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The global shift towards decentralized energy systems, driven by the integration of distributed 
generation technologies and renewable energy sources, underscores the critical need for effective 
energy management strategies in microgrids. This study proposes a novel multi-objective optimization 
framework for grid-connected microgrids using quantum particle swarm optimization (QPSO) to 
address the dual challenges of minimizing operational costs and reducing environmental emissions. 
The microgrid configuration analyzed includes renewable energy sources like photovoltaic panels 
and wind turbines, along with conventional energy sources and battery storage. By incorporating 
quantum-inspired mechanics, QPSO overcomes limitations such as premature convergence and 
solution stagnation, often seen in traditional methods. Simulation results demonstrate that QPSO 
achieves a 9.67% reduction in operational costs, equating to savings of €158.87, and a 13.23% 
reduction in carbon emissions, lowering emissions to 513.70 kg of CO2 equivalent in the economic 
scheduling scenario. In the environmentally constrained economic scheduling scenario, the method 
delivers a balanced solution with operational costs of €174.11 and emissions of 401.63 kg of CO2. The 
algorithm’s performance is validated across various microgrid configurations, including standard low-
voltage setups. These results highlight QPSO’s potential as an efficient tool for optimizing microgrid 
energy management, promoting both economic and environmental sustainability. This study provides 
a robust framework for achieving practical solutions in real-world applications, emphasizing the role of 
advanced optimization techniques in sustainable energy systems.
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The India’s electricity demand surged significantly in 2022, notably surpassing the typical annual growth rate of 
previous years, highlighting an urgent need for robust and adaptable energy solutions. Microgrids, as decentralized 
energy systems, play a critical role in addressing these challenges. Particularly during the summer months of 
2022, which saw record high temperatures, the surge in electricity consumption highlighted the vulnerability of 

1Electrical and Electronics Engineering, K L University (Deemed) Vaddeswaram, Vijayawada, India. 2Electrical 
and Electronics Engineering, Vignan’s Foundation for Science, Technology and Research (VFSTR)Deemed to be 
University, Guntur, India. 3Department of Electrical Engineering, School of Physics and Electronic Engineering, 
Hanjiang Normal University, Shiyan 442000, Hubei, People’s Republic of China. 4Department of Electrical 
Engineering, Graphic Era (Deemed to be University), Dehradun 248002, India. 5Hourani Center for Applied 
Scientific Research, Al-Ahliyya Amman University, Amman, Jordan. 6College of Engineering, University of Business 
and Technology, 21448 Jeddah, Saudi Arabia. 7Department of Electrical and Electronics Engineering, Mohan 
Babu University, Tirupati, India. 8Department of Theoretical Electrical Engineering and Diagnostics of Electrical 
Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-
57, Kyiv 03680, Ukraine. 9Center for Information-Analytical and Technical Support of Nuclear Power Facilities 
Monitoring, National Academy of Sciences of Ukraine, Akademika Palladina Avenue, 34-A, Kyiv, Ukraine. email: 
arvindsinghwce@gmail.com; mohitbajajphd@gmail.com; zaitsev@i.ua

OPEN

Scientific Reports |         (2025) 15:5843 1| https://doi.org/10.1038/s41598-025-90040-0

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-90040-0&domain=pdf&date_stamp=2025-2-17


