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A proper, reliable, and economic operation of a power system relies on a precise energy management 
strategy. For a reliable energy management strategy, information about the power system including 
power production and power consumption is required. However, consumer behaviour can be 
unpredictable, which can result to a high level of uncertainties for the load profile. So, this type of 
issue (existence of the uncertainty in power system) makes the energy management a complex task. 
The knowledge about the future state of the power system (e.g., the values of loads) can reduce the 
difficulty of this task, and it can lead to a more efficient energy management. This paper implements 
quantum computing-based artificial neural network to predict the future values of loads. For this 
purpose, this paper uses hybrid quantum/classical artificial neural network for a short-term forecasting 
of loads. The implemented quantum computing-based strategy is deployed using time series-based 
technique without using extra information (e.g., the weather condition, and behaviour of the 
consumer), and it only uses the current and historical values of the load to predict the future value 
of that. To examine the effectiveness of the hybrid quantum/classical artificial neural network, two 
different types of loads are selected from an experimental lab and the quantum-based approach is 
tested on those loads. The obtained results can proof the potential of quantum artificial intelligence to 
be used for forecasting-based challenges in smart grids.
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Artificial intelligence (AI) and especially artificial neural networks (ANNs) have been used to solve various issues 
and in different applications in smart grids, e.g., control-based applications1,2, protection-based applications3–5, 
detection and mitigation of cyber-attacks6–13, sensorless voltage estimation-based strategy for calculation of the 
total harmonic distortion14, wind and solar power prediction15, cybersecurity monitoring of cyber-phyisical 
power electronic converters16, etc. One of issues in smart grids which can be solved by ANNs is the prediction 
of the loads. There can be uncertainty related to electrical loads, and load forecasting can be considered as 
one of important challenges and duties for industry, where it plays an important role in power systems and 
it can affect the operation of power systems17–19. To have a reliable operation of a power system, short-term 
prediction of loads is a necessary task20. Previously, some studies have been done to support the application of 
load forecasting in power systems. For example, phase space reconstruction and stacking ensemble learning 
have been implemented for anticipation of load in21. Also, a strategy using transfer learning and deep residual 
neural networks for residential load prediction in22 can be mentioned as another instance. An approach for the 
short-term prediction of electrical loads using temporal feature selection and based on long short-term memory 
(LSTM) has been introduced by23. As another example, an interpretable memristive LSTM-based strategy 
has been implemented by24 for probabilistic-based prediction of residential loads. In addition, a federated 
learning-based methodology has been deployed in25 for short-term anticipation of residential loads and based 
on LSTM. Furthermore, an approach using improved temporal convolutional network and densely connected 
convolutional network has been used for short-term prediction of loads in26.

1AAU Energy, Aalborg University, Aalborg, Denmark. 2The R&D department, Brodersen Systems, Rødovre, 
Denmark. 3 University of Valladolid, Valladolid, Spain. email: mre@energy.aau.dk

OPEN

Scientific Reports |         (2025) 15:7429 1| https://doi.org/10.1038/s41598-025-89933-x

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-89933-x&domain=pdf&date_stamp=2025-2-28


Previous works have shown effective results. However, they are mainly structured based classical approaches, 
e.g., classical AI. But, the advantages of quantum computing can lead to replace the classical computing with 
quantum-based strategy to gain more benefits in different ways using quantum mechanics, e.g., speedup the 
calculations using the concepts of the superposition and entanglement, and communication using the concept 
of the entanglement27–30. Therefore, it is necessary to open a window for the deployment of quantum computing 
to solve the challenges of smart grids, e.g., load forecasting. Before, some attempts have been initialized to use 
the concept of the quantum computing in power and energy applications. For example,31–34 have done studies 
related to quantum computing, communication, and cybersecurity of microgrids. Also, a quantum computing-
based methodology have been developed by35 in order to unit commitment. As another example,36 has deployed 
quantum computing to propose quantum power flow. Also,37,38 have tried to use quantum computing for the 
electromagnetic transients program. Besides, quantum computing has been used to provide a methodology for 
the stability assessment of power systems in39. For more examples,40 and41 have suggested hybrid strategies for 
load forecasting based on support vector regression using quantum tabu search and chaotic quantum genetic 
algorithm, respectively. For more investigation regarding power applications and quantum computing,28,42–45 
can be studied.

Although the above-mentioned studies have implemented quantum computing for solving different issues 
in power systems (e.g., cybersecurity, unit commitment, and power flow), but still there is a gap to address the 
forecasting-based challenges (e.g., load prediction) in power systems. In addition, the few mentioned works 
related to the prediction of loads have implemented the concept of quantum computing for the optimization part 
related to finding the optimized values of the parameters of the model, that is used for the forecasting. In other 
words, the mentioned works did not implement quantum computing for modeling the quantum layer as a part of 
the model to be used for the prediction. In addition, the mentioned previously studied did not deploy quantum 
computing for ANN-based applications, which are a powerful tool to solve prediction-based challenges.

Therefore, this paper tries to fill this gap by the deployment of quantum artificial intelligence for a short-term 
prediction of loads. This paper uses a hybrid quantum/classical strategy, i.e., hybrid quantum/classical ANN (that 
can be titled Q/C-ANN). Still, the number of the available quantum computers is very limited. In addition, the 
number of the accessible qubits is very limited and it is not possible to implement a fully quantum computing-
based strategy for a large scale system. Furthermore, by increasing the number of the quantum gates and qubits, 
the sensitivity of the quantum-based circuit to the environmental noises (e.g., thermal and magnetic noises) 
can be increased. Therefore, at the moment, the deployment of a fully quantum circuit can not guarantee the 
reliability of the system. So, due to the current limitation about the fully quantum computing-based applications, 
this paper implements a hybrid quantum/classical approach to initialize a quantum computing-based strategy to 
address a prediction-based challenge (i.e., load forecasting) in a power system.

In the rest of this paper, Section II will talk about the basics of quantum computing. Also, in Section III, 
Q/C-ANNs will be discussed. In addition, Section IV will introduce the proposed strategy to use Q/C-ANNs 
for load forecasting. In section V, more math-based discussions (i.e., updating the states of the qubits, quantum 
measurement and calculation the output of the quantum layer, the encoding technique to map classical data into 
quantum states, and data pre-processing) will be talked. Besides, the proposed strategy will be examined on two 
different residential loads by Section VI, and this section will show the results. In Section VII, other classical 
AI-based methods will be examined on the implemented dataset. Further, Section VIII will discuss this study. 
Furthermore, Section IX and Section X will conclude the paper, and talk about the suggested future works.

Introduction to quantum computing
Currently, there are various types of computation-based strategies, e.g., swarm intelligence, AI, and quantum 
computing. However, the physical concept behind them can be considered different. For example, classical 
intelligence-based approaches implement classical bits as the basics of the computation. But, among the mentioned 
computing strategies, quantum computing can be considered more distinguish, due to the implementation of 
qubits as the basis of the computation and also for carrying out the information. For more clarification, a bit can 
be 0 or 1. But, the state of a qubit can be as follows46:

	 |Γ⟩ = a1|0⟩ + a2|1⟩,� (1)

where, a1 and a2 are complex numbers, which should satisfy the following equality constraint46:

	 |a1|2 + |a2|2 = 1.� (2)

When the state of a qubit is measured, it can be either in state |0⟩ or |1⟩, with the probability of |a1|2 and |a2|2, 
respectively46. Also, (1) can be written as follows46:

	 |Γ⟩ = cos ( σ
2 ) |0⟩ + eiλsin ( σ

2 ) |1⟩.� (3)

Where, σ and λ are real numbers (σ, λ ∈ R). For a visual representation of the state of a qubit, the Bloch sphere 
can be implemented46. In Fig. 1, the state of a qubit using the Bloch sphere is shown.

