervals that differ by more than 50 ms), VLF (very low frequency), LF 
(low frequency), HF (high frequency), TP (total power), LFnu (low frequencyy normalized units), HFnu (high 
frequency normalized units).
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a robust autonomic marker, which has already been discussed in the literature, especially in scenarios where 
consistent data collection across diverse settings is required41,42.

Overall, our results highlight the robustness of HRV as a tool for assessing autonomic nervous system 
function under different conditions and support the use of HRV as a stable biomarker for health and performance 
monitoring while underscoring the need for rigorous standardization to enhance interpretative accuracy.

Environmental influence: Home vs. Laboratory
Despite showing no drastic differences between at-home and in-lab environments, home-based measurements 
showed finer absolute reliability in the supine position. This modest, yet potentially impactful advantage 
highlights the potential of at-home HRV data collection to provide more consistent conditions compared to in-
lab recordings. Measuring HRV upon awakening in the familiar home environment may reduce the influence 
of incidental physical activity or other confounding factors that may occur when measuring in clinical settings. 
Indeed, psychological factors such as anxiety and fear may be more likely to arise in unfamiliar environments 
like laboratories or hospitals11,43. These findings align with the growing adoption of remote health monitoring 
technologies, where wearable sensors and smartphone apps enable continuous physiological tracking 
without requiring frequent clinical visits44,45, benefiting those who cannot easily attend laboratory or clinical 
appointments—be it due to geographic limitations, mobility constraints, or busy schedules. Notwithstanding 
this, by carefully controlling confounding factors—such as fasting status and the absence of prior physical 
activity, we showed that measurements taken in a one-hour slot post-awakening in a laboratory setting can also 
achieve substantial reliability and offer a robust way of assessing ANS function. This highlights the potential 
for both approaches to be utilized interchangeably, depending on practical considerations and participant 
accessibility, without compromising data quality.

5 measurements A vs. B A vs. D B vs. C B vs. E

Supine

SDNN (ms) 0.816 (0.723–0.891) 0.842 (0.708–0.917) 0.846 (0.713–0.92) 0.875 (0.766–0.936) 0.8 (0.638–0.895)

HR (bpm) 0.836 (0.739–0.906) 0.837 (0.668–0.919) 0.884 (0.78–0.94) 0.913 (0.542–0.971)*** 0.856 (0.732–0.925)

RMSSD (ms) 0.841 (0.757–0.907) 0.856 (0.733–0.925) 0.917 (0.84–0.958) 0.904 (0.817–0.951)* 0.817 (0.664–0.905)

PNN50% 0.833 (0.747–0.902) 0.811 (0.657–0.901) 0.834 (0.692–0.914) 0.942 (0.887–0.97) 0.863 (0.744–0.929)

VLF (ms2) 0.486 (0.332–0.651) 0.39 (0.0803–0.635)* 0.547 (0.262–0.745) 0.476 (0.179–0.696) 0.459 (0.149–0.688)*

LF (ms2) 0.778 (0.672–0.866) 0.781 (0.607–0.884) 0.864 (0.744–0.93) 0.822 (0.675–0.907) 0.683 (0.445–0.829)

HF (ms2) 0.644 (0.505–0.774) 0.807 (0.648–0.898) 0.792 (0.623–0.89) 0.72 (0.511–0.849) 0.653 (0.405–0.81)

LF/HF 0.483 (0.329–0.649) 0.502 (0.209–0.714) 0.255 (-0.0899-0.544) 0.588 (0.322–0.769) 0.673 (0.436–0.823)

LF + HF (ms2) 0.721 (0.598–0.828) 0.827 (0.681–0.91) 0.866 (0.749–0.931) 0.779 (0.601–0.884) 0.605 (0.345–0.78)

TP (ms2) 0.735 (0.616–0.838) 0.789 (0.617–0.888) 0.826 (0.679–0.909) 0.781 (0.607–0.884) 0.604 (0.34–0.78)

HF/HR 0.663 (0.527–0.788) 0.841 (0.707–0.917) 0.793 (0.624–0.891) 0.696 (0.474–0.835) 0.657 (0.412–0.813)

LF + HF/HR 0.726 (0.604–0.831) 0.832 (0.692–0.912) 0.874 (0.763–0.935) 0.775 (0.595–0.881) 0.605 (0.345–0.78)

LFnu 0.649 (0.51–0.778) 0.537 (0.244–0.739) 0.567 (0.288–0.758) 0.802 (0.642–0.896) 0.683 (0.451–0.828)

HFnu 0.649 (0.51–0.778) 0.537 (0.244–0.739) 0.567 (0.288–0.758) 0.802 (0.642–0.896) 0.683 (0.451–0.828)

