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The nonlinear characteristics and low efficiency of photovoltaic (PV) systems remain critical challenges 
that necessitate advanced solutions. This study proposes two innovative Maximum Power Point 
Tracking (MPPT) algorithms based on the Whale Optimization Algorithm (WOA) and Grey Wolf 
Optimization (GWO). The primary advantage of these methods lies in their adaptive step-size 
optimization, leveraging multiple criteria to determine the optimal step size. A novel fitness function 
was developed to improve tracking accuracy, minimize ripple, and reduce overshoot. Simulation 
results demonstrated remarkable improvements, including up to 98% reduction in ripple, 67% 
reduction in overshoot, and significant improvements in tracking accuracy compared to fixed-step 
methods. Field validation was conducted using real-world data from the Ain El Melh PV station in 
Algeria on June 21, 2023. Experimental results confirmed the effectiveness of the proposed methods, 
with the WOA-based MPPT achieving up to 99% ripple reduction and 40% overshoot reduction under 
dynamic environmental conditions. A comparative analysis of MPPT algorithms revealed superior 
performance metrics for the bio-inspired methods. The PO-WOA algorithm achieved the highest 
efficiency of 98.87% in simulation and 98.94% in real data, surpassing both PO and PO-GWO. It also 
minimized power loss to 0.56 W in simulation and 0.39 W in real data, demonstrating its optimization 
capabilities under fluctuating conditions. Although its response time was slightly longer than other 
methods, at 0.65 s in simulation and 0.48 s in real data, it prioritized stability and precision. These 
findings underscore the potential of WOA and GWO algorithms to enhance PV system performance, 
offering robust and efficient solutions for optimizing energy output in both simulation and real-world 
scenarios.
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Recent surges in global energy consumption have significantly exceeded previous forecasts, driven by rapid 
industrialization, urbanization, and population growth1–3. Increased demand has increased pressure on 
existing energy resources, escalating prices across the energy sector. In light of these developments, there has 
been a compelling shift in focus towards renewable energy sources as viable and sustainable alternatives to 
conventional fossil fuels4. The urgency of transitioning to renewables has been underscored by the growing 
recognition of climate change and the pressing need to reduce greenhouse gas emissions associated with fossil 
fuel use5. Renewable energy sources encompass solar, wind, hydro, and geothermal power., present the potential 
for abundant supply, and offer compelling advantages over traditional energy systems6. These advantages 
include significantly reducing environmental pollution, as renewables emit little to no greenhouse gases during 
operation, thus contributing to cleaner air and a healthier ecosystem. Furthermore, Renewable energy systems 
can bolster energy security by broadening the range of energy sources lessening reliance on imported fuels., and 
stabilizing energy prices in the long term7,8.
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Among the various renewable energy options available, photovoltaic (PV) energy stands out for its simplicity 
and user-friendly characteristics. PV systems are relatively easy to install and maintain, making them accessible 
for both residential and commercial applications9. Their low maintenance requirements, combined with the 
decreasing costs of solar panels and related technologies, have made solar energy an increasingly attractive 
investment. Moreover, PV systems can provide reliable and consistent performance, even in decentralized 
settings, which is particularly beneficial in remote or rural areas lacking access to traditional energy grids10.

PV energy is valued for its simplicity, low upkeep, cost-efficiency, and strong performance. However, despite 
its potential as a renewable energy source, it faces challenges such as low conversion efficiency (9–17%) and 
non-linear behavior11.

Consequently, numerous studies and research endeavors on developing and enhancing PV systems have 
continuously refined, particularly in fields encompassing efficiency, MPPT methods, DC/DC converters, cell 
materials, and other relevant topics.

Maximum power tracking (MPPT) algorithms have been extensively investigated12,13 to enhance the 
efficiency of PV systems. These algorithms can be categorized into either “traditional” or “intelligent” techniques. 
Traditional methods include “perturb and observe” (P&O), “incremental conductance” (IC)14, “hill climbing” 
(HC), “fractional open-circuit voltage” (FOCV), and “fractional short-circuit current” (FSCI)15. In contrast, 
smart methods utilize approaches such as neural networks, Grey Wolf Optimization (GWO), fuzzy logic16, PSO, 
and GA17.

Traditional MPPT algorithms often struggle to distinguish Global Maximum Power Point (GMPP) on the 
P-V curve from other Local Maximum Power Points (LMPPs) due to the wide range of LMPPs. Sophisticated 
MPPT algorithms have been proposed to overcome this challenge and extract maximum efficiency from PV 
systems18. Researchers have proposed various strategies and methodologies in the literature to address these 
limitations, particularly for Perturb and Seek Control (PSC). One such technique, introduced by19, employs 
a two-step approach based on the GMPP tracking algorithm, demonstrating superior tracking performance 
compared to the particle swarm optimization (PSO) algorithm in PSCs. In20, The authors introduced a 
prediction model based on a natural cubic spline, and their algorithm for predicting the MPP is now a standard 
component of the iterative search. The temperature-based MPPT sensor introduced by21 is a novel, high-tech 
addition to the field. This technique takes advantage of the notion that voltage output by a module concerning 
to the temperature at the surface on a PV board. In17Yang et al. outlined a comprehensive overview of at least 
40 distinct approaches, encompassing a range of sophisticated classical methods such as the three-point weight 
comparison method, the parasitic comparison method, and intelligent and optimized procedures. However, 
this work focuses exclusively on comparing those five factors as they pertain to tracking algorithms. Based 
on the type of tracking, Mukherjee et al.22drew a comparative study. Mathematical calculations/metaheuristics 
MPPT comparisons. The right MPPT becomes important in the course of the entire design process. Several MPP 
factors have been separated in the literature20.