Typically, based on Fig. 2, a quantum circuit can contain three main parts. The first part includes initialized 
qubit/qubits, which can be implemented as the basis of the calculations. In addition, the second part can have 
quantum operators including gates to structure the main part related to the algorithm. Furthermore, the last part 
is related to measurement/measurements, for measuring the final state of the qubit/qubits.
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The state of a qubit can be represented using a vector. Therefore, |Γ⟩ can be represented as follows46:

	
|Γ⟩ =

[
a1
a2

]
.� (4)

Also, there is a matrix representation for a quantum operator and using the linear algebra, the final state of a 
qubit system or a multi qubit system can be obtained. For more clarification, the final state of a single qubit 
circuit (based on Fig. 3(a)) can be obtained as follows:

	 |Γout⟩ = U |Γin⟩.� (5)

In addition, for a single qubit system, in the case of a series operators (Ui,1, Ui,2,...,Ui,ik ), the equivalent operator 
G (based on Fig. 3(b)) of the system can be calculated as follows:

	 G = Ui,ik × Ui,ik−1 × ... × Ui,2 × Ui,1.� (6)

Further, for the case of a multi qubit circuit with jk  qubits and one operator for each qubit, the equivalent 
operator (F) of the system can be calculated (based on Fig. 3(c)) as follows:

	 F = U1,j ⊗ U2,j ⊗ ... ⊗ Ujk−1,j ⊗ Ujk,j .� (7)

For the calculation of the equivalent operator of a multi qubit system, firstly, the equivalent operator of each 
qubit can be calculated based on (6). So, the system can be converted to a multi qubit circuit with one equivalent 
operator for each qubit. Then, the equivalent operator of all the system can be obtained using (7). It is imporant 
to note that, for the case of quantum circuits including entangled qubits, the calculations can be more complex. 
In the next part, it will be shown that how a quantum circuit can be used in an AI-based strategy. Therefore, the 
structure of a Q/C-ANN including quantum operators and also classical parts will be discussed.

Fig. 2.  The general architecture of a quantum circuit to be used for quantum computing.

 

Fig. 1.  The representation of the Bloch sphere for (3), where, for more details,46 can be studied.
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Basics of Q/C-ANNs
In this part, the architecture of a quantum computing-based AI is talked. For this purpose, application of hybrid/
classical ANNs is discussed, which have classical parts and also quantum computing-based operators. Generally, 
a Q/C-ANN includes three main parts, which can be named as Part 1, Part 2, and Part 3. For a more clarification, 
Fig. 4 shows the architecture of a Q/C-ANN.

Fig. 3.  The representation of: (a) a single qubit circuit with one operator, (b) a single qubit circuit with more 
than one operator, and (c) a multi qubit circuit with one operator for each qubit.
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The main task of the first part is to receive the input signals of the hybrid network. In addition, Part 1 can 
contain classical layers to receive the inputs and produce the output signals of Part 1. Each classical layer can be 
made using artificial neurons, which receive input signals from the previous layer and produce the output signals 
considering weighting coefficients, the bias factor, and the activation function. Therefore, in Part 1, artificial 
neurons play the most important role. For more clarification, the output of a neuron can be updated as follows:

	 µout = f (χ) .� (8)

Fig. 4.  The structure of a Q/C-ANN.
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Where, f is an activation function, and χ is as follows:

	 χ = (ω1 × κ1 + ω2 × κ2 + ω3 × κ3 + · · · + ωz × κz) + ϱ.� (9)

In (9), z is the number neurons of the previous layer, which are connected to the desired neuron. In addition, ϱ 
is the bias factor, and ωj  is the weighting coefficient of the jth input signal of the desired neuron. Also, κj  is the 
jth input signal of the desired neuron, which can be produced by the jth neuron of the previous layer.

Also, Part 2 of Fig. 4 is a quantum computing-based layer, which has three sub-parts, i.e., initialized qubits, 
quantum circuit, and measurements. For the initialized qubits, different strategies can be done. For example, all 
the implemented qubits can be in state |0⟩. Therefore, if Part 2 is considered a n qubit system with state |0⟩ for 
all qubits, the initial state of the system (S1,0) can be obtained as follows:

	 |S1,0⟩ =

n︷ ︸︸ ︷
|0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩ .

� (10)

In other words:

	 |S1,0⟩ =

n︷ ︸︸ ︷
|00 · · · 0⟩ .

� (11)

And as a result:

	

|S1,0⟩ = 2n







1
0
0
...
0


 .� (12)

Also, if all the initialized qubits of the system are in state |1⟩, the initial state of the system (S1,1) is as follows:

	 |S1,1⟩ =

n︷ ︸︸ ︷
|1⟩ ⊗ |1⟩ ⊗ · · · ⊗ |1⟩ .

� (13)

Therefore,

	 |S1,1⟩ =

n︷ ︸︸ ︷
|11 · · · 1⟩ .

� (14)

Then,

	

|S1,1⟩ = 2n







0
0
0
...
1


 .� (15)

Furthermore, if each qubit is in an equal superposition, the overall initial state of the system (|S1,e⟩) can be as 
follows:

	
|S1,e⟩ =

n︷ ︸︸ ︷
(|0⟩ + |1⟩)√

2
⊗ · · · ⊗ (|0⟩ + |1⟩)√

2
.
� (16)

Also, (16) can be written as follows:

	

|S1,e⟩ = 2n








1√
2n
1√
2n
1√
2n

...
1√
2n




.� (17)

In addition, in Part 2, the quantum circuit can have quantum gates or operators, which receive the initialized 
qubits. There are different quantum gates, which can be represented by matrices. For example, a Pauli-X gate 
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(UX ), a Hadamard gate (UH ), and a rotation gate about ŷ axis (URoty (ϖ)) can be represented by matrices as 
follows46:

	
UX =

[0 1
1 0

]
,� (18)

	
UH = 1√

2

[1 1
1 −1

]
,� (19)

and

	
URoty (ϖ) =

[
cos( ϖ

2 ) −sin( ϖ
2 )

sin( ϖ
2 ) cos( ϖ

2 )
]

.� (20)

It is important to note that, there are different quantum operators. For the rest of this part, the matrix 
representation of some important quantum operators will be talked about. Before, the matrix representation of 
Pauli-X gate, Hadamard gate, and rotation gate about ŷ axis have been talked about. However, there are other 
quantum gates, e.g., Pauli-Y gate, Pauli-Z gate, swap gate, controlled-swap, controlled-Not gate, Toffoli gate, as 
well as rotation gates about x̂ and ẑ axes. Some gates are operated on single qubit such as Pauli-Y gate (UY ) and 
Pauli-Z gate (UZ), where the matrix representation of them is as follows46:

	
UY =

[
0 −

√
−1√

−1 0

]
,� (21)

and

	
UZ =

[1 0
0 −1

]
.� (22)

In addition, rotation gates about x̂ and ẑ axes (URotx (ϖ) and URotz (ϖ), respectively) can be considered 
as other examples of quantum operators for single qubits, where they can be represented mathematically as 
follows46:

	
URotx (ϖ) =

[
cos( ϖ

2 ) −
√

−1sin( ϖ
2 )

−
√

−1sin( ϖ
2 ) cos( ϖ

2 )

]
,� (23)

and

	
URotz (ϖ) =

[
e

−
√

−1ϖ
2 0

0 e

√
−1ϖ
2

]
.� (24)

Furthermore, swap (Uswap) and controlled-not (UC−N ) gates operate on two qubits, and their matrix 
representations are as follows46:

	

Uswap =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,� (25)

and

	

UC−N =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .� (26)

Besides, controlled-swap gate (UC−swap) and Toffoli gate (UT offoli) are used for three qubis, where their 
matrix representations are as follows46:

	

UC−swap =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1




,� (27)

and
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UT offoli =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




.� (28)

In this part, the matrix representation of different quantum gates has been discussed. Some of the mentioned 
quantum gates such as Pauli-Y, Pauli-Z, and rotation gate gates can be operated on a single qubit. Also, the swap 
gate and controlled-not gate are operated on two qubits. In addition, controlled-swap gate and Toffoli gate are 
operated on three qubits. For more information about the mentioned gates and other quantum gates,46 can be 
studied.