Standing

SDNN (ms) 0.659 (0.51–0.792) 0.67 (0.276–0.849) 0.694 (0.453–0.84) 0.757 (0.516–0.881)* 0.637 (0.368–0.807)

HR (bpm) 0.788 (0.655–0.882) 0.77 (0.45–0.897)* 0.851 (0.714–0.925) 0.96 (0.917–0.981) 0.877 (0.761–0.938)

RMSSD (ms) 0.656 (0.512–0.788) 0.694 (0.453–0.84) 0.749 (0.546–0.87) 0.777 (0.577–0.887)* 0.453 (0.117–0.695)

PNN50% 0.539 (0.379–0.701) 0.481 (0.154–0.712) 0.768 (0.575–0.881) 0.637 (0.374–0.806)* 0.143 (-0.23-0.474)

VLF (ms2) 0.248 (0.104–0.44) 0.246 (-0.11-0.547) 0.287 (-0.0616-0.576) 0.232 (-0.133-0.54)* 0.124 (-0.231-0.452)

LF (ms2) 0.589 (0.433–0.74) 0.776 (0.434–0.904)*** 0.691 (0.451–0.838) 0.571 (0.273–0.768) 0.375 (0.0214–0.643)

HF (ms2) 0.638 (0.49–0.776) 0.752 (0.55–0.872) 0.694 (0.454–0.84) 0.877 (0.76–0.938) 0.229 (-0.139-0.538)

LF/HF 0.498 (0.311–0.68) 0.537 (0.126–0.77)*** 0.822 (0.666–0.91) 0.681 (0.432–0.833) 0.707 (0.478–0.847)

LF + HF (ms2) 0.59 (0.436–0.741) 0.778 (0.492–0.899)* 0.682 (0.437–0.833) 0.597 (0.309–0.783) 0.344 (-0.0147-0.621)

TP (ms2) 0.498 (0.337–0.669) 0.684 (0.423–0.837)* 0.556 (0.258–0.757) 0.437 (0.0995–0.683) 0.267 (-0.0957-0.565)

LF/HR 0.578 (0.423–0.731) 0.749 (0.453–0.883)** 0.687 (0.446–0.836) 0.552 (0.249–0.756) 0.333 (-0.0277-0.614)

LFnu 0.442 (0.258–0.632) 0.306 (-0.043-0.594)*** 0.615 (0.335–0.795) 0.704 (0.469–0.846) 0.595 (0.313–0.781)

HFnu 0.442 (0.258–0.632) 0.306 (-0.043-0.594)*** 0.615 (0.335–0.795) 0.704 (0.469–0.846) 0.595 (0.313–0.781)

Table 4.  Intraclass correlation coefficients (ICCs) with 95% confidence intervals for heart rate variability 
(HRV) absolute metrics across various measurement conditions. SDNN (standard deviation of NN intervals), 
HR (heart rate), RMSSD (root mean square of successive differences), PNN50% (percentage of successive NN 
intervals that differ by more than 50 ms), VLF (very low frequency), LF (low frequency), HF (high frequency), 
TP (total power), LFnu (low frequency normalized units), HFnu (high frequency normalized units). Symbols 
indicate whether the variable differs significantly between the compared sessions. * (p < 0.05), ** (p < 0.01), *** 
(p < 0.001).
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Importance of standardization and remaining challenges
One of the enduring challenges in HRV research is controlling for the myriad of variables that can influence 
measurements, including circadian rhythms, recent physical activity, emotional stress, and environmental 
factors such as temperature12,29,46,47. In our study, we attempted to minimize these confounders by instructing 
participants to collect data upon morning awakening, enforcing fasting, and ensuring minimal prior physical 
activation. These measures aimed to capture a more “baseline” state of autonomic function. Additionally, we 
rigorously followed the standardized protocols recommended by Schmitt et al. (2015) focusing on a dual-position 
analysis upon morning awakening to reduce potential confounding factors and maximize consistency25. This 
dual-position protocol also enabled us to explore the influence of posture on HRV, an aspect often overlooked 
in less standardized protocols26. Our approach thus builds on recommended clinically implemented protocols 
and resonates with broader efforts to unify HRV measurement protocols15,16,24,27. Moreover, we applied rigorous 
standards to our statistical analysis, including adjustments for skewed distributions48–50, ensuring that the 
reliability estimates accurately captured true autonomic function rather than artifacts.