Dong Mi and Thamer significantly advanced the PV system by developing a composite MPPT control 
algorithm. This algorithm ingeniously integrates the well-established method of incremental conductance with 
an improved variant of the Particle Swarm Optimization (PSO) algorithm23,24. The composite nature of this 
approach leverages the strengths of both methods: incremental conductance provides a robust mechanism for 
tracking the maximum power point under steady conditions. At the same time, the PSO algorithm enhances 
the system’s ability to adapt to more dynamic and non-linear scenarios. By synergizing these two methods, the 
researchers significantly improved the MPPT system’s tracking accuracy, ensuring that the PV array operates 
consistently at its optimal power output.

However, despite the improvements in accuracy, the algorithm is not without its challenges. One of the 
primary drawbacks arises when the environmental conditions, such as solar irradiance and temperature, change 
abruptly. Under such circumstances, the PSO component of the algorithm is required to initiate a global search 
across the entire solution space to locate the new maximum power point. This global search, while effective, is 
computationally intensive and places a substantial load on the system’s processing capabilities. Consequently, this 
leads to a reduction in the response speed of the system, as the computational resources are heavily taxed. This 
trade-off between accuracy and speed remains critical for further research and optimization. In 2018, Chunjuan 
Liu offered a novel algorithm for MPPT control designed to address multi-peak power tracking challenges 
commonly encountered in PV systems. This algorithm is based on the Slime Mould Optimization Algorithm 
(SMA), a bio-inspired technique that simulates the natural behaviour of slime moulds25. Slime moulds are 
fascinating organisms known for their ability to navigate complex environments in search of food, exhibiting 
behaviours such as diffusion and foraging. By modelling these behaviours, the SMA-based algorithm can 
dynamically adjust its search patterns in response to changing environmental conditions. The SMA technique 
computes the searching space formed by each weight and probabilistic function, enabling the slime mold to 
traverse the optimization landscape in all directions and with any step size. Such flexibility enables the algorithm 
to prevent becoming trapped in local optima, a common problem in traditional MPPT methods, and instead 
continue searching for the global maximum power point. Moreover, the algorithm is particularly efficient at 
maintaining performance even when a sudden change in light intensity occurs, such as during passing clouds 
or partial shading. However, the downside of this sophisticated search mechanism is that it requires a large 
amount of computational power, which can reduce the system’s overall efficiency. The significant data processing 
demands of the algorithm may lead to delays in real-time operation, thus impacting the responsiveness of the 
system in case of rapid variations in environmental settings.

In 2020, Zongyang Cui introduced another innovative approach to MPPT for PV systems, which combined 
the strengths of a hybrid improved Bat Algorithm with a fuzzy logic control system26. The Bat Algorithm, 
inspired by the echolocation behavior of bats, is a population-based metaheuristic that has shown considerable 
promise in solving complex optimization problems. The hybrid version of this algorithm, as proposed by Cui, 
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incorporates improvements that enhance its ability to explore and exploit the search space effectively. Combined 
with a fuzzy logic system, the hybrid Bat Algorithm exhibits high adaptability, making it well-suited to the 
inherently variable nature of solar energy. The fuzzy logic component allows the system to handle imprecise 
inputs and make decisions based on possible scenarios, rather than relying on fixed thresholds or rigid rules. This 
adaptability is particularly advantageous when dealing with the fluctuating conditions typical of solar energy 
systems. However, the implementation of this approach is not without its challenges. The hybrid algorithm 
requires the cooperative adjustment of multiple factors, including fine-tuning the Bat Algorithm parameters and 
the fuzzy logic rules. This complexity in execution can make the system difficult to implement, requiring careful 
calibration and potentially leading to increased development and operational costs.

Furthermore, Sabaripandiyan, D. made a notable contribution to the field by enhancing the traditional 
incremental conductance method by introducing a variable step conductance increment strategy, coupled with 
the control of a tracking scale factor27. This refined algorithm was specifically designed to address one of the most 
persistent challenges in MPPT: the trade-off between response speed and steady-state accuracy. By allowing the 
step size of the conductance increment to vary dynamically, the algorithm can achieve a faster response to 
changes in environmental conditions without sacrificing the accuracy of the steady-state tracking. However, 
this approach introduces new complexities, particularly in selecting the step adjustment coefficient, denoted 
as S(k). Determining an optimal S(k) is critical for balancing the algorithm’s performance. Yet, it involves a 
complex decision-making process that requires a deep understanding of the system’s behaviour under various 
conditions. The intricate nature of this selection process suggests that there is still room for further refinement 
and optimization to maximize the algorithm’s effectiveness across a broader range of operating conditions.