It is worth to mention that, for quantum gates, those can be considered which have parameters to tune them. 
Therefore, using and modifying the parameters of the operator gates, they can be used to support the hybrid 
network for the goal of the network (e.g., regression application). Finally, Part 3 of the hybrid network is a 
classical ANN. This part has classical layers, and it receives the measurements of the quantum computing-based 
layer. Then, the output of this part is the output of the hybrid network.

Time-series-based load forecasting using Q/C-ANNs
In this study, application of Q/C-ANNs is used for ultra short-term forecasting (one-step-ahead prediction) of 
loads and in a form of time-series. Therefore, if PL(t) is the value of the load at time = t, the set that includes the 
inputs of the hybrid network is as follows:

	 X = {PL(t − ∆t), PL(t − 2∆t), · · · , PL(t − β∆t)} .� (29)

Where, in (29), ∆t and β are the sampling time and inputs delay, respectively. Also, for Part 1 and Part 3, classical 
layers including artificial neurons are implemented in a form of a feedforward structure-based neural network. 
Besides, for Part 2, initialized qubits are considered based on (10). In addition, for the quantum circuit, for each 
qubit, a rotation operator about ŷ axis can be considered. In Fig. 5, the structure of a n qubit system including 
rotation gates is depicted. Based on (20), each rotation operator of Fig. 5 can be represented in a form of a matrix 
as follows:

	
Ry(ξ) = mathbbURoty (ξ) =

[
cos( ξ

2 ) −sin( ξ
2 )

sin( ξ
2 ) cos( ξ

2 )

]
.� (30)

So, in a case of a n qubit system, the equivalent operator (R) of the quantum circuit can be as follows:

	 R =

URoty (ξ1)︷ ︸︸ ︷
Ry(ξ1) ⊗

URoty (ξ2)︷ ︸︸ ︷
Ry(ξ2) ⊗ · · · ⊗

URoty (ξn)︷ ︸︸ ︷
Ry(ξn) .

� (31)

Where, the rotation parameter ξi is related to the ith qubit of the system.

Fig. 5.  The quantum circuit of a n qubit system, including a rotation gate (Ry  = URoty ) for each qubit.
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Therefore, using (30) and considering that each qubit is in initial state |0⟩, the final state of each single qubit for 
1 ≤ i ≤ n is as follows:

	
|ϕi⟩ =

[
cos( ξi

2 ) −sin( ξi
2 )

sin( ξi
2 ) cos( ξi

2 )

]
×

[1
0
]

,� (32)

and in other words,

	
|ϕi⟩ =

[
cos( ξi

2 )
sin( ξi

2 )

]
.� (33)

Therefore, the final state of qubit i can be written as follows:

	 |ϕi⟩ =
(
cos( ξi

2 )|0⟩ + sin( ξi
2 )|1⟩

)
.� (34)

Also, the vector corresponding to the final state of the system |S2⟩ can be calculated as follows:

	 |S2⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕn−1⟩ ⊗ |ϕn⟩.� (35)

And considering (33) and (35), |S2⟩ can be obtained as follows:

	
|S2⟩ =

[
cos( ξ1

2 )
sin( ξ1

2 )

]
⊗

[
cos( ξ2

2 )
sin( ξ2

2 )

]
⊗ · · · ⊗

[
cos( ξn−1

2 )
sin( ξn−1

2 )

]
⊗

[
cos( ξn

2 )
sin( ξn

2 )

]
.� (36)

The output of the quantum computing-based layer depends on ξ1, ξ2, · · · , ξn. The measured outputs of each 
qubit can be used as the inputs of the Part 3 in order to connect the quantum computing-based layer into the 
Part 3 of the Q/C-ANN.

For more clarification, in continuation of this part, it will be shown that how a Q/C-ANN can predict the future 
value of a load. So, consider a Q/C-ANN, which has Nin inputs (β = Nin). Also, for this hybrid network (Q/C-
ANN), each classical part (Part 1 and Part 3) has one classical layer. In addition, the numbers of classical neurons 
for Part 1 and Part 3 are Nn,1 and Nn,3. Then, based on (29), the vector related to the input dataset of this hybrid 
network is modified as follows:

	 X = [PL(t) PL(t − ∆t) · · · PL(t − (Nin − 1)∆t)] .� (37)

Also, the output of this hybrid network is as follows:

	 Y = [PL(t + ∆t)] .� (38)

Considering the mentioned parameters and the definition of the inputs and the output of Q/C-ANN, the 
relation between the inputs and the output of the system can be explained. Therefore, for the rest of this part, the 
calculations related to Part 1, Part 2, and Part 3 will be discussed to show how the hybrid network can be used to 
predict the desired data. To achieve this goal, Subsection 4.1, Subsection 4.2, and Subsection 4.3 will talk about 
Part 1, Part2, and Part 3 of Q/C-ANN, respectively. The next part will show how the output signals of Part 1 can 
be calculated.

Calculation the outputs of part 1
Part 1 is a classical layer, which includes neurons. In addition, the input vector of Part 1 (I1) is fed by the inputs 
of the hybrid network. In other words:

	 I1 = XT .� (39)

Also, each neuron of Part 1 is connected to the inputs of the hybrid network. In addition, each neuron has 
weighting coefficients and a bias factor. The matrix representation of weighting coefficients of Part 1 is as follows:

	

W1 =




w1,1,1 w1,1,2 w1,1,3 · · · w1,1,Nin

w1,2,1 w1,2,2 w1,2,3 · · · w1,2,Nin

w1,3,1 w1,3,2 w1,3,3 · · · w1,3,Nin

...
...

...
. . .

...
w1,Nn,1,1 w1,Nn,1,2 w1,Nn,1,3 · · · w1,Nn,1,Nin


 .� (40)

Where, w1,j,k  is the weighting coefficient between the jth neuron of the classical layer of Part 1 and the kth 
input of the hybrid network (PL(t − (k − 1)∆t)). Also, the vector corresponding to the bias factors of Part 1 
can be represented as follows:
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B1 =




b1,1
b1,2
...

b1,Nn,1−1
b1,Nn,1


 .� (41)

In (41), b1,j  is the bias factor of the jth neuron of the classical layer of Part 1. Therefore, by the implementation 
of (39), (40), and (41), the output of the classical layer without the implementation of the activation function of 
Part 1 is as follows:

	 P1 = W1 × I1 + B1� (42)

Also, P1 can be represented in a form of a vector as follows:

	

P1 =




p1,1
p1,2
...

p1,Nn,1−1
p1,Nn,1


 .� (43)

Using an activation function f1, the ith output of Part 1 is f1(p1,i). Then, the vector corresponding to the 
outputs of Part 1 is as follows:

	

O1 =




f1(p1,1)
f1(p1,2)

...
f1(p1,Nn,1−1)
f1(p1,Nn,1 )


 .� (44)

The output signals of Part 1 will be used as the input signals of Part 2. In other words, the input signals of Part 2 
will be used to update the state of the qubits using rotation gates, which are deployed to structure the quantum 
circuit in Part 2. The next part will discuss how the output signals of Part 1 can be used in Part 2 to update the 
state of the qubits and how it can produce the output signals of Part 2.