the national grid. In such scenarios, microgrids provide localized power generation and distribution, alleviating 
the pressure on the main grid and reducing the risk of widespread outages. The 12% increase in electricity 
demand between March and July 2022, compared to the same period in the previous year, further emphasizes 
the need for scalable energy systems1. The shift toward microgrids aligns with the growing demand for more 
resilient infrastructure, capable of adapting to fluctuating consumption patterns and mitigating the impact of 
climate extremes and system stress. Although India’s energy demand is projected to grow at a slightly slower 
pace in the coming years, the adoption of microgrid technology is critical for strengthening energy security and 
supporting sustainable recovery in the post-pandemic era. With an increasing focus on renewable energy, the 
importance of effective energy management in microgrids cannot be overstated. These systems are particularly 
valuable for improving grid resilience during natural disasters, power outages, or cyberattacks, given their ability 
to operate autonomously and integrate renewable sources efficiently. As the reliance on renewable energy sources 
expands, optimizing microgrid operations becomes increasingly challenging, especially due to the uncertainties 
associated with both renewable power generation and fluctuating demand patterns. The implementation of 
advanced energy management strategies in microgrids is vital to ensure reliable, cost-effective, and sustainable 
energy solutions2. Moreover, microgrids facilitate the integration of renewable resources like solar and wind 
energy, which are often dispersed and variable, supporting the development of cleaner and more sustainable 
energy systems. Given their capacity to enhance the reliability and resilience of the grid, microgrids are essential 
in addressing issues like grid failures, natural disasters, and cyber threats, thanks to their ability to generate power 
locally and operate independently from the main grid. The conceptual framework of microgrids is depicted in 
Fig. 1. Over recent years, there has been a notable increase in the integration of renewable energy sources (RES), 
such as wind and solar power, into microgrid systems. However, these sources present challenges due to their 
intermittent and unpredictable nature, which introduces variability that can affect the stability and efficiency of 
microgrid operations. Additionally, the variation in load demands adds another layer of complexity to energy 
management, necessitating the development of advanced strategies to ensure grid reliability3.

Forecasting plays a pivotal role in electrical engineering, especially in optimizing energy system configurations 
for short-term periods. Accurate forecasts are essential for effective renewable energy integration, enabling 
better planning and reducing reliance on fossil fuels. By enhancing forecast accuracy, it is possible to lower 
costs and CO2 emissions from conventional power generation. Inaccurate predictions, on the other hand, may 
result in system inefficiencies or failures. Hybrid energy systems (HES), which combine various renewable 
energy sources such as solar and wind, depend on precise forecasting due to the fluctuating and nonlinear 
characteristics of these resources. Factors such as weather patterns, power production, and demand significantly 
influence the performance of HES. For instance, knowing weather conditions can help predict the availability of 
solar and wind energy, which in turn determines the energy production capacity of the system. The depletion of 
fossil fuel reserves and the continuous rise in global energy consumption have made it essential for researchers 
to explore alternative energy sources. Furthermore, environmental pollution caused by traditional fossil fuel-
based power plants is a growing concern due to its link to global warming. Integrating renewable sources such 

Fig. 1.  Conceptual representation of a typical microgrid.

 

Scientific Reports |         (2025) 15:5843 2| https://doi.org/10.1038/s41598-025-90040-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


as solar, wind, and hydro energy into hybrid systems can significantly reduce environmental pollution, while 
also improving the efficiency and reliability of energy systems. However, the variability in energy production 
from renewable sources, particularly due to weather conditions, remains a major challenge. The unpredictability 
of solar energy, in particular, exacerbates this issue. To address these challenges, microgrids that incorporate 
a variety of distributed energy resources (DERs) such as energy storage systems, fuel cells, wind turbines, and 
solar panels offer a reliable and environmentally sustainable alternative. Microgrids have gained considerable 
attention due to their flexibility and efficiency in integrating diverse renewable energy sources to meet local 
energy demands. These systems can operate both in grid-connected and islanded modes, providing increased 
energy security4,5. The benefits of microgrids extend beyond energy generation. They can reduce greenhouse 
gas emissions, enhance voltage stability through reactive power support, and provide decentralized power 
generation. Additionally, microgrids facilitate demand response, improve the reliability of energy supply, and 
reduce transmission losses. In the United States, the development of microgrids has been driven by the need 
to increase resilience and reliability in critical infrastructure sectors such as healthcare, transportation, and 
emergency services. This is particularly evident in regions like the Northeastern U.S., where aging infrastructure 
and frequent extreme weather events have caused significant economic losses. As a result, there is growing 
interest in expanding microgrid technology beyond critical facilities to cover entire communities. Several states 
are now funding demonstration projects to explore the feasibility of such initiatives6. The maximum electrical 
energy can be harvested from renewable energy sources (i.e., up to 70%), and the corresponding statistics are 
represented in Fig. 2, respectively.