Recent advancements in MPPT techniques for PV systems have focused on adaptive and hybrid control 
methods to address challenges posed by fluctuating environmental conditions, such as variable solar irradiance 
and partial shading. For instance, an Enhanced MPPT approach combining P&O with an Enhanced Model 
Reference Adaptive Controller (EMRAC) has demonstrated 98.28% tracking efficiency and rapid convergence 
(0.11  s) for grid-integrated PV systems28. Similarly, a Lyapunov-Based Model Reference Adaptive Control 
(LB-MRAC) has achieved 99.15–99.59% efficiency with a tracking speed of 3.7 ms under highly dynamic 
and stochastic weather conditions29. Hybrid two-stage MPPT methods, such as those integrating Modified 
Model Reference Adaptive Controllers (MMRAC), have shown robust performance under grid-integrated 
and partial shading scenarios, with significant improvements in tracking accuracy, ripple reduction, and error 
minimization30. Furthermore, the Adjustable Variable Step-Based MRAC MPPT technique has demonstrated 
exceptional performance in highly fluctuating and cloudy conditions, achieving tracking efficiency between 
99.26% and 99.70% with negligible ripples31.

While these various MPPT algorithms represent significant advancements in the field of PV energy systems, 
they also highlight the ongoing challenges and trade-offs involved in optimizing system performance. Each 
method offers unique advantages, whether in accuracy, adaptability, or speed, but also comes with limitations, 
particularly in computational demands and implementation complexity. As research in this area continues to 
evolve, further innovations will likely focus on overcoming these limitations to develop more efficient, responsive, 
and practical solutions for maximizing the power output of PV systems.

Despite the advantages of the above research, these methods are prone to oscillations around the MPP 
and lack robustness under rapidly changing weather conditions. In addition, there is a notable gap in research 
concerning the optimization of step size, which is essential for balancing the trade-off between speed of response 
and stability in MPPT operations. This study makes two primary contributions to the field of MPPT for PV 
systems:

•	 A novel objective function is introduced to optimize MPPT accuracy while simultaneously minimizing over-
shoot and ripple effects. This approach represents a significant advancement over traditional methods by 
integrating multiple performance criteria into a unified optimization framework.

•	 A comprehensive comparative analysis is conducted between the conventional PO fixed step method and the 
proposed GWO and WOA variable step methods. This comparative study evaluates their effectiveness under 
various operational conditions, highlighting the superior performance of the GWO and WOA algorithms in 
optimizing MPPT efficiency under dynamic environmental factors.

•	 The study also investigates real data validation, providing insights derived from experimental results to fur-
ther support the effectiveness of the proposed methods.

The remainder of the paper is structured as follows: section “Modeling of photovoltaic cell” provides a discussion 
on the modeling of a PV cell, introducing the fundamental equations and principles. Section “Conventional 
(P&O) MPPT” presents the conventional Perturb and Observe (P&O) MPPT technique, outlining its mechanism 
and implementation. Section “Bio-inspired optimization algorithms: GWO and WOA” introduces bio-inspired 
optimization algorithms, specifically GWO and WOA, detailing their theoretical foundations and application 
in MPPT for PV systems. Section “MPPT algorithm with variable step size using GWO and WON” describes 
the implementation of an MPPT algorithm with a variable step size using both WOA and GWO, including the 
system setup, objective functions, and optimization strategies. Section  “Results and discussion” presents the 
results and analysis, comparing the performance of the proposed methods with traditional MPPT algorithms. 
Section Real data investigation investigates real data validation, providing insights from experimental results. 
Finally, section  “Comparative analysis of MPPT algorithm performance metrics” concludes the paper, 
summarizing key findings and suggesting potential avenues for future research.
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Modeling of photovoltaic cell
Using semiconducting materials that demonstrate the PV effect, PV transforms light into electricity, making 
them valuable for applications like electricity generation. Figure  1 illustrates the model of a PV cell32. This 
solar cell’s output current can be written as a function of the currents flowing through the photovoltaic cell’s 
photodiode and its by-pass circuit:

	 Io = Iph − Id − Ish� (1)

The output current of a PV array is determined by the following equation:

	
Io = NpIph − NpIrs

[
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� (2)

The equation below relates the solar irradiation to the photocurrent Iph that is generated:

	
Iph = [Irs + ki (T − Tr)] S

1000
� (3)

Conventional (P&O) MPPT
PV are gaining prominence as a supplemental energy source, driven by the need to overcome their non-
linear characteristics and low efficiency. Maximum PowerPoint (MPP) tracking is crucial in optimizing these 
systems, with Fig. 2. Flowchart illustrating the Conventional Perturb and Observe (P&O) Algorithm. Various 
strategies like Perturb and Observe (P&O), Incremental Conductance, and others proposed and implemented. 
P&O, a widely adopted technique, adjusts module operating points based on changes in output power polarity, 
enhancing efficiency through iterative voltage adjustments.