Calculation the outputs of part 2
As discussed above, the outputs of Part 1 modify the rotation parameters of Part 2. Therefore, the input vector 
of Part 2 (I2) is as follows:

	 I2 = O1.� (45)

In other words, the ith rotation parameter is as follows:

	 ξi = f1(p1,i),� (46)

and the vector representation related to the rotation parameters of Part 2 is as follows:

	

Ξ =




ξ1
ξ2
...

ξNn,1−1
ξNn,1


 .� (47)

Where, using (46) and (47), Ξ can be obtained. Also, if the initial state of the ith qubit is |0⟩, based on (34) and 
(46), the final state of the ith qubit is as follows:

	 |ϕi⟩ =
(
cos( f1(p1,i)

2 )|0⟩ + sin( f1(p1,i)
2 )|1⟩

)
.� (48)

In other words and based on (33),

	
|ϕi⟩ =

[
cos( f1(p1,i)

2 )
sin( f1(p1,i)

2 )

]
.� (49)

Therefore, (49) can be encoded to be used as the input for Part 3. So, the following dataset (matrix O2) can be 
considered to create the outputs of Part 2.
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O2 =




cos( f1(p1,1)
2 ) sin( f1(p1,1)

2 )
cos( f1(p1,2)

2 ) sin( f1(p1,2)
2 )

...
...

cos(
f1(p1,Nn,1−1)

2 ) sin(
f1(p1,Nn,1−1)

2 )
cos(

f1(p1,Nn,1 )
2 ) sin(

f1(p1,Nn,1 )
2 )




.� (50)

The next part will discuss that how the outputs of Part 2 can be encoded to provide the inputs of Part 3. Then, 
it will talk about how the encoded data can be used to obtain the output of Part 3 and as a result the output of 
Q/C-ANN.

Calculation the output of part 3
The output of Part 2 is based on (49) and (50). As mentioned above, the input of Part 3 is the encoded version 
of (49) and (50). In this work, the elements related to state |0⟩ (cos( f1(p1,i)

2 )) is used as the input of Part 3 and 
as a result, the first column of (50) is used as the input of Part 3. So, the vector representation of the inputs for 
Part 3 is as follows:

	

I3 =




cos( f1(p1,1)
2 )

cos( f1(p1,2)
2 )

...
cos(

f1(p1,Nn,1−1)
2 )

cos(
f1(p1,Nn,1 )

2 )




.� (51)

In addition, the matrix representation of the weighting coefficients (W3) and the vector representation of the 
bias factors of the classical layer of Part 3 are as follows:

	

W3 =




w3,1,1 w3,1,2 w3,1,3 · · · w3,1,Nn,1
w3,2,1 w3,2,2 w3,2,3 · · · w3,2,Nn,1
w3,3,1 w3,3,2 w3,3,3 · · · w3,3,Nn,1

...
...

...
. . .

...
w3,Nn,3,1 w3,Nn,3,2 w3,Nn,3,3 · · · w3,Nn,3,Nn,1


 , � (52)

	

B3 =




b3,1
b3,2
...

b3,Nn,3−1
b3,Nn,3


 . � (53)

Where, in (52) and (53), w3,j,k  and b3,j  are the weighting coefficient to connect the kth input of Part 3 to the 
jth neuron of the classical layer of Part 3, and the bias factor of the jth mentioned neuron. So, based on (51), 
(52), and (53), the output of the classical layer of Part 3 without the deployment of activation functions can be 
calculated as follows:

	 P3 = W3 × I3 + B3.� (54)

Where, the vector representation of P3 can be written as follows:

	

P3 =




p3,1
p3,2
...

p3,Nn,3−1
p3,Nn,3


 ,� (55)

and using an activation function f3 for this layer, the output vector of this layer (O3) is as follows:

	

O3 =




f3(p3,1)
f3(p3,2)

...
f3(p3,Nn,3−1)
f3(p3,Nn,3 )


 .� (56)
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Also, the main task of Part 3 is to produce the output of the hybrid network and as a result the prediction of the 
value of the load. So, in this part, in addition to the previous classical layer, a classical output layer is existed. 
The output of this layer is the prediction of PL at time t + ∆t. Therefore, the output layer of Part 3 has only one 
neuron and as a result one bias factor (bo) for that neuron. In addition, the weighting coefficients representation 
of this layer can be shown by a vector as follows:

	 Wo = [wo,1 wo,2 · · · wo,Nn,3−1 wo,Nn,3 ] .� (57)

Finally, using a linear activation function, the output of the hybrid network can be calculated as follows:

	 Po = Wo × O3 + bo.� (58)

This part discussed that how the output of Q/C-ANN can be calculated. In the next part, a brief discussion about 
load forecasting using Q/C-ANN is provided. The next part shows how the three parts of Q/C-ANN can be used 
in a unified algorithm (i.e., Algorithm 1) to produce the output of the hybrid network in a nutshell.

The Implemented Strategy in a Nutshell
Briefly, the output of the hybrid network is Po. The hybrid network receives X in (37). Then, using (39), (42), 
(43), and (44), the outputs of Part 1 is calculated. The outputs of Part 1 is used as the inputs of Part 2 to tune 
rotation parameters of the quantum circuit. Therefore, based on (46), (47), (48), (49), and (50), the outputs of 
Part 2 is determined. After that, the outputs of Part 2 are encoded to the inputs of Part 3 using (51). Then, using 
(54), (55), and (56), the output signals of the neurons of the classical layer of Part 3 can be obtained. Finally, using 
(58), the output of the hybrid network (predicted value of the load at time = t + ∆t (P L(t + ∆t))) is calculated.

Algorithm 1.  Load Forecasting based on Q/C-ANN.

In addition to the inputs of the hybrid network, there are other parameters, which should be known before 
the calculation of the output of the hybrid network. This parameters are the parameters related to the weighting 
coefficients and the bias factors, and they can be shown by (40), (41), (52), (53), (57), and bo. These parameters 
can be tuned using training process. For more clarification about the implementation of Q/C-ANN, Algorithm 
1 shows the steps to estimate the future value of the load.

More math-based discussions
In this section, the implementation of the classical data to update the states of the qubits of the quantum layer, 
quantum measurement and the relation between that and the output of Part 2 of Q/C-ANN, different encoding 
techniques to map classical data into quantum states, and data pre-processing will be discussed in a more detail 
and mathematically.