Despite this rigorous design, we acknowledge that several challenges persist. Indeed, variability in personal 
routines, differences in participants’ sleep patterns, and individual sensitivity to posture shifts may still introduce 
noise. Moreover, while short-term and day-to-day measurements exhibit good reliability, as indicated by our 
findings, the literature suggests that long-term HRV tracking (e.g. over months) is more susceptible to within-
subject variability21,51. Indeed, while our study demonstrated good reliability of HRV measurements over a 24-
hour period, longer-term HRV monitoring still faces challenges. Notably, two studies reported substantially 
lower ICCs for HRV over intervals spanning several months, reflecting considerable within-subject variability 
and highlighting the limitations of extended HRV monitoring21,51. Additionally, factors like aging, lifestyle 
modifications, or the onset of subclinical conditions may substantially alter baseline autonomic function12,29, 

5 measurements A vs. B A vs. D B vs. C B vs. E

Supine

SDNN (ms) 0.823 (0.733–0.896) 0.856 (0.733–0.925) 0.807 (0.648–0.899) 0.875 (0.762–0.936) 0.861 (0.741–0.928)

HR (bpm) 0.845 (0.753–0.911) 0.843 (0.689–0.921) 0.885 (0.783–0.941) 0.92 (0.547–0.974)*** 0.852 (0.726–0.923)

RMSSD (ms) 0.817 (0.724–0.891) 0.846 (0.713–0.92) 0.847 (0.715–0.92) 0.934 (0.871–0.967) 0.852 (0.718–0.924)

PNN50%

VLF (ms2) 0.505 (0.35–0.667) 0.47 (0.139–0.701) 0.514 (0.213–0.725) 0.477 (0.179–0.697)* 0.531 (0.248–0.733)

LF (ms2) 0.763 (0.652–0.856) 0.802 (0.641–0.896) 0.639 (0.393–0.801) 0.858 (0.734–0.926) 0.728 (0.522–0.854)

HF (ms2) 0.743 (0.626–0.843) 0.83 (0.688–0.911) 0.69 (0.464–0.832) 0.848 (0.719–0.921) 0.815 (0.661–0.903)

LF/HF 0.652 (0.514–0.78) 0.561 (0.275–0.754) 0.54 (0.252–0.741) 0.797 (0.633–0.893) 0.715 (0.498–0.847)

LF + HF (ms2) 0.788 (0.686–0.873) 0.877 (0.768–0.936) 0.697 (0.478–0.836) 0.875 (0.764–0.936) 0.793 (0.623–0.891)

TP (ms2) 0.777 (0.671–0.866) 0.849 (0.718–0.922) 0.683 (0.455–0.827) 0.819 (0.67–0.905) 0.812 (0.657–0.901)

HF/HR 0.746 (0.63–0.845) 0.819 (0.668–0.905) 0.7 (0.479–0.838) 0.849 (0.721–0.921) 0.814 (0.659–0.902)

LF + HF/HR 0.796 (0.696–0.878) 0.87 (0.758–0.933) 0.714 (0.502–0.845) 0.88 (0.774–0.938) 0.805 (0.643–0.898)

LFnu 0.654 (0.517–0.781) 0.502 (0.199–0.717) 0.576 (0.299–0.763) 0.792 (0.626–0.89) 0.685 (0.454–0.83)

HFnu 0.617 (0.473-0.755) 0.582 (0.307-0.767) 0.446 (0.13-0.679) 0.764 (0.58-0.874) 0.721 (0.508-0.851)

Standing

SDNN (ms) 0.732 (0.599–0.842) 0.725 (0.33–0.88) 0.764 (0.567–0.879) 0.802 (0.587–0.905)* 0.749 (0.54–0.871)

HR (bpm) 0.774 (0.634–0.874) 0.746 (0.406–0.886)* 0.854 (0.721–0.927) 0.959 (0.916–0.98) 0.864 (0.738–0.932)

RMSSD (ms) 0.717 (0.586–0.83) 0.706 (0.471–0.847) 0.785 (0.602–0.89) 0.848 (0.682–0.927)* 0.671 (0.418–0.827)

PNN50%

VLF (ms2) 0.366 (0.21–0.554) 0.525 (0.206–0.741) 0.599 (0.319–0.784) 0.609 (0.335–0.789) 0.309 (-0.0402-0.593)

LF (ms2) 0.733 (0.587–0.847) 0.764 (0.16–0.916) 0.738 (0.523–0.865) 0.805 (0.636–0.901) 0.744 (0.531–0.868)

HF (ms2) 0.549 (0.391–0.709) 0.513 (0.2-0.731) 0.584 (0.295–0.775) 0.721 (0.501–0.855) 0.399 (0.0496–0.659)

LF/HF 0.5 (0.29–0.69) 0.479 (-0.0235-0.757)*** 0.703 (0.47–0.844) 0.755 (0.549–0.874) 0.664 (0.407–0.823)

LF + HF (ms2) 0.731 (0.597–0.841) 0.757 (0.395–0.895) 0.723 (0.498–0.856) 0.803 (0.633-0.9) 0.691 (0.448–0.839)

