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This paper focuses on the dynamical analysis of the advection-diffusion-reaction equation under 
various conditions that highlight the system’s sensitivity and potential for chaotic behavior. Traveling 

wave solutions for the underlying equation are derived using a novel modified 
(

G′

G2

)
 expansion 

method based on the traveling wave transformation. A broad spectrum of exact traveling wave 
solutions, including solitons, kinks, periodic solutions, and rational solutions, is obtained. These 
solutions are recognized as having significant potential applications in fields such as engineering 
and plasma physics. The proposed method is demonstrated to successfully generate various 
exponential solutions, such as bright, dark, single, rational, and periodic solitary wave solutions. 
MATLAB simulations were carried out to visualize the results, producing 3D, 2D, and contour graphs 
that emphasize the impact of the advection-diffusion-reaction equation. Furthermore, the Galilean 
transformation is applied to derive the corresponding planar dynamical system, enabling deeper 
insights into its dynamical behavior. Sensitivity analysis is performed to evaluate the system’s response 
to different initial conditions, with symmetrical properties and equilibrium points being represented 
through phase portraits. The chaotic behavior of the planar dynamical system under the influence of 
an external force is also examined. It is revealed that the system exhibits periodic, quasi-periodic, and 
chaotic processes, with significant increases in intensity and frequency being observed. Additionally, 
we apply Poincaré maps and Lyapunov exponent to analyze the behavior of the dynamical system by 
different initial conditions.
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Nonlinear partial differential equations (PDEs) have been extensively utilized in recent years to assess numerous 
physical phenomena in science and engineering. Fluid mechanics, plasma physics, quantum mechanics, nonlinear 
optics, solid-state physics, physical chemistry, and several other domains of mathematical modeling employ it 
to characterize intricate phenomena1–4. Due to the challenges in deriving analytical solutions for non-linear 
partial differential equations (PDEs), academics have developed several numerical approaches to address these 
equations. This study has significant implications for social networks, Internet networks, telecommunications, 
and medical devices. They help us learn more about real-world properties; nonlinear systems have become an 
important and interesting area of study for modern academics who want to find exact analytical answers to 
problems. In recent years, several effective methods have been introduced for generating traveling wave solutions 
of non-linear PDEs. These include the multiple Exp-function method5, the new extended direct algebraic 
approach6, the sine-Gordon expansion method7, the Bäcklund transformation method8, the sub-equation 
method9, the modified simple equation method10, the modified Kudryashov method11, the Riccati-Bernoulli 
sub-ODE method12, and the extended trial function scheme13.
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Several contributions to the study of nonlinear systems have been examined. Helal14 conducted a thorough 
investigation of soliton solutions for PDEs, presenting various methodologies for analytical and numerical 
analyses. He noted that solitons represent a localized wave with distinct nonlinear characteristics and are 
solutions to either a nonlinear system of equations or a singular equation. Samir et al.15 effectively utilized a 
modified extended mapping approach to derive exact traveling wave solutions within a complex nonlinear 
framework. Tsega explored the numerical solution of two-dimensional unsteady advection-diffusion-reaction 
equations with variable coefficients. The study focused on the dynamic behavior of these systems under varying 
parameters. Such equations are crucial for modeling physical and chemical processes in fluid dynamics, 
environmental science, and reaction kinetics38. Rezazadeh et al.16 applied exponential rational functions and 
Jacobi elliptic function techniques to investigate wave surfaces, offering valuable insights into the dynamic 
behavior of the same non-linear model. Savović et al. conducted a study comparing the explicit finite difference 
method with physics-informed neural networks to solve the Burgers’ equation41. In another work, Savović et 
al. (2019) demonstrated that the Sine-Gordon equation can be numerically solved using two distinct finite 
difference methods and advanced physics-informed neural networks42. Gu, Y., et al. delved into the Gerdjikov-
Ivanov equation within the realm of nonlinear fiber optics, uncovering elegant closed-form solutions enriched 
by beta derivatives43. Employing robust and innovative techniques, Gu, Y. illuminated the intricate closed-form 
solutions of the nonlinear space-time fractional Drinfeld-Sokolov-Wilson problem44. Additionally, Yokus et al.17 
derived solitary wave solutions for the non-linear process using the sinh-Gordon function. Fractional partial 
differential equations (FPDEs) have attracted considerable interest because of their frequent occurrence across 
various disciplines, including physics, biology, rheology, viscoelasticity, signal processing, and electrochemistry. 
Recently, significant theoretical progress has been made in this area18. The KdV equation19, the nonlinear 
Schrödinger (NLS) equation39, the Boussinesq equation40, the KdV-Burgers equation21, the Burgers equation20, 
the Fisher or Kolmogorov-Petrovskii-Piskunov (KPP) equation22 have been extensively analyzed and numerically 
investigated in the fields of physics and engineering.