Updating the states of the qubits
In this part, the implementation of the classical data (the produced classical data by Part 1 of Q/C-ANN) to 
update the initialized qubits (with general states) of the quantum circuit will be clarified mathematically. In a 
general form, for the quantum circuit of Q/C-ANN with n qubits, the initial state of the ith qubit (for 1 ≤ i ≤ n
) can be considered as follows:
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	 |γin,i⟩ = α1,i|0⟩ + α2,i|1⟩.� (59)

Where, based on (2),

	 |α1,i|2 + |α2,i|2 = 1.� (60)

Also, as mentioned before, the quantum circuit is made using rotation operators. Then, the final state of each 
single qubit can be calculated as follows:

	 |γout,i⟩ = Ry(f1(p1, i)) × |γin,i⟩.� (61)

In other words,

	
|γout,i⟩ =

[
cos( f1(p1,i)

2 ) −sin( f1(p1,i)
2 )

sin( f1(p1,i)
2 ) cos( f1(p1,i)

2 )

]
×

[
α1,i

α2,i

]
.� (62)

So, if

	
|γout,i⟩ =

[
β1,i

β2,i

]
,� (63)

then,

	
β1,i = α1,i × cos(f1(p1, i)

2 ) − α2,i × sin(f1(p1, i)
2 ),� (64)

and

	
β2,i = α1,i × sin(f1(p1, i)

2 ) + α2,i × cos(f1(p1, i)
2 ).� (65)

Therefore, the final state of each single qubit (for example qubit i) can be obtained using (64) and (65). In 
addition, using (5) and (31), if U = R, the final state of the system in the form of a n qubits system can be 
calculated as follows:

	 |Γout⟩ = R × |Γin⟩.� (66)

Also, the initial and the final states (i.e., |Γin⟩ and |Γout⟩, respectively) of the quantum circuit of Q/C-ANN can 
be written in the form of n qubits system in a general form as follows:

	 |Γin⟩ =

n︷ ︸︸ ︷
|γin,1⟩ ⊗ |γin,2⟩ ⊗ · · · ⊗ |γin,n⟩,� (67)

and

	 |Γout⟩ =

n︷ ︸︸ ︷
|γout,1⟩ ⊗ |γout,2⟩ ⊗ · · · ⊗ |γout,n⟩ .

� (68)

Then,

	
|Γin⟩ =

n︷ ︸︸ ︷[
α1,1
α2,1

]
⊗

[
α1,2
α2,2

]
⊗ · · · ⊗

[
α1,n

α2,n

]
,
� (69)

and

	
|Γout⟩ =

n︷ ︸︸ ︷[
β1,1
β2,1

]
⊗

[
β1,2
β2,2

]
⊗ · · · ⊗

[
β1,n

β2,n

]
.
� (70)

In this part, the mathematical-based representation to deploy the output signals (which are classical data) of 
Part 1 of Q/C-ANN to be implemented for the rotation gates to update the states of the initialized qubits of the 
system have been explained. To achieve a more efficient clarification, the states of the initialized qubits have been 
considered in a general form.
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Quantum measurement and the outputs of the quantum layer
Measurements play a key role in a quantum circuit by considering the desired basis and using the result for 
different purposes, e.g, coding/decoding, interpretation, or transferring them to other units. A general 
description of a measurement can be demonstrated as follows46,47:

	
|ΓM ⟩ = MO|Γ⟩√

⟨Γ|M†
OMO|Γ⟩

,� (71)

and

	 P rob(O) = ⟨Γ|M†
OMO|Γ⟩.� (72)

Where, MO  is the operator of the measurement with the possible result O, |ΓM ⟩ is the new state if the 
measurement result is O, and Prob(O) is the probability corresponded that the measurement reach result O. 
Considering the case of projective measurements, a projection operator corresponding to measurement result 
|j⟩ is P rjj  where P rj†

j = P rjj , P rj2
j = P rjj , and as a result46,47:

	
|Γj⟩ = P rjj |Γ⟩√

⟨Γ|P rjj |Γ⟩
,� (73)

and

	 P rob(j) = ⟨Γ|P rjj |Γ⟩.� (74)

A projective measurement can be characterized by a complete set of orthogonal projectors, and if the 
measurement is done with respect to z axis, the complete set of the orthogonal projectors is {P rj0, P rj1}46,47:

	 P rj0 = |0⟩⟨0|,� (75)

and

	 P rj1 = |1⟩⟨1|.� (76)

Considering the measurement corresponded to z axis of the ith qubit, and if Prob(j) is called rij  (for j ∈ {0, 1}
), (74) can be written as follows:

	 P rob(0) = ri0 = ⟨γout,i|P rj0|γout,i⟩,� (77)

and

	 P rob(1) = ri1 = ⟨γout,i|P rj1|γout,i⟩.� (78)

Then considering that |γout,i⟩ = β1,i|0⟩ + β2,i|1⟩, and using (75) and (76), (77) and (78) can be updated as 
follows:

	 ri0 = (β1,i⟨0| + β2,i⟨1|)(|0⟩⟨0|)(β1,i|0⟩ + β2,i|1⟩),� (79)

and

	 ri1 = (β1,i⟨0| + β2,i⟨1|)(|1⟩⟨1|)(β1,i|0⟩ + β2,i|1⟩).� (80)

In other words:

	 ri0 = (β1,i⟨0|0⟩⟨0| + β2,i⟨1|0⟩⟨0|)(β1,i|0⟩ + β2,i|1⟩),� (81)

and

	 ri1 = (β1,i⟨0|1⟩⟨1| + β2,i⟨1|1⟩⟨1|)(β1,i|0⟩ + β2,i|1⟩).� (82)

Where, β1,i, β2,i, and more generally ι denote the complex conjugate of β1,i, β2,i, and ι, respectively. In addition, 
|0⟩ and |1⟩ are orthonormal basis and as a result, ⟨0|0⟩ = ⟨1|1⟩ = 1 and ⟨0|1⟩ = ⟨1|0⟩ = 046,47. Therefore, 
using (64) and (65), (81) and (82) are modified as follows:
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ri0 = ((α1,i × cos(f1(p1, i)
2 ) − α2,i × sin(f1(p1, i)

2 ))⟨0|) × ...

((α1,i × cos(f1(p1, i)
2 ) − α2,i × sin(f1(p1, i)

2 ))|0⟩ + ...

(α1,i × sin(f1(p1, i)
2 ) + α2,i × cos(f1(p1, i)

2 ))|1⟩),

� (83)

and

	

ri1 = ((α1,i × sin(f1(p1, i)
2 ) + α2,i × cos(f1(p1, i)

2 ))⟨1|) × ...

((α1,i × cos(f1(p1, i)
2 ) − α2,i × sin(f1(p1, i)

2 ))|0⟩ + ...

(α1,i × sin(f1(p1, i)
2 ) + α2,i × cos(f1(p1, i)

2 ))|1⟩).

� (84)

Again by considering that |1⟩ and |0⟩ are orthonormal basis, the updated version of (83) and (84) are as follows:

	

ri0 = (α1,i × cos(f1(p1, i)
2 ) − α2,i × sin(f1(p1, i)

2 )) × ...

(α1,i × cos(f1(p1, i)
2 ) − α2,i × sin(f1(p1, i)

2 ))
� (85)

and

	

ri1 = (α1,i × sin(f1(p1, i)
2 ) + α2,i × cos(f1(p1, i)

2 )) × ...