TP (ms2) 0.685 (0.537–0.812) 0.701 (0.299–0.867) 0.733 (0.515–0.862) 0.779 (0.582–0.888) 0.641 (0.373–0.81)

LF/HR 0.756 (0.626–0.859) 0.788 (0.333–0.918) 0.757 (0.553–0.875) 0.82 (0.659–0.909) 0.755 (0.549–0.874)

LFnu 0.41 (0.237-0.6) 0.235 (-0.0685-0.52)*** 0.593 (0.303–0.781) 0.674 (0.423–0.828) 0.548 (0.252–0.752)

HFnu 0.509 (0.295–0.698) 0.52 (-0.0184-0.788) 0.715 (0.489–0.851) 0.762 (0.56–0.878) 0.678 (0.429–0.831)

Table 5.  Intraclass correlation coefficients (ICCs) with 95% confidence intervals for heart rate variability 
(HRV) ln-transformed metrics across various measurement conditions. SDNN (standard deviation of NN 
intervals), HR (heart rate), RMSSD (root mean square of successive differences), PNN50% (percentage of 
successive NN intervals that differ by more than 50 ms), VLF (very low frequency), LF (low frequency), HF 
(high frequency), TP (total power), LFnu (low frequency normalized units), HFnu (high frequency normalized 
units). Symbols indicate whether the variable differs significantly between the compared sessions. * (p < 0.05), 
** (p < 0.01), *** (p < 0.001).
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5 m A vs. B A vs. D B vs. C B vs. E

Heart rate supine

SEM (bpm) 1.5 ± 0.8 1.4 ± 1 0.8 ± 0.7 0.7 ± 0.6 1.1 ± 1.2

Relative % 2.5 ± 1.2 2.3 ± 1.5 1.3 ± 1.1 1.2 ± 1 1.9 ± 2

CV 6.2 ± 3.1 5.8 ± 3.6 4 ± 3.2 4 ± 3.4 4.9 ± 5.2

Median of absolute deviation (MAD) 2.1 ± 1.7 2.4 ± 1.7 1.6 ± 1.4 1.7 ± 1.5 2.1 ± 2.2

Relative deviation index (RDI) (%) 3.6 ± 2.6 4.1 ± 2.6 2.8 ± 2.2 2.8 ± 2.4 3.5 ± 3.7

MDC absolute (bpm) 4.1 ± 2.2 3.9 ± 2.8 2.1 ± 1.8 1.9 ± 1.8 3.1 ± 3.3

MDC relative (%) 7 ± 3.6 6.4 ± 4.1 3.7 ± 3 3.2 ± 2.8 5.2 ± 5.5

SDNN supine

SEM (ms) 5.4 ± 3 4.3 ± 3.7 3.9 ± 3.5 3.2 ± 2.8 4.6 ± 4.6

Relative % 8 ± 3.6 6.1 ± 4.4 5.7 ± 4.7 4.6 ± 4.2 6.5 ± 4.8

CV 18.6 ± 8.3 15.4 ± 11.1 14.5 ± 12.1 13.1 ± 11.8 14.6 ± 10.8

Median of absolute deviation (MAD) 6.3 ± 5.7 7.6 ± 6.6 7.1 ± 6.2 6.5 ± 5.6 7.2 ± 7.3

Relative deviation index (RDI) (%) 9 ± 5.8 10.9 ± 7.8 10.2 ± 8.6 9.3 ± 8.4 10.4 ± 7.6

MDC absolute (ms) 14.9 ± 8.2 11.8 ± 10.3 10.9 ± 9.6 9 ± 7.8 12.7 ± 12.8

MDC relative (%) 23.1 ± 11.8 16.9 ± 12.2 15.8 ± 13.2 12.9 ± 11.6 18.1 ± 13.4

RMSSD supine

SEM (ms) 5.3 ± 3.4 4 ± 4 2.3 ± 1.9 2.7 ± 3.2 4.8 ± 5.7

Relative % 9.1 ± 5.2 7 ± 5.8 4.5 ± 4.2 4 ± 3.5 7.7 ± 7.9

CV 22.9 ± 13 18.5 ± 15.4 15.4 ± 14.5 13 ± 11.2 18 ± 18.3

Median of absolute deviation (MAD) 7.5 ± 6 7.5 ± 7.3 5.7 ± 4.8 6.1 ± 7.2 7.9 ± 9.4

Relative deviation index (RDI) (%) 12.4 ± 8 13.1 ± 10.9 10.9 ± 10.3 9.2 ± 7.9 12.7 ± 12.9