The advection-diffusion-reaction (ADR) equation is a fundamental mathematical model that describes 
the transport and interaction of substances within various media. It plays a crucial role in disciplines such 
as biology, chemistry, physics, and environmental science, as it encompasses processes involving advection 
(transport driven by fluid flow), diffusion (spreading caused by concentration gradients) and reaction (chemical 
or biological transformations). The solution of the ADR equation presents significant challenges as a result of 
the varying dominance of advection, diffusion, and reaction under different conditions. For example, in porous 
media, the time scales associated with these processes can differ by orders of magnitude, adding complexity to 
the modeling. Numerical methods are often used to approximate solutions, with techniques such as the finite 
difference method (FDM) being effective in solving nonlinear ADR equations with specific initial and boundary 
conditions. These approaches provide valuable insight into the stability and efficiency of the solutions. Analytical 
methods also play an important role in solving ADR equations. For instance, Lie transformations can simplify 
fractional PDEs by reducing them to fractional ODEs. However, such transformations are not always feasible for 
time- and space-fractional ADR models. In such cases, hybrid methods are proposed that combine analytical 
and numerical techniques, offering high precision and broad applicability for the solution of complex ADR 
problems.

Numerous scientists have already investigated the ADR equation, employing various methodologies 
across diverse fields and theoretical frameworks. In 2002, Hauke examined the ADR equation employing a 
basic subgrid scale stabilization method for numerical solutions23. In 2006, Spiegelman and Katz addressed 
an ADR issue and obtained a numerical solution utilizing a semi-Lagrangian Crank-Nicolson method24. Kaya 
and Gharehbaghi (2014) discovered the concealed solutions to an ADR equation employing several numerical 
approaches25. In 2019, Jannelli et al. derived several analytical solutions and presented numerical findings for 
the ADR equation in both spatial and temporal contexts26. In 2022, Savovic and collaborators released a paper 
analyzing a comparative investigation employing the ADR equation to simulate exponential-type traveling 
waves during heat and mass transformation27. This research focuses on the intricate dynamics of the ADR 

model employing the modified 
(

G′

G2

)
 expansion method for a complete analysis of its exact solutions. Through 

dynamical analysis, the study seeks to uncover the phase portrait of the system, revealing the various states 
it can occupy over time. Additionally, it examines the system’s sensitivity to initial conditions, allowing for 
a deeper understanding of how small variations can lead to significantly different outcomes. This sensitivity 
highlights the chaotic behavior inherent in the ADR model, where trajectories can diverge rapidly, making long-
term predictions challenging. By mapping the phase portrait, the research elucidates the regions of stability and 
instability within the system, offering crucial insights into its complex behavior and potential applications in 
various fields for a deeper understanding of chaotic behavior. This multifaceted approach aims to offer valuable 
insights into the model’s complexities and its broader implications in the field.

Chakrabarty et al. (2024) conducted a dynamical analysis of optical soliton solutions for the complex 
Ginzburg Landau equation, incorporating Kerr law nonlinearity across classical, truncated M-fractional 
derivative, beta fractional derivative, and conformable fractional derivative types28. In the same year, Umer et al. 
investigated the symmetry-optimized dynamical analysis of optical soliton patterns in the Euler-Bernoulli beam 
equation with flexible support, employing a semi-analytical solution approach29. Raza et al. (2024) performed a 
dynamic analysis of the modified complex Ginzburg-Landau model in communication systems, deriving new 
optical soliton solutions30. Rahman et al. (2024) conducted a phase portrait analysis, explored various soliton 
solutions exhibiting chaotic behavior, and performed a sensitivity analysis of the extended nonlinear Schrödinger 
equation31. In 2023, Yin et al. investigated the changing behavior of optical pulses using modified Physics-
Informed Neural Networks (PINNs). Their study examined soliton solutions, rogue waves, and the parameter 
identification process for the CQ-NLSE (cubic-quintic nonlinear Schrödinger equation)32. Cui et al. (2023) 
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analyzed the dynamical behavior of the (2+1)-dimensional Heisenberg ferromagnet equation and studied multi-
soliton and breather solutions on both constant and periodic backgrounds for the Heisenberg ferromagnet33. 
Similarly, in 2022, Kaur et al. performed a comprehensive dynamical analysis of soliton solutions for the space-
time fractional Calogero-Degasperis and Sharma-Tasso-Olver equations. This research systematically examined 
the influence of fractional derivatives on the stability, behavior, and propagation of soliton solutions, providing 
profound insights into the complex dynamics governed by these equations34.

This research is valuable because the ADR equation is widely used in various engineering and physical 
phenomena, such as soliton dynamics, light transmission, fluid flow, and reaction-diffusion processes in chemical 
and biological systems. By employing the G′/G2 expansion method, this study provides exact analytical 
solutions that are crucial for understanding the intricate interplay between transport, diffusion, and nonlinear 
reaction mechanisms. These solutions also offer deeper insights into soliton behavior, enabling improved control 
and optimization in practical applications, including fiber optics, environmental modeling, and plasma physics. 
The novelty lies in demonstrating the method’s efficacy in handling the intricate balance of advection, diffusion, 
and nonlinear reaction terms, which are central to understanding phenomena in optical fiber communication, 
fluid mechanics, and biological systems. By offering new solutions and a versatile framework for analyzing 
nonlinear equations, this study not only enhances theoretical understanding, but also provides practical tools 
for optimizing technologies in diverse fields such as telecommunications, environmental science, and plasma 
physics. Its originality lies in bridging gaps in existing literature and paving the way for future explorations in 
nonlinear dynamics. Dynamical analysis of the ADR equation involves exploring its stability, bifurcations, and 
qualitative behavior under various parameter regimes.