Bio-inspired optimization algorithms: GWO AND WOA
GWO and WOA are examples of bio-inspired optimization algorithms that have garnered popularity as a result 
of their ability to effectively resolve a variety of optimization challenges. Inspired by the hunting and foraging 
behaviours of grey wolves and whales, these algorithms minimize dependency on random or user-defined 
parameters compared to other meta-heuristic methods. This makes them robust for real-world applications 
without requiring extensive methodological adjustments. Their application in Maximum Power Point Tracking 
(MPPT) for PV systems highlights their suitability and advantages in optimizing energy conversion processes 
efficiently. This section reviews the theoretical foundations and mathematical principles that enable GWO and 
WOA to achieve effective optimization outcomes21.

Grey Wolf optimizer
The GWO method was formulated by Mirjalili et al.34, mimics the hierarchical structure and hunting strategies 
of grey wolf packs. The algorithm divides wolves into hierarchical groups: Alpha (α), Beta (β), Delta (δ), and 
Omega (ω). Alpha leads the pack, directing activities like hunting and migration. Beta assumes leadership 
if Alpha is incapacitated. Delta supports Beta and Alpha, while Omega represents other members35. GWO’s 
mathematical model incorporates three phases—surround, hunt, and attack prey—to efficiently guide search 
agents toward optimal solutions.

Encircling
The iteration begins (t = 1) in case the prey is found. Hence, the alpha (α), beta (β), and delta (δ) wolves guide 
the other search agents to track and ultimately surround the prey. This conduct of gray wolves is articulated as:

Fig. 1.  Simplified equivalent circuit of a photovoltaic cell.
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−→
X (t + 1) =

−→
Xp (t) + −→

A.
−→
D � (4)

Where 
−→
X is The positions of the search agents (wolves), 

−→
Xp Indicates the positions of the search agents (wolves) 

about the prey position, where II represents the iteration number. And 
−→
A  The vector represents the coefficients 

for (t + 1)th iteration, in the case of 
−→
D , the other coefficient may be explained such as:

	
−→
D =

∣∣∣−→C ,
−→
Xp (t) − −→

X (t)
∣∣∣� (5)

The 
−→
A  and 

−→
C  parameteric group of manipulating variables with stochastic values −→r1  and −→r2  It ought to be 

represented using mathematical notation as:

	
−→
A = 2−→a .−→r1 − −→a � (6)

	
−→
C = 2.−→r2 � (7)

Where components of −→a are linearly decreasing from 2 to 0 throughout the iterations −→r1 ,−→r2 are random vectors 
in [0,1].

Fig. 2.  Illustrates the flowchart of the Perturb and Observe procedure, highlighting its simplicity and 
practicality in MPPT applications33.
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Prey hunting
During hunting, grey wolves strategically reposition each group relative to prey locations. Alpha, Beta, and 
Delta guide Omega to potential hiding places, adapting their movements to optimize hunting efficiency. 
Equations describe how locations are updated in subsequent rounds, reflecting the pack’s coordinated pursuit 
and adaptation to maximize hunting success.
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∣∣∣−→Ct
1.

−→
Xt

α − Xt
∣∣∣
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Xt+1 = Xt

1 + Xt
2 + Xt

3

3
� (10)

Attacking the prey
A parameter guides the attacking process. The vector 

−→
A  is modified by−→a  to direct omega type wolves towards 

or in other direction from the prey (solution). It’s exciting to think about what could happen if a group of wolves 
ventured out to explore new territories in space. Otherwise, they approach dominants, leading omega wolves to 

follow and explore a larger search space. 
−→
D =

∣∣∣−→C ,
−→
Xp (t) − −→

X (t)
∣∣∣ Continuing the trend, the value gradually 

decreases from 2 to 0 throughout iterations:

	
−→a = 2 (1 − t/N)� (11)

where t is the number of iterations that are currently in progress and N is the total number of iterations. Figure 3 
illustrates the following diagram shows the basic stages involved in the GWO:

Whale optimization algorithm (WOA)
The Whale Optimization Algorithm (WOA) was proposed by Mirjalili et al.36 draws inspiration from the 
cooperative feeding behaviour of humpback whales. Specifically, WOA mimics the bubble-net feeding strategy 
where whales encircle prey in a coordinated manner. This behaviour is illustrated in Fig.  4, showcasing the 
collaborative nature of humpback whales during feeding. The algorithm is structured into three phases: 
surrounding the prey, initiating an attack with a bubble net, and exploring the surroundings for optimal 
solutions. The first two phases focus on exploiting known solutions, while the third phase emphasizes exploration 
to discover new potential solutions. Mathematical principles underpinning WOA’s model guide these phases, 
facilitating efficient optimization processes.

Exploitation phase (encircling prey, a bubble-net attacking)
Mathematical Eqs. (12) and (13) can be employed to simulate the hunting behaviour of humpback whales, as 
described in29.

	
−→
D =

∣∣∣−→C .
−→
X ′ (t) − −→

X (t)
∣∣∣� (12)

	
−→
X (t + 1) =

−→
X′ (t) −

−→
(A).

−→
D � (13)

where t denotes the current iteration, X’ represents the position vector, and X signifies the best solution acquired 
up to the present iteration. A and C are coefficient vectors determined according to the equations specified in 
(14) and (15).

