Table 4 The fairness assessment results of the fair recommendation results identified by various LLMs in the recommendation results respectively generated by VAErec and VAEgan in LastFM.

From: Fairness identification of large language models in recommendation

N

LLM

User number

Model

\(\chi ^2\)@100\(\downarrow\)

K.T@100\(\uparrow\)

Gender

Age

Gender

Age

VAErec

2636.1360

4544.0670

0.3768

0.0782

VAEgan

1670.9327

3007.7690

0.5055

0.2610

5

Chatglm3

G(79.80%)

VAErec

770.0154

768.5830

0.5026

0.4466

A(38.62%)

VAEgan

1439.1733

1427.4130

0.4735

0.2627

Llama2

G(0.49%)

VAErec

647.3035

− 0.7463

− 0.3065

A(3.15%)

VAEgan

678.5224

− 0.8080

− 0.4086

10

Chatglm3

G(79.70%)

VAErec

753.3401

611.2097

0.5091

0.4855

A(42.17%)

VAEgan

1292.3916

1974.0910

0.4651

0.1896

Llama2

G (0.79%)

VAErec

565.7983

− 0.7960

− 0.6053

A(9.95%)

VAEgan

759.0048

− 0.7694

− 0.3955