Bifurcation analysis is a recognized technique for investigating dynamical systems, providing substantial 
insights into the behavior of different system components under varying conditions. In this study, bifurcation 
and chaos theory were employed to enhance our understanding of a related planar dynamical system. Using 
these analytical tools, we identified system solutions and represented them through phase diagrams. A sensitivity 
analysis was conducted on the key variables to assess their influence on the system’s behavior. The model was 
subjected to a comprehensive study under various initial conditions to thoroughly explore its dynamics. This 
work examines the impact of bifurcation and chaos on the evolution of dynamic systems across diverse contexts, 
offering novel insights into the system’s intricate characteristics. The findings are original and significant, 
uncovering the complex processes at play.

The structure of this article is as follows. Section 2 introduces the formulation of the equation and outlines its 

conceptual framework. Section 3 discusses the modified 
(

G′

G2

)
 expansion method in detail. Section 4 presents 

graphical representations of the proposed model’s solutions. In Section 5, we analyze the dynamics of the system, 
providing graphical representations for various initial conditions. Lastly, Section 6 concludes with insights 
drawn from the model’s findings.

Governing equation
In this paper, we analyze a non-linear ARD equation to explore optimization in function spaces and to derive 
solitary wave solutions. The proposed equation is expressed by the following36:

	
∂u(x, t)

∂t
= κ1u(x, t) − κ2u2(x, t) − η1

∂u(x, t)
∂x

+ η2
∂f(x, t)

∂x
.� (1)

In this context, u(x, t) denotes the primary variable, with ux[f(x, t)] = uxx(x, t). Here, η1 > 0 represents the 
wave propagation speed, while η2 > 0 indicates the diffusion coefficient during propagation. The parameters 
κ1 > 0 and κ2 > 0 are coefficients within the response term, and µ > 1 serves as an additional parameter.

This nonlinear Eq. (1) is applicable in various engineering and research domains, including fluid dynamics, 
electromagnetism, acoustics, and population dynamics. The parameter µ reflects the non-linearity of the 
model, as introducing a non-linear term such as u2(x, t) can dramatically influence the behavior and physical 
characteristics of systems governed by nonlinear advection, reaction, and diffusion equations.

	 u(x, t) = ϕ(ξ), ξ = px − qt.� (2)

In Eq. (2), q represents the velocity of the traveling wave, and p represents the wavenumber of the wave. Upon 
performing and implementing double integration with the integration constant set to zero, we obtain

	 η2p2ϕ′′ + (q − η1p)ϕ′ + κ1ϕ − κ2ϕ2 = 0.� (3)

Modified G′

G2  Expansion Method

The modified 
(

G′

G2

)
 expansion method is a widely used approach for solving NLPDEs, particularly in the 

fields of physics, mathematics, engineering, and physical sciences. The process begins by defining the initial 
conditions and parameters. researchers apply a predefined method to accurately solve the ARD model. Due to 

its effectiveness, this method is employed to find the exact solution. A detailed explanation of modified 
(

G′

G2

)
 

expansion method can be found in37.

Scientific Reports |         (2025) 15:5513 3| https://doi.org/10.1038/s41598-025-89995-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 F (u, ux, ut, uxx, uxt, utt, . . . ux, uxx, uxt, utt . . .) = 0.� (4)

Subscripts indicate the derivatives with respect to x and t for the corresponding functions u(x, t).

Step 1: We employ the wave transformation Eq. (3) to transform Eqs. (1) and (2) into an ODE.

	 G(ϕ, ϕ′, ϕ′′, ϕ′′′, . . . ϕn) = 0.� (5)

Step 2 : Let’s assume that the general solution to the ODE is

	
U(ζ) = Λ0 +

N∑
n=1

{
Λn

(
G′

G2

)n

+ Λn

(
G′

G2

)−n
}

.� (6)

where Λ0 and Λn (n=1,2,...N) are detemined later to find the values for the traveling wave solution. Here 
G = G(ϕ) satisfies the result of the Ricatti equation.

	

(
G′

G2

)′

= σ + µ

(
G′

G2

)
+ ρ

(
G′

G2

)2

.� (7)

where σ, µ, and ρ are real constant.

Step 3 : We will use the balancing technique to determine the value of n, which is the difference between the 
highest order derivative and the highest order non-linear term. By substituting Eq. (16) with Eq. (15) into Eq. 
(12), we get an algebraic equation that may be expressed as the power of ( G′

G2 ). We solved the algebraic equation 

by equating the power ( G′

G2 ) to zero and using Maple to obtain the values of Λ.
Step 4 : The general solutions of Eq. (14) as follows:

	

(
G′

G2

)
=





√
σρ

[
C1 cos(√

σρ ζ)+C2 sin(√
σρ ζ)

C1 sin(√
σρ ζ)−C2 cos(√

σρ ζ)