MDC absolute (ms) 14.8 ± 9.5 11.2 ± 11 6.4 ± 5.4 7.4 ± 8.8 13.3 ± 15.9

MDC relative (%) 27.1 ± 19.6 19.4 ± 16.1 12.4 ± 11.6 11.2 ± 9.6 21.4 ± 21.8

HF supine

SEM (ms2) 513.4 ± 578.5 210.3 ± 263.8 215.4 ± 275.8 388.8 ± 560.5 372.4 ± 652.1

Relative % 31.6 ± 15.2 16.8 ± 11.5 17.5 ± 15 19.8 ± 14.3 20.5 ± 18.6

CV 52.9 ± 25.5 38.3 ± 26.2 38.4 ± 33 37.4 ± 27.1 34.8 ± 31.6

Median of absolute deviation (MAD) 464.8 ± 578.5 338.5 ± 424.6 333.9 ± 427.7 519.6 ± 749 447.1 ± 782.7

Relative deviation index (RDI) (%) 31.5 ± 17.8 27.1 ± 18.5 27.2 ± 23.3 26.4 ± 19.1 24.6 ± 22.3

MDC absolute (ms2) 1423.1 ± 1603.4 582.9 ± 731.3 597 ± 764.6 1077.7 ± 1553.5 1032.3 ± 1807.4

MDC relative (%) 119.7 ± 149.7 46.6 ± 31.9 48.5 ± 41.7 54.9 ± 39.7 56.9 ± 51.6

LF + HF/HR supine

SEM (a.u.) 15 ± 15.3 8.5 ± 10 6.6 ± 7.4 11.1 ± 14.3 17 ± 23.7

Relative % 23.9 ± 14.1 12.8 ± 11.2 12.3 ± 10.9 15.6 ± 11.9 24.8 ± 17.8

CV 45.7 ± 26.8 31.5 ± 27.2 34.6 ± 30.7 32.7 ± 24.9 39.6 ± 28.2

Median of absolute deviation (MAD) 17 ± 18.4 14.6 ± 17.3 13.2 ± 14.7 16.5 ± 21.4 19.1 ± 26.6

Relative deviation index (RDI) (%) 27.6 ± 15 22.2 ± 19.2 24.5 ± 21.7 23.1 ± 17.6 28 ± 19.9

MDC absolute (a.u.) 41.7 ± 42.5 23.5 ± 27.8 18.3 ± 20.5 30.7 ± 39.8 47.1 ± 65.6

MDC relative (%) 88.5 ± 120.2 35.5 ± 31.1 34.2 ± 30.3 43.2 ± 32.9 68.8 ± 49.3

HR standing

SEM (bpm) 2.5 ± 1.3 2.4 ± 2.3 1.6 ± 1.1 0.4 ± 0.4 1.3 ± 1.1

Relative % 3.1 ± 1.6 2.9 ± 2.7 1.8 ± 1.2 0.5 ± 0.5 1.6 ± 1.3

CV 6.8 ± 3.5 6.1 ± 5.7 4.6 ± 3.2 2.4 ± 2.3 4.6 ± 3.8

Median of absolute deviation (MAD) 3.3 ± 2.2 3.5 ± 3.3 2.9 ± 2 1.3 ± 1.4 2.6 ± 2.1

Relative deviation index (RDI) (%) 4.1 ± 3 4.3 ± 4 3.3 ± 2.3 1.7 ± 1.6 3.3 ± 2.7

MDC absolute (bpm) 7 ± 3.6 6.6 ± 6.3 4.4 ± 3.1 1 ± 1.1 3.5 ± 2.9

MDC relative (%) 8.9 ± 4.8 8.2 ± 7.6 5 ± 3.5 1.3 ± 1.3 4.4 ± 3.7

LF standing

SEM (ms2) 535.9 ± 565.1 321.7 ± 397 450.5 ± 511.7 389.1 ± 578.6 506.4 ± 911.5

Relative % 34.4 ± 12.7 21.5 ± 13.4 22.9 ± 15.5 27.3 ± 13.8 32.7 ± 22.8

CV 53.7 ± 19.8 45.5 ± 28.4 41.2 ± 28 41.7 ± 21.1 41.3 ± 28.8

Median of absolute deviation (MAD) 571.3 ± 774.1 480.6 ± 593.2 573 ± 650.9 420.1 ± 624.7 452.9 ± 815.3

Relative deviation index (RDI) (%) 37.8 ± 19.6 32.2 ± 20.1 29.1 ± 19.8 29.5 ± 14.9 29.2 ± 20.4

MDC absolute (ms2) 1485.4 ± 1566.3 891.6 ± 1100.5 1248.6 ± 1418.3 1078.6 ± 1603.8 1403.7 ± 2526.6

MDC relative (%) 112.6 ± 64.2 59.6 ± 37.2 63.4 ± 43.1 75.6 ± 38.3 90.5 ± 63.1

Continued
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which highlights the influence of dynamic physiological factors on autonomic regulation over time and 
underscores the importance of context when interpreting HRV trends over extended timeframes.