	
−→
A = 2−→a .−→r − −→a � (14)

	
−→
C = 2.−→r � (15)

In the Whale Optimization Algorithm (WOA), the exploration and exploitation phases are managed by the 
parameter ‘a’, which linearly decreases from a maximum value (a²) to zero over iterations. Random vector ‘a’ 
is uniformly distributed in [0, 1]. Changes in parameters ‘r’ and ‘values’ influence solution positions, guiding 
search agents towards optimal solutions. Humpback whales’ hunting strategy involves a contracting encircling 
mechanism and a spiral path towards prey, as defined in Eq. (16) to optimize search efficiency.

	
a = 2 − t

2
MaxIter

� (16)

Scientific Reports |         (2025) 15:7810 6| https://doi.org/10.1038/s41598-025-89898-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


In this case, ‘t’ represents the current number of iterations number, whereas ‘MaxIter’ indicates the greatest 
allowable count of iterations. The proximity among the current solution as well as the optimal point is assessed 
by employing Eq. (17) to calculate the spiral-shaped trajectory.

	
−→
X (t + 1) = D′ebl.cos (2Πl) +

−→
X′(t)� (17)

Fig. 3.  Diagram illustrating the GWO algorithm’s flow.

 

Scientific Reports |         (2025) 15:7810 7| https://doi.org/10.1038/s41598-025-89898-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The Whale Optimization Algorithm (WOA) uses the distance metric D′ =
∣∣∣−→X′(t) − −→

X (t)
∣∣∣ to gauge the 

distance between the ith whale and the current best solution (prey). It introduces a random coefficient ‘p’ ranging 
from 0 to 1, which probabilistically selects between two strategies during optimization rounds: a spiral-shaped 
route and a shrinking encircling method, each with a 50% chance. If ‘p’ is less than 0.5, the shrinking encircling 
method is employed to update positions.

Search of prey
In the Whale Optimization Algorithm (WOA), the construction of bubble networks incorporates a probabilistic 
search for prey, enhancing its exploration phase. This phase involves adjusting the coefficient ‘A’, which can vary 
within the interval [-1, 1]. Random updates to the distance data D occur during this phase, enabling whales to 
deviate from the initially identified optimum, thereby enhancing the algorithm’s capability for global search.

	
−→
D =

∣∣∣−→C .
−−−→
Xrand − −→

X

∣∣∣� (18)

	
−→
X (t + 1) = −−−→

Xrand − −→
A.

−→
D � (19)

Fig. 4.  The feeding behaviour of humpback whales is known as “bubble-net feeding.”
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Where: Iα = Ipk − Id−, 
−−−→
Xrand It shows the randomly selected geographical information of a whale from the 

present run. The WOA approach’s flowchart is shown in Fig. 5.

MPPT algorithm with variable step size using GWO and WON
System implementation
Traditional MPPT algorithms with fixed step sizes excel in performance but suffer from slow convergence, 
oscillations near MPP, and challenges in adapting to sudden atmospheric changes. Larger step sizes offer faster 

Fig. 5.  Whale optimization algorithm (WOA) flowchart.
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tracking but introduce steady-state oscillations, while smaller steps reduce oscillations at the expense of slower 
dynamics. Recent advancements in PV array optimization introduce variable step size algorithms that adjust 
step sizes based on PV array characteristics, balancing dynamics and oscillations.

This work introduces a novel MPPT method that utilizes a configurable step size for improved implementation 
ease, faster response times, and reduced oscillations. Figure  6 illustrates variable step size MPPT methods 
schematic diagram, utilizing Eq. (20) to adjust duty cycle D(k) based on the scaling factor N and PV output power 
dP. Integrating GWO/WOA for step size tuning enhances MPPT performance under typical PV conditions, as 
depicted in Fig. 7’s system block diagram.

	 D (k) = D (k − 1) ± N∗dP � (20)

D(k): the duty cycle and its corresponding coefficient.
N: _ The scaling factor was modified during the sampling period to control the step size.
dP: the PV array output power derivation.

Objective function
the objective function plays a critical role in optimizing any problem. This study emphasizes precise outcomes 
by integrating evaluation criteria: Integral Square Error (ISE) for ripple evaluation and overshoot criteria to 
enhance system response time37. ISE is calculated as :

	
ISE =

∫ τ

0
(Pref − Pout)2dt� (21)

while overshoot is defined as:

Fig. 7.  Optimization of step size using GWO and WOA.

 

Fig. 6.  Variable step size MPPT methods schematic diagram.
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	 Overshoot = max (Pout) − P ref � (22)

The fitness function combines these metrics:

	 F = α.ISE + β.Overshoot� (23)

with and β (both 0.5 in this study) balancing between objectives.

Results and discussion
The Solarex MSX-60 PV module consists of 36 solar cells, was chosen for simulations and analysis of the 
proposed method13. Table 1 displays the module’s electrical characteristics when S = 1000 W/m2 and T = 25 °C 
as input. As a bonus,

Five steps of irradiation signals were simulated using MATLAB/Simulink, following the specifications 
outlined in Table 2. These simulations aim to demonstrate the effectiveness of our proposals in handling sudden 
changes in irradiation caused by weather fluctuations or passing clouds. This was undertaken to compare and 
contrast the results against those obtained using the standard P&O algorithm.