]
, µ = 0, σρ > 0,

−
√

|σρ|
[

C1 sinh(2
√

|σρ| ζ)+C1 cosh(2
√

|σρ| ζ)+C2

C1 cosh(2
√

|σρ| ζ)+C1 sinh(2
√

|σρ| ζ)−C2

]
, µ = 0, σρ < 0,

− C1
ρ(ζC1+C2) , µ = 0, σ = 0, ρ ̸= 0,

− µ
2ρ

+
[

−
√

∆
(

C1 cosh(
√

∆
2 ζ)+C2 sinh(

√
∆

2 ζ)
)

2ρ
(

C1 cosh(
√

∆
2 ζ)+C2 sinh(

√
∆

2 ζ)
)

]
µ ̸= 0, ∆ ≥ 0,

− µ
2ρ

+


−

√
−∆

(
C1 cosh

(√
−∆

2 ζ

)
−C2 sinh

(√
−∆

2 ζ

))

2ρ

(
C1 cosh

(√
−∆

2 ζ

)
+C2 sinh

(√
−∆

2 ζ

))

 , µ ̸= 0, ∆ < 0.

� (8)

where C1 and C2 are arbitrary constant and ∆ = µ2 − 4σρ.

Solutions of Modified 
(

G′

G2

)
 expansion method

In this section, we will get the soliton solutions of Eq. (3) by using modified 
(

G′

G2

)
 expansion method. We 

determine the value of n = 1 using the balance technique between ϕ′′ and ϕ2 to get the value from Eq. (3) and 
substitute it into Eq. (6). We get;

	
U(ζ) = Λ0 + Λ1

(
G′

G2

)1

+ Λ2

(
G′

G2

)2

+ Λ3

(
G′

G2

)−1

+ Λ4

(
G′

G2

)−2

.� (9)

By combining Eq. (7) and Eq. (6) into Eq. (3), we derived a nonlinear algebraic expression in which the terms 

involving 
(

G′

G2

)
 are equated to zero.
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(
G′

G2

)4

: 6p2ρ2Λ2c2 − Λ2
2k2 = 0,

(
G′

G2

)3

: c2p2 (
10µρΛ2 + 2ρ2Λ1

)
+ 2(−pc1 + q)Λ2ρ − 2k2Λ1Λ2 = 0,

(
G′

G2

)2

: c2p2 (
3Λ1µρ + 4Λ2

(
µ2 + 2ρσ

))
+ (−pc1 + q) (2µΛ2 + ρΛ1)

+ k1Λ2 − k2
(
2Λ0Λ2 + Λ2

1
)

= 0,
(

G′

G2

)1

: c2p2 (
Λ1

(
µ2 + 2ρσ

)
+ 6µΛ2σ

)
+ (−pc1 + q) (µΛ1 + 2σΛ2)

+ k1Λ1 − k2 (2Λ0Λ1 + 2Λ2Λ3) = 0,(
G′

G2

)0

: c2p2 (
µρΛ3 + µσΛ1 + 2ρ2Λ4 + 2σ2Λ2

)
+ (−pc1 + q)(−ρΛ3 + σΛ1)

+ k1Λ0 − k2
(
Λ2

0 + 2Λ1Λ3 + 2Λ2Λ4
)

= 0,
(

G′

G2

)−1

: c2p2 (
Λ3

(
µ2 + 2ρσ

)
+ 6Λ4µρ

)
+ (−pc1 + q)(−µΛ3 − 2ρΛ4)

+ k1Λ3 − k2 (2Λ0Λ3 + 2Λ1Λ4) = 0,(
G′

G2

)−2

: c2p2 (
3µΛ3σ + 4Λ4

(
µ2 + 2ρσ

))

+ (−pc1 + q)(−2µΛ4 − σΛ3) + k1Λ4 − k2
(
2Λ0Λ4 + Λ2

3
)

= 0,
(

G′

G2

)−3

: c2p2 (
10µσΛ4 + 2σ2Λ3

)
− 2(−pc1 + q)Λ4σ − 2k2Λ4Λ3 = 0,

(
G′

G2

)−4

: 6p2σ2Λ4c2 − Λ2
4k2 = 0.

� (10)

We solved the system of algebraic equations using Maple to produce exact traveling wave solutions. We derived 
the solution of equation as follows:

	
ρ = 1

4
p2µ2c2 + k1

p2σc2
, Λ0 = 3

2
p2µ2c2 + k1

k2
, Λ1 = 0, Λ2 = 0, Λ3 = 6p2µσc2

k2
, Λ4 = 6p2σ2c2

k2
.� (11)

The findings were derived by applying the parameter values extracted from the solitary wave solutions presented 
in Eq. (3).