The dispersion of energy supply across a decentralized network, integration of heat demands for cogeneration, 
the provision of ancillary services, the enhancement of demand response (DR) capabilities, reduction of GHG 
emissions, support for reactive power to enhance voltage profiles, and many more benefits are provided by 
microgrids. They also help keep transmission and distribution system outages and line losses to a minimum. 
Renewable energy resources (RERs) have significant investment prices, which is one of the microgrids’ many 
constraints. Other drawbacks include control problems, an absence of system safeguards and regulatory 
frameworks, worries about consumer privacy, and difficulties in optimizing energy source use. Scientists are 
focusing on energy management difficulties because of the increasing integration of probabilistic controllable 
loads into microgrids and the large deployment of RERs, which are fundamentally intermittent. To ensure 
efficient, long-term, and dependable operation, microgrids use energy management systems (EMS) that cover 
both the supply and demand sides of the system. In addition to generation dispatch and energy savings, reactive 
power support, frequency regulation, improved reliability, reduced loss costs, optimized energy balance, reduced 
greenhouse gas emissions, and customer participation with privacy protection are just a few of the many benefits 
offered by the EMS. This study introduces a quantum particle swarm optimization (QPSO)-based framework 
to address the dual challenges of operational cost minimization and emission reduction in grid-connected 
microgrids. Unlike conventional optimization methods such as GA, PSO, or MILP, QPSO integrates quantum 
mechanics principles, enabling enhanced exploration and exploitation of the solution space. This approach avoids 
premature convergence and stagnation, often seen in traditional methods, by leveraging quantum-inspired 
operators like the mean best and quantum probability distributions. These mechanisms improve the algorithm’s 

Fig. 2.  Global electricity demand statistics.
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ability to identify globally optimal solutions efficiently, even in the presence of complex, non-linear, and multi-
modal optimization problems. The integration of QPSO into microgrid energy management represents a novel 
and robust tool for simultaneously optimizing economic and environmental objectives, addressing a significant 
gap in existing literature.

Literature review
Extensive studies have been conducted in recent years, the primary focus of which is the operation of microgrids 
(MGs). To meet the difficulty of optimal operation scheduling under a variety of loading situations and a wide 
range of objectives, numerous optimization strategies have been utilized. Within the context of7, the emphasis 
is placed on the distributed microgrid that is equipped with a significant quantity of Renewable Energy Sources 
(RES) and demand side management. The primary objective of a microgrid (MG) is to minimize the overall 
cost, which encompasses expenses related to Distributed Generation (DG), distributed energy storage, and the 
use of flexible or dispatchable loads. The MG operates in tandem with the main grid, ensuring that it remains 
connected for seamless energy management. Furthermore, the system is designed to account for the worst-
case scenario in terms of transaction costs, arising from the inherent uncertainties of renewable energy sources 
(RES). This approach aims to mitigate the financial risks associated with the variability and unpredictability 
of RES, optimizing the economic performance of the microgrid. When it comes to microgrids (MGs) that are 
fueled by renewable energy sources, the issue of scheduling their operations has been successfully overcome8. 
This involves determining the unit commitment (UC) and the corresponding dispatch that minimizes costs 
while meeting the system’s demand and operational requirements. It is important to stress that the publications 
listed above have only employed a framework that focuses on a single purpose without considering the problems 
related to greenhouse gas emissions. Although research has been conducted in the field, there is still a need 
for more detailed models of MG operation. A lot of research has gone into how MGs work, and researchers 
have used metaheuristic optimization techniques to tackle the environmental and economic issues that arise 
from MGs’ multi-objective operation. The search capabilities and fast convergence time of metaheuristic 
approaches make them well-suited to tackle multi-objective optimization problems, including the economic and 
environmental functioning of MGs9. The authors in10 have analyzed the techno-economic aspect of Distributed 
Energy Resources (DERs) by examining how their generation affects network losses. They also aim to reduce 
operational costs and emissions. Research on microgrid (MG) optimization focuses on economic dispatch and 
unit commitment to minimize costs while considering RESs and DSM.