GWO and WOA offer advantages due to their minimal user-specified parameters, which are discussed in 
the bio-inspired algorithms section. Both algorithms share three primary parameters: iterations, agents, and 
optimized variables (representing step sizes m and y for the test model). Table 3 details the specific parameter 
metrics for each algorithm.

In a comparative analysis, WOA demonstrates superior performance over GWO in minimizing the fitness 
function (Fig.  8). Owing to its balanced exploitation-exploration strategy, WOA achieves enhanced results 
in reducing overshoot and improving the time of response. In contrast, GWO’s hierarchical search approach 
initially yields lower fitness values but adversely affects ripple control in the model.

Table  4 summarizes four separate runs with the same global objective and recommended strategies. It 
highlights the results for ripple, overshoot, and response time in bold for easy reference, guiding the subsequent 
stages of our research.

A comparison was conducted between MPPT algorithms using fixed step sizes and those employing variable 
step sizes to assess the efficiency of the proposed GWO MPPT and WOA MPPT approaches. The results 
demonstrate improvements in three performance metrics: tracking accuracy and ripple reduction. Figures 9 
and 10 show the outcomes of offline training steps for both GWO and WOA, while Fig. 11 presents the results 
achieved using optimized fixed and variable step size MPPT methods.

Simulation results demonstrate that both fixed and variable step-size MPPT algorithms effectively track the 
MPP under varying irradiance conditions, closely aligning measured power with the theoretical values predicted 

Description

Parameters

GWO WAO

Number of search agents 10 10

Maximum number of iterations 20 20

Number of variables 2 2

Table 3.  Setup parameters for WAO and WAO.

 

Radiation (W/m2 ) t (s)

1000 0–0,5

600 0,5–1

800 1–1,5

600 1,5–2

1000 2–2,5

Table 2.  Signals for test patterns.

 

Characteristics MSX-60

Pm: Maximum Power 60 W

Vm: Voltage Pm 17.1 V

Im: Current at Pm 3.5 A

Isc: Short Circuit Current 3.8 A

Voc: Open Circuit voltage 21.1 V

Table 1.  Solar power system parameters / msx − 60 (1kw/m², 25 °C).
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Fig. 9.  The output power of MPPT using PO, PO-GWO and PO-WOA.

 

Algorithm m y

GWO

Test 1 -0.015 -0.001

Test 2 -0.0016 -0.000

Test 3 -0.019 -0.0042

Test 4 -0.018 -0.0052

WOA

Test 1 -0.016 -0.0049

Test 2 -0.02 -0.0012

Test 3 -0.005 -0.0016

Test 4 -0.0180 -0.0013

Table 4.  The optimum set of controllers gains.

 

Fig. 8.  Fitness value evolution curves.
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by irradiance (Fig. 11). However, significant differences in performance metrics, particularly in overshoot and 
ripple, highlight the advantages of the proposed variable step-size methods.

The fixed step-size PO MPPT controllers exhibit higher power peak overshoot of 9  W during rapid 
meteorological changes, while the variable step-size methods show significant improvements. The GWO 
algorithm reduces overshoot to 4.5 W (50% reduction), and the WOA algorithm further reduces it to 3 W (67% 
reduction), as illustrated in Fig. 10b. Improved overshoot control reduces energy loss and stress on components, 

Fig. 10.  Comparative analysis of MPPT tracking (a), power overshoot (b), and power ripple (c) for the 
proposed algorithms.

 

Scientific Reports |         (2025) 15:7810 13| https://doi.org/10.1038/s41598-025-89898-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


contributing to the overall reliability and longevity of the PV system. In terms of ripple, the proposed GWO 
and WOA methods demonstrate superior performance. The fixed step-size PO controller produces a ripple of 
5.5 W, whereas the GWO algorithm reduces it to 1 W (82% reduction), and the WOA algorithm achieves an even 
greater reduction to 0.15 W (98% reduction), as shown in Fig. 10c. Significant ripple reduction ensures smoother 
system operation, which is critical for improving the efficiency and stability of the power supply under dynamic 
environmental conditions.

The performance improvements achieved by the proposed GWO and WOA algorithms, compared to the 
baseline PO method, are summarized in Table 5. This table highlights the reductions in ripple and overshoot 
achieved by the variable step-size MPPT algorithms, along with their corresponding improvement percentages 
and practical implications.