Case 1: If µ = 0 and σρ > 0,

	

ϕ1(x, t) = 3
2

µ2p2c2 + k1

k2
+ 6p2µσ2c2

k2
√

σρ
(

C1 cos(√
σρ ζ)+C2 sin(√

σρ ζ)
C1 sin(√

σρ ζ)−C2 cos(√
σρ ζ)

)

+ 6p2σ3c2

k2ρ
(

C1 cos(√
σρ ζ)+C2 sin(√

σρ ζ)
C1 sin(√

σρ ζ)−C2 cos(√
σρ ζ)

)2 ,

� (12)

Case 2: If µ = 0 and σρ < 0,

	

ϕ2(x, t) = 3
2

µ2p2c2 + k1

k2
− 6p2µσ2c2

k2
√

|σρ|
(

C1 sinh(2
√

|σρ| ζ)+C1 cosh(2
√

|σρ| ζ)+C2

C1 sinh(2
√

|σρ| ζ)+C1 cosh(2
√

|σρ| ζ)−C2

)

+ 6p2σ4c2

k2|σρ|
(

C1 sinh(2
√

|σρ| ζ)+C1 cosh(2
√

|σρ| ζ)+C2

C1 sinh(2
√

|σρ| ζ)+C1 cosh(2
√

|σρ| ζ)−C2

)2 ,

� (13)

Case 3: If µ = 0, σ = 0 and ρ ̸= 0,
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ϕ3(x, t) = 3/2 µ2p2c2 + k1

k2
− 6 p2µ σ c2ρ ((ζ) C1 + C2)

k2C1

+ 6 p2σ2c2 (ρ ((ζ) C1 + C2))2

k2C1
2 ,

� (14)

Case 4: If µ ̸= 0, ∆ ≥ 0,

	

ϕ4(x, t) = 3
2

p2µ2c2 + k1

k2
+ 6p2µσc2

k2

(
− 1

2
µ
ρ

− 1
2

√
∆

1
2 C1 cosh(

√
∆ ζ)− 1

2 C2 sinh(
√

∆ ζ)
ρ( 1

2 C1 cosh(
√

∆ ζ)+ 1
2 C2 sinh(

√
∆ ζ))

)

+ 6p2σ2c2

k2

(
− 1

2
µ
ρ

− 1
2

√
∆

1
2 C1 cosh(

√
∆ ζ)− 1

2 C2 sinh(
√

∆ ζ)
ρ( 1

2 C1 cosh(
√

∆ ζ)+ 1
2 C2 sinh(

√
∆ ζ))

)2 ,

� (15)

Case 5: If µ ̸= 0, ∆ < 0,

	

ϕ5(x, t) = 3
2

µ2p2c2 + k1

k2
+ 6p2µσc2

k2

(
− 1

2
µ
ρ

− 1
2

√
−∆

1
2 C1 cosh(

√
−∆ ζ)− 1

2 C2 sinh(
√

−∆ ζ)

ρ
(

1
2 C1 cosh(

√
−∆ ζ)+ 1

2 C2 sinh(
√

−∆ ζ)
)

)

+ 6p2σ2c2

k2

(
− 1

2
µ
ρ

− 1
2

√
−∆

1
2 C1 cosh(

√
−∆ ζ)− 1

2 C2 sinh(
√

−∆ ζ)

ρ
(

1
2 C1 cosh(

√
−∆ ζ)+ 1

2 C2 sinh(
√

−∆ ζ)
)

)2 .

� (16)

Graphical behavior of wave patterns
This section analyzes various solutions, evaluating their unique characteristics to examining the physical 
structures provides insights into the dynamic properties of the solutions for the ARD system. The ADR 
equation is fundamental for modeling solitons, particularly in systems where transport, dispersion, and non-
linear interactions occur simultaneously. In nonlinear fiber optics, the ADR equation describes optical solitons, 
where the interplay of dispersion and Kerr nonlinearity stabilizes pulse propagation, which is a critical aspect of 
high-speed communication. Similarly, it models soliton dynamics in shallow water waves, plasma, and thermal 
transport systems, where nonlinear interactions counteract dispersive effects. In chemical and biological 
systems, the ADR equation captures reaction-diffusion processes, such as the Belousov-Zhabotinsky reaction 
and the propagation of nerve signals. By encompassing a wide range of physical phenomena, the ADR equation 
serves as a unified framework for understanding and applying soliton behavior across multiple disciplines. This 

study employs the modified 
(

G′

G2

)
 expansion method to generate multiple soliton solutions. The plot illustrates 

the oscillatory behavior characteristic of soliton-like solutions to the ARD equation. Over time, the amplitude 
exhibits localized peaks and troughs, signifying the emergence of wave solitons. These waves maintain their 
form and propagate without attenuation over time, a hallmark of soliton behavior. Figures 1, 2 and 3 highlight 
intricate interference patterns resulting from the interaction of various waves. The use of distinct coloration 
enhances the visualization of the oscillation depths and their progression across spatial and temporal domains. 
Figure 1 illustrates the combination of bright and dark solitons described by Eq. ((12)) with parameters k1 = 1
, k2 = 2, p = 2, q = 2, l = 2, µ = 1, and c2 = 2. Figure 2 depicts the dark soliton described by Eq. ((13)) with 
parameters k1 = 1, k2 = 2, p = 2, l = 2, µ = 0, and c2 = 2. Figure 3 represents the kink soliton described by 
Eq. ((16)) with parameters k1 = 1, k2 = 2, p = 2, l = 2, µ = 1, and c2 = 2.