Khosravi et al.11 introduce a novel control strategy for hybrid AC/DC microgrids, emphasizing voltage and 
frequency stability to support renewable energy integration. This highlights the importance of robust control 
strategies for maintaining power quality. Choudhury et al.12 employ a modified water wave optimization 
algorithm, focusing on energy management and power quality improvement in microgrids, which aligns with 
the need for advanced heuristic techniques to enhance microgrid reliability and operational efficiency. Hematian 
et al.13 address robust optimization for microgrid management, incorporating renewable energy sources, energy 
storage, EVs, and demand response, showcasing a comprehensive approach to tackling uncertainties inherent in 
energy systems. Sahoo et al.14 propose a prairie dog-based meta-heuristic optimization algorithm for improving 
transient response and power quality in hybrid microgrids. This work emphasizes dynamic response and control 
optimization, a key aspect of resilient microgrid operations. Ma et al.15 focus on demand-side energy 
management, particularly addressing price oscillations for residential heating and ventilation systems, offering 
strategies that complement broader energy optimization frameworks. Sahoo et al.16 further develop a scaled 
conjugate-artificial neural network-based framework for power quality enhancement in grid-tied systems, 
which supports improved energy distribution and integration with renewable sources. Panda et al.17 present a 
comprehensive review of demand-side management and market design for renewable energy integration, 
highlighting critical aspects of consumer engagement and demand response in microgrid configurations. Mu et 
al.18 introduce a deep reinforcement learning-based optimization framework for multi-objective interval 
dispatch in microgrids, demonstrating advanced AI-based approaches to handling system uncertainties and 
achieving cost-efficiency. Nagarajan et al.19 propose an enhanced cheetah-inspired algorithm for dynamic 
economic dispatch in integrated renewable energy and demand-side management, illustrating the value of bio-
inspired optimization techniques in achieving economic sustainability. Majeed et al.20 emphasize dynamic 
resource management in microgrids, optimizing efficiency through renewable penetration and resource 
allocation. This work aligns with strategies for achieving efficient energy distribution while minimizing losses. 
Sharma et al.21 explore modeling and sensitivity analysis of grid-connected hybrid green microgrid systems, 
which provides insights into parameter optimization for hybrid configurations. Ma et al.22 delve into cost 
modeling, game strategies, and algorithms for demand response in smart grids, highlighting the role of 
communication and decision-making strategies in achieving energy management goals. Abdalla et al.23 optimize 
the economic operation of microgrids, integrating combined cooling, heating, power, and hybrid energy storage 
systems to enhance operational flexibility and sustainability. Zhang et al.24 present a resilient distributed energy 
management framework under cyber-attack scenarios, leveraging homomorphic encryption and event-triggered 
mechanisms to enhance security and robustness. Dashtdar et al.25 design an optimal energy management system 
for residential microgrids, focusing on smart control to achieve economic and operational efficiency. Sharma et 
al.26 investigate the optimal sizing and cost assessment of off-grid hybrid microgrid systems, emphasizing cost-
effectiveness in rural electrification. Zhang et al.27 employ a multi-objective optimization approach using deep 
reinforcement learning for microgrid dispatch, showcasing advancements in AI-driven optimization techniques. 
Vennila et al.28 propose a tournament selection-based ant lion optimization algorithm for static and dynamic 
environmental economic dispatch, addressing the dual challenges of environmental sustainability and cost 
efficiency. Akarne et al.29 perform experimental analysis on dual-layer energy management and power control in 
AC microgrid systems, contributing valuable experimental validation of energy management frameworks. 
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Finally, Panda et al.30 provide an exhaustive review of residential demand-side management models, optimization 
techniques, and future perspectives, underscoring the importance of consumer-centric approaches in renewable 
energy systems. Nadimuthu et al.31 explore the feasibility of renewable energy microgrids integrated with 
vehicle-to-grid (V2G) technology for rural electrification in India. Their study emphasizes systematic rural 
energy planning to achieve peak shaving and optimize renewable resource utilization, directly addressing 
challenges of energy access in underdeveloped areas. Wang et al.32 propose distributed predefined-time 
optimization for DC microgrids, offering advanced control mechanisms to manage power distribution efficiently 
across multiple buses, aligning with efforts to improve distributed control in energy systems. Kumar33 conducts 
a techno-economic analysis of off-grid hybrid renewable energy systems, highlighting sustainable energy 
solutions for rural communities in India. This work underscores the importance of cost-effective and resilient 
microgrid designs for remote applications. Yi et al.34 investigate collaborative planning of multi-energy systems 
integrating a complete hydrogen energy chain, offering insights into the integration of hydrogen energy within 
microgrid frameworks to enhance sustainability. Nagarajan35 introduces an enhanced wombat optimization 
algorithm for multi-objective power flow in systems integrating renewable energy and electric vehicles, 
presenting an innovative bio-inspired approach to optimization. Pramila et al.36 discuss integrating hybrid 
intelligent algorithms for microgrid energy optimization, emphasizing the role of smart grid management in 
achieving operational efficiency. Davoudkhani et al.37 propose a mountaineering team-based optimization 
algorithm for load frequency control in islanded microgrids, illustrating its application in enhancing frequency 
stability in renewable-integrated microgrids. Fatima et al.38 focus on enhancing power dispatch efficiency in 
grid-connected microgrids through bio-inspired optimization, emphasizing improvements in computational 
techniques for energy scheduling. Karthik et al.39 present a chaotic self-adaptive sine cosine algorithm for solving 
optimal energy scheduling problems in microgrids, showcasing the application of advanced algorithms for 
effective energy management. Terada et al.40 examine multi-objective microgrid sizing, addressing both 
environmental and economic optimization challenges in achieving sustainable energy systems. Singh et al.41 
leverage machine learning-based energy management and power forecasting to enhance the operational 
reliability of grid-connected microgrids with distributed energy sources. Long and Liu42 propose an optimal 
green investment strategy for grid-connected microgrids, considering renewable energy endowment and 
incentive policies to maximize economic and environmental benefits. Rajagopalan et al.43 introduce a multi-
objective energy management strategy using a self-adaptive crystal structure algorithm for renewable and EV-
integrated microgrids, offering innovative solutions for handling complex scheduling problems. Khan et al.44 
apply a novel modified artificial rabbit optimization algorithm for stochastic energy management in grid-
connected microgrids, showcasing its effectiveness in addressing uncertainties in renewable generation. Adiche 
et al.45 propose a hybrid ANN-based adaptive PI controller for advanced control in AC microgrids, integrating 
droop control and virtual impedance to enhance power quality. Al-Quraan and Al-Mhairat46 introduce 
predictive control-based sizing and energy management for hybrid renewable systems, focusing on economic 
and operational optimization. Selvaraj et al.47 employ the crow search algorithm for optimal power scheduling 
in real-time distribution systems, improving microgrid performance under variable conditions. Singh et al.48 
utilize price-elastic demand response and greedy rat swarm optimization to achieve economic and environmental 
efficiency in advanced microgrid optimization frameworks. Saleem et al.49 optimize energy management in solar 
battery microgrids with a focus on economic approaches toward voltage stability. Li et al.50 propose a hierarchical 
improved marine predators algorithm for operational scheduling of grid-connected multi-microgrid systems, 
emphasizing scalability and efficient energy flow management. Kushwaha et al.51 conduct a techno-economic 
analysis of load scheduling in standalone hybrid microgrid systems, utilizing HOMER Pro to optimize power 
generation costs and reduce load shedding. Their integration of photovoltaics, wind power, and battery energy 
storage highlights efficient load management strategies that resonate with sustainable energy objectives. In 
another study, Kushwaha et al.52 propose integrated load and source-side management for hybrid renewable 
systems, aiming to improve techno-economic-environmental performance for rural electrification. Their 
approach emphasizes balancing load demands with renewable generation capabilities, offering a comprehensive 
framework for rural energy access. Furthermore, Kushwaha and Bhattacharjee53 explore integrated techno-
economic-enviro-socio designs of hybrid renewable energy systems, addressing domestic and telecommunication 
load requirements in India. By incorporating a suitable dispatch strategy, their work showcases how hybrid 
systems can meet diverse energy demands while ensuring sustainability. Finally, Kushwaha and Bhattacharjee54 
focus on socio-techno-economic-environmental sizing of hybrid renewable energy systems using metaheuristic 
optimization approaches. These studies collectively demonstrate advancements in algorithmic approaches, 
control strategies, and integration techniques for enhancing microgrid operations in diverse scenarios.