Perspectives – technological advancements
Refining these methodological standards enables future studies to make confident cross-population comparisons 
and pre-/post-intervention HRV comparisons29,40, expanding HRV applications in clinical and non-clinical 
contexts. Our findings provide a foundation for further investigations in diverse cohorts, from patients with 
autonomic dysfunction to those aiming to optimize health and performance. Advances in wearable devices 
and photoplethysmography (PPG) sensor technology are making large-scale, real-time HRV monitoring 
more feasible, and artifact-correction algorithms promise more convenient HRV data collection in everyday 
environments. However, while PPG offers convenience, it remains less precise than ECG due to motion artifacts 
and external factors, with mixed validation results. Time-domain variables like RMSSD show acceptable 
agreement with ECG52, but frequency-domain parameters exhibit lower reliability53–56. Thus, while PPG can 
be suitable for tracking certain isolated metrics or trends, ECG remains the preferred method for clinical 
applications and research scenarios where high precision is essential. Emerging analytical techniques, including 
non-linear measures57 and artificial intelligence (AI)-driven models, offer new avenues for capturing complex 
cardiovascular dynamics. AI integration could establish individualized HRV baselines by incorporating various 
factors (e.g. age, training load, sleep quality, psychosocial stress), and flag deviations to guide training or clinical 
decisions, thus enhancing personalized healthcare and performance monitoring58. Building on our robust 
reliability data, future studies could leverage AI to deliver real-time feedback, guiding individualized training 
adjustments or clinical decision-making and thus broadening the impact of HRV monitoring in personalized 
healthcare.

Perspectives – clinical applications
The robust HRV reliability shown in our study reinforces the value of HRV as a practical tool in healthcare. The 
consistency of our measures across multiple days and under varying postural conditions, suggest that clinicians 
and researchers can use HRV to track autonomic changes in clinical populations with reasonable confidence. 
In chronic disease management – especially for conditions associated with autonomic dysregulation like 
hypertension, heart failure, or diabetes – regular HRV assessments could flag early signs of deterioration. Because 
our results support the feasibility of remote HRV measurements, healthcare providers may integrate home-
based data collection to encourage patient engagement and timely intervention. In athletic and sports medicine 
contexts, the reliable day-to-day readings evidenced in our study suggest that HRV can serve as a trustworthy 
gauge of training load, recovery status, and overtraining risk. By adapting training programs according to 
systematic HRV evaluations, coaches and practitioners may optimize athletes’ performance while mitigating 
injury or burnout25,48. Moreover, our findings of stable HRV metrics across different environments support its 
growing recognition as a psychosomatic indicator – one that could be included in a broader psychophysiological 
framework for mental health management. The ability to measure HRV consistently in everyday settings lends 
itself to tracking stress management interventions, therapeutic progress, and overall well-being in populations 
dealing with anxiety and depression.

Conclusion
In conclusion, our study confirms HRV as a highly reliable measure of autonomic function in healthy, active 
adults when assessed under standardized conditions. We observed consistent reliability across postures and 
environments, highlighting HRV’s adaptability in real-world scenarios. While at-home measurements showed 
modest yet potentially meaningful advantages for certain metrics, our broader findings underscore HRV’s utility 
as a stable biomarker for cardiovascular health and training adaptations. Future research integrating wearable 
sensors and AI analytics could further enhance its diagnostic potential, supporting personalized, data-driven 
interventions. Moreover, our findings reinforce HRV’s significance as a critical measure in both clinical and 
athletic settings7,14,23. By demonstrating the robustness of HRV measurements, this study underscores the 
importance of precise and adaptable assessment protocols, ensuring HRV remains a valuable tool in both clinical 
and athletic contexts.

5 m A vs. B A vs. D B vs. C B vs. E

LF/HR standing

SEM (a.u.) 7.1 ± 7.8 4.4 ± 5.8 5.8 ± 6.8 5.5 ± 7.8 7.4 ± 13.6

Relative % 34.6 ± 12.4 22.7 ± 14.4 23.5 ± 15.9 28.7 ± 14.4 34.4 ± 24.6

CV 53.1 ± 19.3 44.8 ± 28.5 41.9 ± 28.2 42.3 ± 22 42.2 ± 30.1

Median of absolute deviation (MAD) 7.6 ± 10.1 6.2 ± 8.1 7.3 ± 8.5 5.8 ± 8.3 6.4 ± 11.7

Relative deviation index (RDI) (%) 36.9 ± 20.5 31.7 ± 20.2 29.7 ± 19.9 29.9 ± 15.6 29.9 ± 21.3