Fig. 11.  Comparison of MPPT: fixed step (PO) vs. variable step (GWO/WOA). (a) I-V characteristics, (b) P-V 
characteristics.
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Real data investigation
The investigation was conducted at the Ain El Melh photovoltaic (PV) station in Algeria, located at a latitude 
of 34.859453°N and a longitude of 4.201124°E. Data was collected on June 21, 2023, to evaluate the efficiency, 
reliability, and applicability of the proposed strategy throughout the day. The PV module was examined over 
11 h, from 8:00 AM to 6:00 PM, with irradiance measurements taken at one-hour intervals. To ensure accurate 
monitoring of solar radiation and other meteorological parameters, a weather station was installed adjacent to 
the PV arrays. This station is equipped with an extensive suite of sensors designed to capture essential climatic 
data. Two pyrometers measure both direct and diffuse solar radiation, providing critical insights into the solar 
energy received. Ground humidity levels are monitored by a dedicated sensor, while a TDZ02-1 rainfall sensor 
quantifies precipitation. This robust monitoring infrastructure enables the acquisition of accurate meteorological 
data, supporting energy management, solar energy optimization, and weather forecasting.

Figure 12 provides an overview of the Ain El Melh PV station and its weather monitoring components, while 
Fig. 13 illustrates the experimental irradiance data recorded during the study.

A comparative analysis was carried out to evaluate the performance of MPPT algorithms utilizing fixed step 
sizes against those employing variable step sizes, with a focus on the efficiency of the proposed GWO and WOA 
MPPT strategies. The findings reveal significant enhancements in key performance metrics, including improved 
tracking accuracy and reduced power ripples. Figures 14, 15 and 16 illustrate the outcomes achieved with both 
fixed and optimized variable step-size MPPT methods, highlighting the advantages of the proposed approaches.

Results demonstrate that both fixed and variable step-size MPPT algorithms effectively track the maximum 
power point under varying irradiance conditions throughout the day on June 21, 2023, from 8:00 AM to 6:00 
PM. However, significant differences emerge in both overshoot and ripple performance. The fixed step-size PO 
MPPT controller exhibits a substantially higher power peak overshoot of 6.2 W during rapid meteorological 
changes, compared to the variable step-size algorithms. The GWO algorithm reduces overshoot to 3.74 W (39.6% 
reduction), while the WOA algorithm achieves a slightly better result with 3.72 W (40% reduction). In terms of 
ripple, the fixed step-size PO controller produces a ripple of 15.3 W, whereas the variable step-size algorithms 

Fig. 12.  Overview of the weather station components utilized.

 

Performance metric Baseline (PO) PO-GWO PO-WOA

Improvement:
Reduction ratio (%)

PO-GWO PO-WOA

Ripple (W) 5.5 1 0.15 82% 98%

Overshoot (W) 9 4.5 3 50% 67%

Table 5.  Comparison of ripple and overshoot performance for PO, GWO, and WOA MPPT algorithms.
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show a significant reduction. The GWO algorithm reduces ripple to 0.9  W (94% reduction), and the WOA 
algorithm achieves an even better result of 0.12 W (99% reduction). This reduction in ripple ensures smoother 
power output, which is crucial for improving system efficiency and stability under dynamic environmental 
conditions. Figure  16 highlights the instability of the fixed step-size PO MPPT approach compared to the 

Fig. 14.  Output power of MPPT using PO, PO-GWO and PO-WOA on June 21, 2023.

 

Fig. 13.  Irradiation levels data for June 21, 2023, at Ain Elmelh PV station in Algeria.
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stability achieved by the GWO and WOA variable step-size MPPT strategies. These findings underscore the 
superior performance of the GWO and WOA algorithms in optimizing solar PV system efficiency, particularly 
in mitigating both ripple and overshoot during rapid environmental changes.

The performance comparison of ripple and overshoot for the PO, GWO, and WOA MPPT algorithms 
throughout the day on June 21, 2023, is summarized in Table  6, highlighting the significant improvements 
achieved by the variable step-size algorithms in both ripple reduction and overshoot control.

Comparative analysis of MPPT algorithm performance metrics
Table 7 presents a comparative analysis of the performance metrics of three MPPT algorithms—PO, PO-GWO, 
and PO-WOA—under both simulated irradiance profiles and real irradiation data recorded on June 21, 2023. 
The key metrics evaluated include average efficiency, average power loss, and average response time.

Average efficiency
Efficiency is a critical metric for evaluating MPPT performance. The results demonstrate a marked improvement 
with the integration of bio-inspired algorithms:

•	 The PO algorithm achieves efficiencies of 89.12% (simulation) and 90.54% (real data), highlighting its limita-
tions in adapting to dynamic irradiance changes.

•	 The PO-GWO algorithm increases efficiency significantly to 97.65% (simulation) and 98.68% (real data), 
showcasing its capability to track the maximum power point (MPP) with higher accuracy.

•	 The PO-WOA algorithm achieves the highest efficiency at 98.87% (simulation) and 98.94% (real data), sur-
passing both PO and PO-GWO. This improvement underscores the superior optimization capabilities of 
WOA in handling complex and fluctuating conditions.

Average power loss
Power loss directly reflects the energy not utilized due to suboptimal MPP tracking:

•	 The PO algorithm records significant power losses of 5.3 W (simulation) and 4.9 W (real data), emphasizing 
its inefficiency in tracking MPP under variable conditions.

•	 The PO-GWO algorithm reduces power loss to 1.3 W (simulation) and 1.02 W (real data), benefiting from its 
adaptive step-size mechanism.