Existing models often overlook the environmental impact of microgrid operations, particularly regarding 
greenhouse gas emissions. This highlights the necessity for more inclusive frameworks that address both 
economic and ecological objectives. Metaheuristic optimization techniques are widely used in microgrid (MG) 
operations because of their efficiency in balancing multiple goals, such as minimizing operational costs while 
reducing emissions. However, these methods have limitations, especially when dealing with complex system 
dynamics and the uncertainties introduced by renewable energy sources (RES). In analysing Distributed Energy 
Resources (DERs) within microgrids, the aim is to lower both costs and emissions while factoring in the effects 
on network losses. Despite the advantages, challenges remain in integrating DERs into the current energy 
infrastructure and managing their variable nature. A model for minimizing operational costs in residential 
microgrids (MG) is presented in55, focusing on optimal energy management. The model incorporates various 
factors, including the cost of energy trading, penalties for adjustable load shedding, wear-and-tear costs on 
electric vehicle (EV) batteries. The model differentiates between three types of loads: critical, adjustable, and 
shiftable loads. The study explores three scenarios, each with different risk levels, to evaluate the trade-offs 
between operational costs and the typical state of charge (SOC) of EV batteries, specifically addressing the issue 
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of range apprehension. Furthermore, a revenue maximization model for microgrid energy management systems 
(EMS) that integrates demand-responsive loads is discussed in56. This model includes an application for peak 
shaving from the main grid. The authors of this study assume that the microgrid’s load demand consistently 
exceeds its generating capacity, emphasizing the need for smart energy management to ensure reliability and 
profitability. The authors assumed that the microgrid (MG) would consistently have a load demand greater than 
its generating supply. An analysis is conducted on the performance and effectiveness of the proposed Mixed 
Integer Linear Programming (MILP) optimization model in the CPLEX program. This analysis includes two 
case studies: one involving a single bus and another using an IEEE 14-bus Microgrid (MG) system. The authors 
of reference57 introduced a highly effective energy management strategy in their study to reduce the operational 
costs of a microgrid (MG). This approach also considers curtailable and shiftable loads into demand response 
(DR) strategies. Maintenance and operation expenses, startup and shutdown charges, energy trading with the 
main grid, and load shedding are all part of the goal function. Table 1 shows the results of the evaluation of 
MG EMSs utilizing various optimization methods, including linear and nonlinear programming, dynamic 
programming, and optimization inspired by nature. Every one of these MG EMSs is designed with centralized 
supervisor control. Previous coverage in this field has covered the main findings of the research works, with most 
of the studies concentrating on microgrids (MG) energy resource optimization.