(α1,i × cos(f1(p1, i)
2 ) − α2,i × sin(f1(p1, i)

2 ))
� (86)

Additionally, considering that ΛΛ = |Λ|248, by defining Λ0 as

	
Λ0 = α1,i × cos(f1(p1, i)

2 ) − α2,i × sin(f1(p1, i)
2 ),� (87)

and defining Λ1 as

	
Λ1 = α1,i × sin(f1(p1, i)

2 ) + α2,i × cos(f1(p1, i)
2 ),� (88)

(85) and (86) can be modified as follows:

	 ri0 = Λ0Λ0 = |Λ0|2 ,� (89)

and

	 ri1 = Λ1Λ1 = |Λ1|2 .� (90)

In other words:

	
ri0 =

∣∣∣∣α1,i × cos(f1(p1, i)
2 ) − α2,i × sin(f1(p1, i)

2 )
∣∣∣∣
2

,� (91)

and

	
ri1 =

∣∣∣∣α1,i × sin(f1(p1, i)
2 ) + α2,i × cos(f1(p1, i)

2 )
∣∣∣∣
2

.� (92)

Besides, if the initial state of each qubit is in a pure state |0⟩ (i.e., α1,i = 1 and α2,i = 0):

	
ri0 =

∣∣∣∣cos(f1(p1, i)
2 )

∣∣∣∣
2

,� (93)

and
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ri1 =

∣∣∣∣sin(f1(p1, i)
2 )

∣∣∣∣
2

.� (94)

Therefore,

	
cos(f1(p1, i)

2 ) =
√

ri0,� (95)

and

	
sin(f1(p1, i)

2 ) =
√

ri1.� (96)

Finally, 
√

ri0 for 1 ≤ i ≤ Nn,1, can be deployed to construct the input vector (i.e., I3 in (51)) of the next layer 
(i.e., Part 3). More mathematically, (51) can be updated as follows:

	

I3 =




cos( f1(p1,1)
2 )

cos( f1(p1,2)
2 )

...
cos(

f1(p1,Nn,1 )
2 )


 =




√
r10√
r20
...√

rNn,10


� (97)

Briefly, in this part, the measurement approach has been explained, and it has been discussed with detail that 
how the measurement characteristics can be mapped into the classical data to be used for the next layer. The 
next part will discuss that how a classical data is mapped into a quantum state. Besides, other different encoding 
techniques to map classical data into quantum states with details will be explained. In addition, to have a more 
clarification, some examples will be solved, which can help to have a better understanding about encoding 
classical data into the quantum states.

Classical data mapping into quantum states
In this study, an angle encoding technique is deployed to map the classical output data of Part 1 of QC-ANN 
into the quantum states in Part 2 of QC-ANN. Generally, there are different encoding approaches that can be 
implemented to encode classical data into quantum states, and as a simple example of an encoding technique, 
basis encoding or mapping can be mentioned to map classical data into quantum data. In this approach, a 
binary string can be mapped into a quantum state with orthonormal basis |0⟩ and |1⟩ like mapping 0 to |0⟩ 
and 1 to |1⟩49,50. For instance, 123, 1237, and 111111 in the binary number systems are equivalent to 11110112
, 100110101012, and 110110010000001112, respectively. herefore, they can be encoded to the respective 
quantum states as follows:

	

Classical Data︷︸︸︷
123 →

Quantum State︷ ︸︸ ︷
|1111011⟩ ,

� (98)

	

Classical Data︷︸︸︷
1237 →

Quantum State︷ ︸︸ ︷
|10011010101⟩,

� (99)

	

Classical Data︷ ︸︸ ︷
111111 →

Quantum State︷ ︸︸ ︷
|11011001000000111⟩ .

� (100)

As another encoding technique, quantum associative memory encoding method can be mentioned. In 
this approach, a vector of classical data can be mapped into an equal superposition of different states 
corresponded to each classical data51,52. In other words, each classical data can be converted to the equivalent 
number in basis 2 (i.e., binary number). Then, an equal superposition of different states related each binary 
string represents the encoded quantum state. As an example, each element of a vector of classical data 
Vdata = [4004 4080 4081 4090] can be written in the binary system, i.e., 4004 = 1111101001002, 
4080 = 1111111100002, 4081 = 1111111100012, and 4090 = 1111111110102. Then, the quantum encoded 
version of the classical dataset Vdata is as follows:

	

|QVdata⟩ = |111110100100⟩
2 + |111111110000⟩

2

... + |111111110001⟩
2 + |111111111010⟩

2 .

� (101)

Therefore, the vector of the classical data Vdata is mapped into a mixed quantum state in an equal superposition 
as follows:
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Classical Dataset︷ ︸︸ ︷
Vdata →

Quantum State︷ ︸︸ ︷
|QVdata⟩ .

� (102)

In this study, the quantum circuit is made based on rotation gates and as a result, an angle encoding approach 
is automatically implemented to map classical data into the state of the qubits by updating the state of each 
initialized qubit using a rotation operator with an angle that is the classical output data from Part 1. In this 
method, a classical data such as κ can be implemented to provide the angle of a rotation gate53. Then, the rotation 
gate can be used to map a classical data into a quantum state. In other words, if the initial state of a qubit is a 
known state |QIn⟩, then by applying a rotation gate about ŷ axis with angle κ, the new state is as follows:

	 |QIn⟩
Ry(κ)
−−−−→ |QS⟩.� (103)

In other words:

	

|QS⟩︷ ︸︸ ︷[
qS0
qS1

]
=

Ry(κ)︷ ︸︸ ︷[
cos( κ

2 ) −sin( κ
2 )

sin( κ
2 ) cos( κ

2 )
]

×

|QIn⟩︷ ︸︸ ︷[
qIn0
qIn1

]
,
� (104)

So, the classical data κ can be encoded into a quantum state as follows:

	

Classical Data︷︸︸︷
κ

Rotation Gate, and Initialized Qubit︷ ︸︸ ︷
Ry(κ), |QIn⟩

−−−−−−−−−−−−−−−−−−−−−→

Quantum State︷︸︸︷
|QS⟩ .

� (105)

For a more clarification regarding the angle encoding, two examples are provided with different initial states as 
follows:

Example 1: In this example, the initial state of the qubit is |0⟩. Therefore, qIn0 = 1 and qIn1 = 0. So, to map 
κ1 = 8π

17 , κ2 = 3π
7 , κ3 = π

12 , and κ4 = 3π
10  to the corresponding quantum states, Ry( 8π

17 ), Ry( 3π
7 ), Ry( π

12 ), 
and Ry( 3π

10 ) can be applied as follows:

	
|QS1⟩ =

[
qS01
qS11

]
=

[
cos( 8π

34 ) −sin( 8π
34 )

sin( 8π
34 ) cos( 8π

34 )

]
×

[1
0
]

, � (106)

	
|QS2⟩ =

[
qS02
qS12

]
=

[
cos( 3π

14 ) −sin( 3π
14 )

sin( 3π
14 ) cos( 3π

14 )

]
×

[1
0
]

, � (107)

	
|QS3⟩ =

[
qS03
qS13

]
=

[
cos( π

24 ) −sin( π
24 )

sin( π
24 ) cos( π

24 )
]

×
[1
0
]

, � (108)

and

	
|QS4⟩ =

[
qS04
qS14

]
=

[
cos( 3π

20 ) −sin( 3π
20 )

sin( 3π
20 ) cos( 3π

20 )

]
×

[1
0
]

,� (109)

So,

	
|QS1⟩ = cos(8π

34 )|0⟩ + sin(8π

34 )|1⟩ ≈
[0.7390
0.6737

]
� (110)

	
|QS2⟩ = cos(3π

14 )|0⟩ + sin(3π

14 )|1⟩ ≈
[0.7818
0.6235

]
� (111)

	
|QS3⟩ = cos( π

24)|0⟩ + sin( π

24)|1⟩ ≈
[0.9914
0.1305

]
� (112)

and

	
|QS4⟩ = cos(3π

20 )|0⟩ + sin(3π

20 )|1⟩ ≈
[0.8910
0.4540

]
� (113)

Therefore, K =




κ1
κ2
κ3
κ4


 is encoded to a quantum state as follows:
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K =

Classical Dataset︷ ︸︸ ︷


κ1
κ2
κ3
κ4


 →

Quantum State︷ ︸︸ ︷
|QS1⟩ ⊗ |QS2⟩ ⊗ |QS3⟩ ⊗ |QS4⟩ .