Figure 1.  Combo of bright and dark soliton in this figure where (a) show the 3D, (b) show the 2D and (c) 
show contour graph of ϕ1(x, t) with k1 = 1, k2 = 2, p = 2,q = 2, l = 2, µ = 1, c2 = 2 with (t = 0.1, 0.3, 0.5).
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Dynamical analysis
In this section, we perform a comprehensive dynamical analysis to explore the behavior of the ARD system. We 
will employ sensitivity analysis, phase portraits45, and chaos theory46 to assess the stability of the ARD model 
under various initial conditions. Equation (3) serves as the foundational basis for all subsequent computations, 
owing to its broad applicability across a range of independent variables. This approach allows for a deeper 
understanding of the system’s response to perturbations, enabling us to identify stable, unstable, and potentially 
chaotic regimes within the model.

Phase portrait analysis
This analysis allows us to understand how the system’s behavior changes with varying parameters, offering 
insights into stable and unstable states. By applying bifurcation theory, we can identify critical transitions and 
the emergence of complex behaviors, such as soliton interactions. These insights are particularly valuable for 
optimizing optical fiber performance and mitigating non-linear effects. Using bifurcation theory, we analyze the 
phase dynamics of the SDS system, which arises in optical fibers. Using the Galilean transformation, we convert 
the Eq. (3) into a planar dynamical system, which can be represented as follows:

	

{
dϕ
dρ

= S,
dS
dρ

= −σ1S − σ2ϕ + σ3ϕ2.
� (17)

where σ1 =
(

q−η1p
η2p2

)
, σ2 =

(
k1

η2p2

)
 and σ3 =

(
k2

η2p2

)
.

This system exhibits Hamiltonian characteristics and possesses the following;

	
G(ϕ, S) = S2

2 + σ1
S2

2 − σ2
ϕ2

2 + σ3
ϕ3

3 = g.� (18)

We focus our investigation on the phase portrait analysis within the parameter space defined by σ2 and σ3 for Eq. 
(17), where g represents the Hamiltonian constant. According to the dynamical system analysis, the equilibrium 
points are M1 = (0, 0) and M2 = (V1, 0) along the S-axis, where V1 = σ2

σ3
 . The jacobian of the system are;

Figure 3.  King soliton in this figure where (a) show the 3D, (b) show the 2D and (c) show contour graph of 
ϕ5(x, t) with k1 = 1, k2 = 2, p = 2, l = 2, µ = 1, and c2 = 2 with (t = 0.1, 0.3, 0.5).

 

Figure 2.  Dark soliton in this figure where (a) show the 3D, (b) show the 2D and (c) show contour graph of 
ϕ2(x, t) with k1 = 1, k2 = 2, p = 2,, l = 2, µ = 0, and c2 = 2 with (t = 0.1, 0.3, 0.5).

 

Scientific Reports |         (2025) 15:5513 7| https://doi.org/10.1038/s41598-025-89995-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
det (J(ϕ, S)) =

∣∣∣∣∣
0 1

−σ2 + 2σ3ϕ σ1

∣∣∣∣∣ = σ2 − 2σ3ϕ.� (19)

If J(ϕ, S) > 0, we refer to the point as a center, when If J(ϕ, S) < 0, the point is called a saddle, and if J(ϕ, S) 
is equal to 0, we refer to the point as a cuspidal. When we change the value of a parameter, we have four different 
cases.

Case 1: In this case, σ2 > 0 and σ3 > 0, we get two equilibrium points: M1 = (0, 0) and M2 = (1.5, 0) using 
σ2 = 1 and σ3 = 0.67. Here we see in Fig. 4M1 represents the center point, and M2 represent the saddle point. 
Furthermore, the influence of σ1S has been thoroughly analyzed considering various values of σ1. To illustrate 
this impact, phase plots corresponding to different scenarios are presented in Fig. 4. These plots provide valuable 
insights into the dynamic behavior of the system, highlighting how variations in σ1 alter the trajectory patterns 
and equilibrium stability.

Case 2: In this case, σ2 > 0 and σ3 < 0, we get three equilibrium points: M1 = (0, 0) and M2 = (−1.5, 0) 
using σ2 = 1 and σ3 = −1.5. Here we see in Fig. 5M1 represents the center point, while M2 represents the 
saddle point. Additionally, the influence of σ1S has been thoroughly analyzed by considering various values 
of σ1. To illustrate this impact, phase plots corresponding to different scenarios are presented in Fig. 5. These 
graphs provide valuable information on the dynamic behavior of the system, highlighting how variations in σ1 
alter the trajectory patterns and the equilibrium stability.

Case 3: Under this case, σ2 < 0 and σ3 > 0, we get three equilibrium points: M1 = (0, 0) and M2 = (−1, 0) 
by using σ2 = −0.67 and σ2 = 0.67. Here we see in Fig. 6 M1 represents the saddle point, while M2 represents 
the center point. Furthermore, the influence of σ1S has been thoroughly analyzed considering various values of 
σ1. To illustrate this impact, phase plots corresponding to different scenarios are presented in Fig. 6. These plots 
provide valuable insights into the dynamic behavior of the system, highlighting how variations in σ1 alter the 
trajectory patterns and equilibrium stability.