MDC absolute (a.u.) 19.7 ± 21.8 12.1 ± 16 15.9 ± 18.8 15.1 ± 21.7 20.4 ± 37.6

MDC relative (%) 113 ± 62.8 62.8 ± 40 65.2 ± 43.9 79.6 ± 39.9 95.2 ± 68.2

Table 6.  Absolute reliability variables according to each situation for main absolute variables of clinical 
interest. SEM (standard error of measurement), CV (coefficient of variation), MDC (minimally detectable 
change).
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Methods
Study design
This observational study employed a rigorous design to examine the clinical reliability of HRV measurements, 
notably by contrasting at-home measurements upon awakening with those conducted in a controlled laboratory 
environment in individuals without any health complaints. After an initial screening visit, participants 
underwent five supine/standing HRV measurements within a 24-hour period under standardized conditions, 
as shown in Fig. 1. The first measurement (A) was taken at home upon awakening, followed later that day by 
two laboratory measurements: one upon arrival (B) and a second after a 15-minute passive sitting break (C). 
The process was repeated the next morning with another at-home measurement (D) upon awakening and a 
final lab measurement (E). The study aimed to: (1) assess short-term HRV reliability across these five time 
points to evaluate consistency; (2) analyze day-to-day variance by comparing HRV measurements taken in 
different environments across 24-h; (3) determine whether at-home measurements could reliably substitute 
or complement lab-based assessments; and (4) evaluate short-term reproducibility of lab-based measurements 
through repeated testing in a controlled setting.

Participants
Forty-three participants voluntarily took part in the study. Inclusion criteria required participants to be generally 
healthy, physically active (engaging in more than 150 min of moderate physical activity per week), aged between 
18 and 70, free from acute injury or inflammatory disease, and with fatigue level ≤ 14 on the Profile of Mood 
State questionnaire. Exclusion criteria included pregnancy, current sickness or injury or acute musculoskeletal 
pathology, current treatment impacting cardiovascular function, current cardiac or pulmonary pathology, 
recent episodes of loss of balance or unexplained vagal symptoms, loss consciousness within the past year, and/
or susceptibility to orthostatic intolerance. This population was chosen due to their stable physiological profiles 
and the relevance to sports and exercise medicine applications, where accurate monitoring of ANS activity is 
critical for optimizing health, performance, and recovery. The study was approved by the Canton de Vaud ethics 
committee (CER-VD, protocol #2020-00071) and conducted in accordance with the ethical standards of the 
Declaration of Helsinki. All participants signed an informed consent form prior to data collection.

Heart rate variability
Upon completion of the screening process during the first visit, participants were provided with a heart rate 
monitor (Polar H10, Polar, Finland) to perform all measurements. They were thoroughly familiarized with the 
smartphone application (inCORPUS® app, Be.Care, Lausanne, Switzerland) to conduct the HRV measurements 
at home independently. The principle of the measurement was to record HR at rest in supine and standing 
positions for 5 min each, as previously described24. Given the sensitivity of HRV to various internal and external 
factors, rigorous instructions were given. External factors (location, time, room temperature, air humidity, noise, 
devices used, persons present during the measurements) were kept as stable as possible. For all measurements, 
participants were also instructed to control for internal confounding factors by: (1) avoiding intense physical 
efforts 48 h before the measurements, (2) abstaining from alcohol 12 h before the measurements, (3) abstaining 
from nicotine or caffeine after awakening on the day of measurement (4) performing the measurements in 
a fasting state, free from muscle soreness, illness, and on an empty bladder. Additionally, participants were 
instructed to relax throughout the duration of the measurement, without focusing their thoughts on anything 
specific. During the standing phase, participants were asked to keep their arms along the body and remain 
motionless, without moving their feet, or transferring their weight from one foot to the other. Any interference 
(movement, coughing, yawning, spasm, etc.) occurring during the recordings had to be reported to the 
investigators. Laboratory measurements were performed exclusively between 7 and 9 am to minimize the 
influence of circadian variations, digestion, and other daily stressors. The conditions of measurement were kept 
identical between visits. Confounding factors were checked at every visit, and measurements that did not meet 
the required conditions were excluded.