� (114)

In other words:

	

Classical Dataset︷ ︸︸ ︷


κ1 = 8π
17

κ2 = 3π
7

κ3 = π
12

κ4 = 3π
10


 →

Quantum State︷ ︸︸ ︷
|QS1⟩︷ ︸︸ ︷[0.7390

0.6737
]

⊗

|QS2⟩︷ ︸︸ ︷[0.7818
0.6235

]
⊗

|QS3⟩︷ ︸︸ ︷[0.9914
0.1305

]
⊗

|QS4⟩︷ ︸︸ ︷[0.8910
0.4540

]� (115)

Example 2: In this example, the initial state of the qubit is 15
113 |0⟩ + 112

113 |1⟩. Therefore, qIn0 = 15
113  and 

qIn1 = 112
113 . Additionally, the state of the initialized quabit satisfies q2

In0 + q2
In1 = 1. As same as previous 

example, here, κ1 = 8π
17 , κ2 = 3π

7 , κ3 = π
12 , and κ4 = 3π

10 . Then, by applying the corresponded rotation gate for 
each initialized qubit, the new state of that qubit containing the encoded classical data can be obtained as follows:

	
|QS1⟩ =

[
qS01
qS11

]
=

[
cos( 8π

34 ) −sin( 8π
34 )

sin( 8π
34 ) cos( 8π

34 )

]
×

[
15

113112
113

]
, � (116)

	
|QS2⟩ =

[
qS02
qS12

]
=

[
cos( 3π

14 ) −sin( 3π
14 )

sin( 3π
14 ) cos( 3π

14 )

]
×

[
15

113112
113

]
, � (117)

	
|QS3⟩ =

[
qS03
qS13

]
=

[
cos( π

24 ) −sin( π
24 )

sin( π
24 ) cos( π

24 )
]

×
[

15
113112
113

]
, � (118)

and

	
|QS4⟩ =

[
qS04
qS14

]
=

[
cos( 3π

20 ) −sin( 3π
20 )

sin( 3π
20 ) cos( 3π

20 )

]
×

[
15

113112
113

]
,� (119)

Therefore,

	

|QS1⟩ = ( 15
113 × cos(8π

34 ) − 112
113 × sin(8π

34 ))|0⟩

... + ( 15
113 × sin(8π

34 ) + 112
113 × cos(8π

34 ))|1⟩

≈
[−0.5696

0.8219
]

,

� (120)

	

|QS2⟩ = ( 15
113 × cos(3π

14 ) − 112
113 × sin(3π

14 ))|0⟩

... + ( 15
113 × sin(3π

14 ) + 112
113 × cos(3π

14 ))|1⟩

≈
[−0.5142

0.8577
]

,

� (121)

	

|QS3⟩ = ( 15
113 × cos( π

24) − 112
113 × sin( π

24))|0⟩

... + ( 15
113 × sin( π

24) + 112
113 × cos( π

24))|1⟩

≈
[0.0022
0.9999

]
,

� (122)

and,

	

|QS4⟩ = ( 15
113 × cos(3π

20 ) − 112
113 × sin(3π

20 ))|0⟩

... + ( 15
113 × sin(3π

20 ) + 112
113 × cos(3π

20 ))|1⟩

≈
[−0.3317

0.9434
]

,

� (123)

So, in this example, K =




κ1
κ2
κ3
κ4


 is mapped into a quantum state as follows:

Scientific Reports |         (2025) 15:7429 18| https://doi.org/10.1038/s41598-025-89933-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

Classical Dataset︷ ︸︸ ︷


κ1 = 8π
17

κ2 = 3π
7

κ3 = π
12

κ4 = 3π
10


 →

Quantum State︷ ︸︸ ︷
|QS1⟩ ⊗ |QS2⟩ ⊗ |QS3⟩ ⊗ |QS4⟩ = ...

=

Quantum State︷ ︸︸ ︷
|QS1⟩︷ ︸︸ ︷[−0.5696

0.8219
]

⊗

|QS2⟩︷ ︸︸ ︷[−0.5142
0.8577

]
⊗

|QS3⟩︷ ︸︸ ︷[0.0022
0.9999

]
⊗

|QS4⟩︷ ︸︸ ︷[−0.3317
0.9434

]

� (124)

Data pre-proccessing
In this part, details regarding two data pre-processing techniques will be talked mathematically. To achieve this 
goal, normalization as well as filling missed data and outliers will be discussed.

For the mapping data into the range of [ϱmin, ϱmax], the following transformation as min-max normalization 
can be used54:

	
λNr = (λ − MINλ) × (ϱmax − ϱmin)

MAXλ − MINλ
+ ϱmin.� (125)

Where, λ and λNr  are the desired data and the normalized vale of that, respectively. In addition, MAXλ and 
MAXλ are the maximum and the minimum value of the λ, respectively. So, based on (125), for normalizing PL 
into [0, 1] and [−1, 1], (126) and (127) can be implemented,

	
PNr,(0,1)(j) = PL(j) − MINP

MAXP − MINP
,� (126)

and,

	
PNr,(−1,1)(j) = 2PL(j) − 2MINP

MAXP − MINP
− 1.� (127)

Where, PNr,(0,1)(j) and PNr,(−1,1)(j) are the normalized value of PL at t = j into range of [0, 1] and [−1, 1]
, respectively.

Besides, to fill missed data, different strategies can be implemented. One of the common methods to fill the 
missed data, is based on a linear interpolation strategy as follows55:

	
Ξ(t) − Ξ(t1)
Ξ(t2) − Ξ(t1) = t − t1

t2 − t1
.� (128)

Where, by substituting Ξ, t, t1, and t2 with PL, m, j, and j + k, (128) can be updated as follows:

	
PL(m) − PL(j)

PL(j + k) − PL(j) = m − j

(j + k) − j
,� (129)

In other words:

	
PL(m) = (PL(j + k) − PL(j)) × (m − j)

k
+ PL(j),� (130)

Results
In this part, a dataset related to a real experimental setup is implemented to test the effectiveness of the proposed 
strategy. The dataset includes data of a refrigerator and a work station. Therefore, in this part, two scenarios 
are shown for the case of the refrigerator and the work station. In addition, before to implement the dataset, 
a data pre-proccessing strategy is used including actions such as data cleaning, filling missed data, removing 
and filling outliers, and normalization. For the case of normalization, min-max normalization technique is 
implemented, and for the case of filling missed data and replacing outliers, a linear interpolation approach is 
used. It is important to note that, in this study, Matlab programming language is implemented to simulate the 
quantum-based strategy.

For this part, Nin is 5. So, Q/C-ANN includes 5 inputs. Also, the sampling time ∆t is 2s. In addition, Part 1 
of the hybrid network has a classical layer with 10 neurons. Also, Part 2 is made using 10 qubits and 10 rotation 
gates. Besides, Part 3 includes two classical layer. The first classical layer of Part 3 contains 3 neurons and the last 
classical layer of Part 3 includes one neuron, which produces the output of the hybrid network. Also, for both 
case studies, the size of the dataset is about 86400, and 70% of the samples are implemented to train the hybrid 
network.
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Case study 1: a refrigerator
In this scenario, a refrigerator is considered as the tested load. The goal of this scenario is to test the proposed 
strategy to predict the power consumption of a refrigerator. In Fig. 6, the value of the power consumption of 
the refrigerator (PL) and the predicted value of that (P̄L) for the training phase is depicted. Based on Fig. 6, 
the hybrid network is trained properly. Further, the regression plot related to the training is shown by Fig. 7. In 
addition, Fig. 8 is related to the examination of the trained hybrid network and Fig. 9 is related to the regression 
plot for examining the trained hybrid network. Based on Fig. 8 and Fig. 9, the trained hybrid network works 
effectively.