Case 4: Under this case, σ2 < 0 and σ3 < 0, we get two equilibrium points; M1 = (0, 0), M2 = (1, 0) by 
using σ2 = −0.67 and σ3 = −0.67. Here we see in Fig. 7 M1 represents the saddle point, and M2 represents 
the center point. Additionally, the influence of σ1S has been thoroughly analyzed by considering various values 

Figure 4.  Phase portrait analysis of the dynamical system (17) at critical points. (a) Effect of σ1S on the planar 
system (17), assuming σ1 = 1, σ2 > 0 and σ3 > 0. (b) Effect of σ1S on the planar system (17), assuming 
σ1 = 0.7, σ2 > 0 and σ3 > 0. (c) Effect of σ1S on the planar system (17), assuming σ1 = 0.3, σ2 > 0 and 
σ3 > 0. (d) Effect of σ1S on the planar system (17), assuming σ1 = 0, σ2 > 0 and σ3 > 0.
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of σ1. To illustrate this impact, phase plots corresponding to different scenarios are presented in Fig. 7. These 
graphs provide valuable information on the dynamic behavior of the system, highlighting how variations in σ1 
alter the trajectory patterns and the equilibrium stability.

Sensitivity analysis
Various disciplines, including economics, engineering, mathematics, and science, employ sensitivity analysis 
to assess the impact of input parameters on model solutions. The process entails systematically altering input 
values within a specified range and observing the resultant changes in output. This facilitates hazard assessment, 
process improvement, and the development of more informed decisions. We conducted an analysis of three sets 
of initial conditions to evaluate the sensitivity of the proposed model. The red curve denotes the initial value: 
(ϕ, S) = (0.1, 0). The blue curve denotes the second set (ϕ, S) = (0.15, 0), whereas the green curve indicates 
the third set (ϕ, S) = (0.3, 0). Figure 8a–c demonstrates the sensitivity of the system in the intransient period 
and its relationship with different initial conditions. Figure 8d illustrates the sensitivity resulting from a slight 
alteration in the initial condition. Figure 9 uses the initial conditions (0.1, 0), (0.15, 0), and (0.3, 0) to illustrate 
insensitivity during the transient period. Minor modifications to the initial conditions significantly affect the 
behavior of dynamic systems. We assess the sensitivity of the dynamical system through the initial condition 
and observe its behavior at both the initial and intransitive times. The application of the initial condition to the 
system reveals no alteration in the initial state, which is typical behavior. We also observe the system’s behavior 
during the intransitive period, which indicates sensitivity as shown in Fig. 8d.

Chaotic analysis
In this section, we will examine the chaotic patterns of the model under investigation. To investigate these 
patterns, we intend to introduce an external force Λcos(αξ) to the system (17). The intensity of this perturbed 
component is denoted by the symbol Λ, while the frequency is represented by α. Therefore, we can represent the 
improved system as follows:

	




dϕ
dρ

= S,
dS
dρ

= −σ1S − σ2ϕ + σ3ϕ2 + Λcos(αξ),
dT
dρ

= α.

� (20)

Figure 5.  Phase portrait analysis of the dynamical system (17) at critical points. (a) Effect of σ1S on the planar 
system (17), assuming σ1 = 1, σ2 > 0 and σ3 < 0. (b) Effect of σ1S on the planar system (17), assuming 
σ1 = 0.7, σ2 > 0 and σ3 < 0. (c) Effect of σ1S on the planar system (17), assuming σ1 = 0.3, σ2 > 0 and 
σ3 < 0. (d) Effect of σ1S on the planar system (17), assuming σ1 = 0, σ2 > 0 and σ3 < 0.
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where T = αξ is the external forces added to the system. We used a variety of techniques to analyze the periodic, 
quasiperiodic, and chaotic properties of the system (20). We aim to determine the dynamic features of the 
disrupted system by evaluating various arbitrary physical parameter values. We will investigate the consequences 
of modifying the parameter value. 3D and 2D phase profiles with time series or Poincare graphs are shown in 
Fig. 10, with starting values of σ2 = 1.3, σ3 = 0.4, and Λ = 0.02 or α = 0.1. Therefore, when the intensity and 
frequency of the external force are at their minimum, system (20) displays periodic behavior.

Figure 11, shows the three-dimensional plot, the two-dimensional plot, the time analysis, and the Poincaré 
graph with parameter value σ2 = 3.7, σ3 = 0.6, and Λ = 0.3 or α = π. With the modifications, the perturbed 
system (20) displays quasi-periodic behavior. Graphical representations of 3D, 2D, time series, and Poincaré 
plots are shown in Fig. 12. A temporal analysis is performed using predetermined parameter values: σ2 = 6.9
, σ3 = 6.7, and Λ = 0.4 or α = π

2 . An increase in intensity with frequency leads to alterations in the quasi-
periodic behavior of the system (20). Figure 13, illustrates the analysis of increasing amplitude and frequency 
with σ2 = 19, σ3 = 29, and Λ = 0.7 or α = 2π. In the redesigned system (20), the findings indicate the 
existence of chaotic occurrences.