Data processing and analysis
Analyses were performed on raw RR intervals of the supine and standing phases extracted from the app 
dashboard. Each file was visually inspected for artifacts and ectopic beats, which were automatically corrected 
with a dedicated software (Kubios HRV Premium, Kuopio, Finland; automatic beat correction and medium 
automatic noise detection59). Standard time- and frequency-domain variables were calculated automatically by 
the software on recording periods of 240 s after excluding the first minute22,60. Time- and frequency-domain 
variables retained for analysis were SDNN, reflecting overall HRV14, HR, RMSSD, indicative of parasympathetic 
influence22, percentage of successive NN intervals differing by more than 50 ms (pNN50%), VLF, LF, which 
highlights increased sympathetic activity and baroreflex sensitivity upon standing61, HF, which assesses 
parasympathetic activity and is valuable for evaluating vagal tone under resting conditions, the LF/HF ratio, 
LF + HF (sum of low and high frequency power), TP, and normalized units such as LFnu and HFnu. Supine, 
High frequencies and the sum of HF + LF were also calculated relative to HR to provide a comprehensive 
and normalized view of total autonomic balance, proving to be suitable for clinical assessments as well as for 
evaluating physiological responses in physically active individuals independent from naturally low breathing rate 
which could happen in this population42. LF in standing position was also transformed to assess the sympathetic 
nervous system response to orthostatic stress, adjusted for individual heart rate differences.

We performed our analysis on both absolute and ln-transformed HRV data in the same study to both provide 
direct biological interpretability and meet parametric test assumptions. Normality was tested with Shapiro-Wilk 
test. For normally distributed variables, parametric tests were used and descriptive statistics are presented as 
mean ± standard deviation (SD). If normality failed, data are presented as median [25th ;75th percentile].
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To investigate significant differences between measurements, we performed a two-way repeated measures 
(RM) ANOVA focusing on measures A, B, D and E, which allowed the assessment of main and interaction 
effects of time (Day 1 vs. Day 2) and environment (at-home vs. in-lab). Measure C was excluded from this 
analysis as it introduced within-day variability that could confound the effects of the environment (at-home 
vs. in-lab) and across-day changes. For normally distributed data, a RM ANOVA with post-hoc Fisher’s Least 
Significant Difference test was used to explore specific pairwise comparisons between groups under different 
conditions. For non-normally distributed data, the Friedman test with post-hoc Dunn’s multiple comparison 
test was applied.

To evaluate short-term physiological responses within the lab, paired comparisons between measurements B 
and C were analyzed using paired t-tests or Wilcoxon signed-rank test, depending on data normality.

To assess relative reliability, we computed single measures intraclass correlation coefficients with a two-way 
random model, single measures, and absolute agreement. Data are presented with 95% confidence. ICCs were 
calculated over all 5 data points (measurement A to E) as well as between the following recordings: (1) At-
home Day 1 (Measure A) vs. In-lab Day 1 (Measure B), (2) At-home Day 1 (Measure A) vs. At-home Day 2 
(Measure D), (3) In-lab Day 1 (Measure B) vs. In-lab Day 1 (Measure C), (4) In-lab Day 1 (Measure B) vs. In-lab 
Day 2 (Measure E). ICCs were interpreted as < 0.5 = “poor”, 0.5–0.75 = “moderate”, 0.75–0.9 = “good”, > 0.9 = 
“excellent” reliability62.

To assess absolute reliability and clinical interpretations, we restricted our analysis to the absolute variables 
most used in clinical settings: SDNN, HR, RMSSD, HF; LF + HF/HR in the supine phase, and HR; LF, LF/HR 
in the standing phase. For each of those variables, SEM was calculated using the mean of standard deviations 
between each paired measurements, multiplied by √(1-ICC)50. SEM was then presented in absolute and relative 
values (SEM/mean values of the measurements). Coefficient of variation (CV) was calculated by dividing 
standard deviation by the mean of each configuration (e.g. A vs. B). The 95% limits of agreement (LOA) to 
determine MDC) were calculated as ± 1.96×√2×SEM49 for each SEM, and presented both in absolute and relative 
value (percentage of the medians). Considering the skewed distribution we also utilized the median absolute 
deviation (MAD) and Relative Deviation Index (RDI). Absolute deviation from the median was calculated from 
each measure and MAD was calculated by taking the mean of absolute deviations of the medians. The use of 
MAD offers then a robust assessment of variability less affected by outlier and skewed distribution. The relative 
deviation index was calculated by expressing this value in function of the median. The use of MAD and RDI 
ensures that the analyses are both statistically robust and clinically relevant. All analysis were performed on each 
situation (all 5 measurements, A vs. B, A vs. D, B vs. C and B vs. E.)

Statistical analyses were conducted using several software tools to ensure comprehensive data evaluation: 
intraclass correlation coefficients were calculated using Jamovi 2.3.28 (The Jamovi Project, Sydney, Australia); 
normality tests and comparisons analysis were performed with GraphPad Prism 10.1.2 (324) (GraphPad 
Software, San Diego, CA, USA); standard error of measurement and limits of agreement analysis were facilitated 
by Microsoft Excel (Microsoft Corporation, Redmond, WA, USA, Version 2402). Statistical significance was 
established at p < 0.05.

Data availability
The datasheet and the raw data presented in this study are available on request from the corresponding author.
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