Case study 2: a work station
Here, the goal of this case study is to predict the power consumption of a work station. The value of the power 
consumption and the anticipated value of that related to the training phase is depicted by Fig. 10. Based on the 
obtained result from Fig. 10, the hybrid network is trained successfully. Besides, Fig. 11 depicts the regression plot 

Fig. 8.  Case Study 1 (Testing Phase): The value of the power consumption of the refrigerator (PL) and the 
predicted value of that (P̄L) for the testing phase.

 

Fig. 7.  Case Study 1 (Training Phase): The regression plot for the power consumption of the refrigerator (PL) 
and the predicted value of that (P̄L) rlated to the training phase.

 

Fig. 6.  Case Study 1 (Training Phase): The value of the power consumption of the refrigerator (PL) and the 
predicted value of that (P̄L) for the training phase.
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of the training phase. Furthermore, Fig. 12 shows the value of the power consumption and the predicted value 
of that and for the test dataset. Besides, in Fig. 13, the regression plot regarding to the values of the parameters 
of Fig. 12 is plotted. Based on Fig. 12 and Fig. 13, the trained hybrid network can properly predict the power 
consumption of the work station.

Other AI-based approaches: applications of machine learning
In this part, to have a more in-depth view regarding the ability of AI to forecast the desired values and parameters, 
three classical models for the prediction of loads will be discussed. The models are linear regression, support 
vector machine (SVM) regression, and decision tree regression. The mentioned models are three well-known 
models of machine learning, which have been used widely to predict loads. It is important to note that, for all the 
case studies of this part, the same dataset related to Section VI is implemented for the refrigerator and the work 
station. In addition, the inputs and the output of the machine learning-based models are as same as the inputs 
and the output, which have been discussed in Section IV.

Fig. 11.  Case Study 2 (Training Phase): The regression plot for the power consumption of the work station (PL

) and the predicted value of that (P̄L) related to the training phase.

 

Fig. 10.  Case Study 2 (Training Phase): The value of the power consumption of the work station (PL) and the 
predicted value of that (P̄L) for the training phase.

 

Fig. 9.  Case Study 1 (Testing Phase): The regression plot for the power consumption of the refrigerator (PL) 
and the predicted value of that (P̄L) related to the testing phase.
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Linear regression-based strategies have been used before for load forecasting, e.g.,56 and57. Figure. 14 shows 
the results related to the linear regression-based load forecasting. In Fig. 14(a), 14(b), 14(c), and 14(d), the 
training fit plot, training regression plot, testing fit plot, and testing regression plot of case study 1 are depicted, 
respectively. Furthermore, Fig. 14(e), 14(f), 14(g), and 14(h) show the training fit plot, training regression plot, 
testing fit plot, and testing regression plot of case study 2, respectively. Furthermore, previously, some studies 
have been done to predict the loads using support vector machine regression-based approaches such as58–63. 
The results related to support vector regression-based method is depicted in Fig. 15. For more clarification, Fig. 
15(a), 15(b), 15(c), and 15(d) illustrate the results of case study 1, i.e., the fit and the regression plots. Further, Fig. 
15(e), 15(f), 15(g), and 15(h) are related to case study 2. In addition, different decision tree-based strategies have 
been deployed to forecast the loads like64 and65. Here, Fig. 16 shows the results of the decision tree regression for 
case study 1 and case study 2.

Fig. 14.  The results of the linear regression related to forecasting the loads.

 

Fig. 13.  Case Study 2 (Testing Phase): The regression plot for the power consumption of the work station (PL) 
and the predicted value of that (P̄L) related to the testing phase.

 

Fig. 12.  Case Study 2 (Testing Phase): The value of the power consumption of the work station (PL) and the 
predicted value of that (P̄L) for the testing phases.
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Discussion
Briefly, mathematical-based modeling of a system considering all details of the system can be a challenging 
task. In other words, a system can involve some hidden or undiscovered details and as a result, it is not easy and 
practical to extract all information from the system using the existing mathematical-based model of the system. 
On the other hand, an alternative solution to achieve the information of a system as much as possible without the 
deployment of mathematical-based modeling of the studied system is access to data employing measurements 
if possible. A Q/C-ANN can work only with data that do not require the mathematical-based model of the 
system. Therefore, a Q/C-ANN can be considered as a proper data-driven-based computational tool to extract 
the information of the system (e.g., the value of the electrical loads).

In addition, a Q/C-ANN includes quantum gates and as a result, a quantum circuit using those gates, that can 
provide the opportunity to exploit the advantages of quantum computing, e.g., making an entanglement between 
the deployed qubits to have a secure data transmission strategy to transfer the information of the system between 
different units in a power system. Furthermore, typically to perform a quantum algorithm three main parts can 
be required, i.e., Part1 for coding classical data to create the state of the input qubits, Part 2 to use the coded 
qubits in a quantum circuit that is made using quantum gates, and Part 3 to encode the measurements of the 
states of the output qubits to classical data. A Q/C-ANN has the main required three parts naturally. For more 
clarification, Part 1 and Part 3 of a Q/C-ANN are made by classical hidden layers and they are cooperating for 
coding classical data to modify the state of the initialized qubits and decoding the measured state of the output 
qubits to classical data, respectively. In addition, Part 2 of a Q/C-ANN is made using quantum gates to structure 
a quantum circuit.

Besides, challenges regarding the deployment of a fully quantum-based strategy are the limitation of access to 
a large number of qubits, and the sensitivity of a fully quantum-based methodology to the noises. Based on the 
mentioned challenges, the implementation of quantum-based approaches for a large-scale system (e.g., a power 
system) can be a difficult task. A solution to overcome these kinds of difficulties is the implementation of Q/C-
ANNs, which can require less number of quantum gates due to the implementation of classical parts.

Therefore, based on the above-mentioned advantages, a Q/C-ANN can offer an effective solution for 
forecasting-based applications in power systems such as the prediction of the values of the loads.

Fig. 16.  The results of the decision tree regression related to forecasting the loads.

 

Fig. 15.  The results of the support vector regression related to forecasting the loads.
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Conclusion
Q/C-ANNs have quantum and classical parts. The quantum part includes a quantum circuit containing quantum 
operators. Also, classical parts are made by classical ANNs and using classical neurons. A Q/C-ANN can be 
implemented to solve different challenges. In this work, application of Q/C-ANNs has been implemented for 
load forecasting in smart grids. This study implemented the hybrid network in a form of time-series, which 
requires only the historical as well as the current values of the load to predict the future value of that. In addition, 
in this study, two different types of loads (i.e., refrigerator, and work station) have been predicted in a short-term 
mode. The implemented strategy was able to predict the loads effectively.

Future works
For the future direction, the hybrid network can be used to solve other problems, e.g., load classification, fault 
detection, etc. In addition, quantum annealing has been studied before by some studies such as66–68, and the 
implementation of that as well as the comparison of that with various methods can be considered for further 
investigation to predict the values of the loads.

Data availibility
Data are available from the authors (M.R.H. Can be contacted) upon reasonable request (in the case of permis-
sion of IOT MICROGRID LIVING LABORATORY (IOT-MGLAB) at AAU Energy).
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