Lyapunov exponent
A Lyapunov exponent is a mathematical metric that measures the rate at which two trajectories diverge over 
time, starting from proximate initial conditions. This tool is essential for the analysis of chaotic systems; it 
facilitates the identification of chaos and the assessment of a system’s stability. The analysis of nonlinear dynamics 
extensively uses Lyapunov exponent because they provide valuable graphical representations of the qualitative 
behavior of dynamic systems. The Lyapunov exponent holds significant importance in the study of nonlinear 
dynamical systems due to their diverse applications. As a representation of the chaotic properties of the system, 
the Lyapunov exponents are represented by the sequence λ1,λ2, and λ3, respectively. Visualization of these 
exponents over time yielded significant insights into the dynamics of the transformed system (20). Figure 14 
illustrates the Lyapunov exponents as a function of time. This makes it possible to find chaotic behaviors in the 
disturbed dynamical system (20), which is defined by the initial condition (0.7, 0.01, 0) and the parameter values 
σ2 = 6.9, σ3 = 6.7, and Λ = 0.4 or α = π

2 .

Figure 6.  Phase portrait analysis of the dynamical system (17) at critical points. (a) Effect of σ1S on the planar 
system (17), assuming σ1 = 1, σ2 < 0 and σ3 > 0. (b) Effect of σ1S on the planar system (17), assuming 
σ1 = 0.7, σ2 < 0 and σ3 > 0. (c) Effect of σ1S on the planar system (17), assuming σ1 = 0.3, σ2 < 0 and 
σ3 > 0. (d) Effect of σ1S on the planar system (17), assuming σ1 = 0, σ2 < 0 and σ3 > 0.
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Conclusion
This article explores traveling wave solutions and dynamical analysis of the proposed advection-diffusion-
reaction equation. The study emphasizes the identification of the stability criteria and initial conditions required 
to guarantee the existence of unique solutions. The ADR equation plays a crucial role in describing the behavior 
of solitons in various physical systems. In nonlinear fiber optics, it governs optical solitons, where the balance 
between dispersion and Kerr nonlinearity is essential for stabilizing pulse propagation. This stabilization is 
particularly important for high-speed communication, as it ensures that light pulses can travel long distances 

without distortion or loss of information. A novel modified 
(

G′

G2

)
 expansion method is utilized to achieve 

this goal. This approach effectively derives traveling wave solutions, including trigonometric, hyperbolic, 
rational, periodic, exponential, and mixed trigonometric functions. The proposed method offers several 
advantages, including simplicity, precision, reliability, and broad applicability in various domains. The study 
aims to enhance the effectiveness and applicability of the proposed method to a wide range of nonlinear partial 
differential equations. A systematic approach is employed to generate various soliton profiles and analyze the 
solutions obtained. Using carefully chosen parameter values, 3D, 2D and contour diagrams were created to 
emphasize the significance of the proposed model. Figures 1, 2 and 3 shows the graphical representation that 
effectively illustrates the findings of the study. Additionally, concepts from bifurcation theory are applied to 
examine the phase portrait of the nonlinear advection-diffusion-reaction model. Figures 4, 5, 6 and 7 presents 
the phase portrait analysis of the dynamical system under various conditions, while Figs. 8 and 9 demonstrate 
the system’s sensitivity to minor variations in initial conditions. This sensitivity analysis assesses the system’s 
response across both transitive and intransitive time scales, verifying its behavior under these changes. The 
study further investigates chaotic behavior by introducing an external force and analyzing the system’s periodic, 
quasi-periodic, and chaotic characteristics. Applying a small external force to a system that exhibits periodic 
behavior allows the dynamical system to maintain equilibrium. As the external force increases, the system 
transitions to irregular but repetitive quasi-periodic behavior. Further increases in the external force lead to 
unpredictable chaotic behavior. In addition, we use two-dimensional Poincaré maps to analyze the behavior of 
dynamic systems and reduce their complexity. These maps offer a visual depiction of the system’s trajectories, 
facilitating the identification of patterns and stability in planar periodic and quasi-periodic orbits. Figures 10, 
11, 12 and 13 show 2D, 3D, temporal profiles, and the Poincaré map that illustrate periodic, quasiperiodic, and 

Figure 7.  Phase portrait analysis of the dynamical system (17) at critical points. (a) Effect of σ1S on the planar 
system (17), assuming σ1 = 1, σ2 < 0 and σ3 < 0. (b) Effect of σ1S on the planar system (17), assuming 
σ1 = 0.7, σ2 < 0 and σ3 < 0. (c) Effect of σ1S on the planar system (17), assuming σ1 = 0.3, σ2 < 0 and 
σ3 < 0. (d) Effect of σ1S on the planar system (17), assuming σ1 = 0, σ2 < 0 and σ3 < 0.
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chaotic behaviors. Figure 14 shows Lyapunov exponents that provide valuable graphical representations of the 
qualitative behavior of dynamic systems.

Figure 9.  (0.1,0) red, (0.15,0) blue, (0.3,0) green.

 

Figure 8.  Sensitivity analysis of systems (17).
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Figure 10.  Systems (20) exhibit periodic patterns.
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Figure 11.  Systems (20) exhibit Quasi-periodic patterns.
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Figure 12.  Systems (20) exhibit Quasi-periodic patterns.
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Figure 13.  Systems (20) exhibit chaotic patterns.
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Figure 14.  Lyapunov exponents.
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Data availability
All data that support the findings of this study are included within the article.
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