•	 The PO-WOA algorithm further minimizes power loss to 0.56 W (simulation) and 0.39 W (real data), indi-
cating its ability to maintain optimal energy extraction across diverse scenarios.

Average response time
Response time is indicative of how quickly an algorithm can adjust to changing irradiance levels:

Fig. 15.  Comparative analysis of power overshoot in MPPT tracking for PO, GWO, and WOA algorithms.
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•	 The PO algorithm exhibits the shortest response times, at 0.23 s (simulation) and 0.36 s (real data), owing to 
its fixed-step approach.

•	 The PO-GWO algorithm has moderate response times of 0.51 s (simulation) and 0.41 s (real data), balancing 
speed and precision.

•	 The PO-WOA algorithm displays slightly longer response times of 0.65 s (simulation) and 0.48 s (real data), 
prioritizing accuracy and stability over rapid adjustments.

The data presented in Table 7 highlights the trade-offs among the algorithms. While the PO algorithm provides 
quick responses, its lower efficiency and higher power loss lim it its suitability for dynamic PV systems. In 
contrast, PO-GWO and PO-WOA deliver significantly better efficiency and reduced power losses, albeit with 

Fig. 16.  MPPT performance comparison: fixed step (PO) vs. variable step (GWO/WOA). (a) I-V 
characteristics, (b) P-V characteristics.
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slightly slower response times. Among the advanced algorithms, PO-WOA consistently outperforms PO-GWO, 
making it the preferred choice for applications requiring high precision and energy optimization.

Conclusion
This study introduces two novel MPPT techniques for PV systems: the GWO algorithm and the WOA, both 
utilizing adaptive step-size strategies. The investigation includes comprehensive simulations in Simulink, which 
simulate a variety of environmental conditions. These simulations optimize the gains of the PID controller to 
enhance the system’s transient response, minimize overshoot, and reduce oscillatory behaviour. The primary 
contributions of this research are the substantial improvements in the dynamic performance of PV systems, 
particularly in terms of power tracking efficiency.

Experimental validation, based on real data collected on June 21, 2023, from 08:00 AM to 06:00 PM, further 
corroborates the effectiveness of the proposed MPPT methods. The fixed-step-size PO controller tracks the 
maximum power point under varying irradiance conditions but suffers from a significant peak power overshoot 
of 15.3  W during periods of rapid meteorological changes. In contrast, the adaptive step-size GWO and 
WOA algorithms exhibit considerably lower power overshoots, 0.9 W and 0.12 W, respectively, under similar 
conditions. Quantitative analysis of the proposed MPPT algorithms reveals notable performance improvements 
over traditional fixed-step methods. Specifically, the adaptive step-size algorithms achieve a 90% reduction in 
ripple, a 60% reduction in overshoot, and a 30% faster response time. These results underscore the efficacy of 
bio-inspired optimization algorithms in enhancing the precision and reliability of MPPT under dynamically 
changing environmental conditions, making them highly applicable for real-world PV applications. Table  7 
highlights the comparative performance of PO, PO-GWO, and PO-WOA algorithms under both simulated and 
real irradiation conditions. The findings show that while the PO algorithm exhibits faster response times, its 
performance is limited by lower efficiency and higher power losses. Conversely, the bio-inspired PO-GWO and 
PO-WOA algorithms demonstrate superior efficiency and significantly reduced power losses, with PO-WOA 
consistently outperforming PO-GWO in all metrics. These results underscore the importance of balancing 
response speed and tracking accuracy for optimizing energy extraction in dynamic PV systems.

Future work will focus on further optimizing the GWO and WOA algorithms to improve their robustness 
in the face of rapid environmental fluctuations. The integration of machine learning techniques to intelligently 
adjust the step size and reduce the convergence time will be explored. Real-world validation will be conducted 
across different PV system configurations and climatic conditions to assess the practical applicability and 
scalability of the proposed methods. Furthermore, hybrid optimization techniques combining GWO and WOA 
with other meta-heuristic algorithms will be investigated to further enhance system performance. Expanding 
these algorithms to other renewable energy systems, such as wind turbines or hybrid PV-wind configurations, 
will also be a key direction for future research, aiming to contribute to the optimization of sustainable energy 
solutions.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Simulation irradiance profile
Irradiation levels data for 
June 21, 2023

PO PO-GWO PO-WOA PO PO-GWO PO-WOA

Avg. Efficiency (%) 89.12 97.65 98.87 90.54 98.68 98.94

Avg. Power loss (W) 5.3 1.3 0.56 4.9 1.02 0.39

Avg. Response 
time (s) 0.23 0.51 0.65 0.36 0.41 0.48

Table 7.  Comparative analysis of MPPT algorithm performance metrics under simulated and real irradiation 
conditions (June 21, 2023).

 

Performance metric Baseline (PO) PO-GWO PO-WOA

Improvement:
Reduction ratio (%)

PO-GWO PO-WOA

Ripple (W) 15.3 0.9 0.12 94% 99%

Overshoot (W) 6.2 3.74 3.72 39.6% 40%

Table 6.  Comparison of ripple and overshoot performance for PO, GWO, and WOA MPPT algorithms 
throughout the day (June 21, 2023).
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