The existing literature on microgrid energy management primarily emphasizes single-objective 
optimization, such as minimizing operational costs or emissions, often relying on methods like Mixed-Integer 
Linear Programming (MILP). While MILP can provide optimal solutions under specific assumptions, it is 
computationally intensive and struggles with uncertainties inherent in renewable energy sources. Dynamic 
Programming, while well-suited for sequential decision-making, is significantly constrained by exponential 
computational complexity. Heuristic approaches like Genetic Algorithms (GA) and Particle Swarm Optimization 
(PSO) are effective in navigating large search spaces but often encounter challenges such as premature 
convergence to local optima and require meticulous parameter tuning. Similarly, rule-based methods, while 
straightforward, lack the flexibility to adapt to complex systems. This review identifies a significant gap in 
the literature a lack of comprehensive multi-objective optimization strategies that balance economic and 
environmental goals while addressing the uncertainties and complexities of renewable energy integration74,86–92. 
The overall literature survey of the previous research works is tabulated in Table  1 respectively. To bridge 
this gap, this research proposes a quantum particle swarm optimization (QPSO)-based approach, leveraging 
QPSO’s unique attributes, such as rapid convergence, resilience to local optima, and superior handling of multi-
objective functions. By integrating QPSO into microgrid energy management frameworks, this methodology 
aims to optimize operations while simultaneously addressing economic and environmental factors, such as cost 
efficiency, emissions reduction, and penalty minimization. QPSO combines principles of quantum mechanics 
with swarm intelligence, enabling enhanced exploration of solution spaces and efficient optimization of multiple 
objectives. Its dynamic swarm behavior and quantum-inspired operators mitigate common challenges faced by 
traditional algorithms, such as handling non-linear, multi-modal, and complex objective functions. By avoiding 
entrapment in local optima, QPSO delivers a diverse set of Pareto-optimal solutions, allowing decision-makers to 
analyze trade-offs between conflicting objectives effectively. This diversity facilitates informed decision-making, 
providing stakeholders with tailored solutions that align with specific priorities and constraints. The proposed 
QPSO framework demonstrates its potential to address the dual challenges of economic and environmental 
scheduling in microgrid management. Its ability to explore complex optimization landscapes with precision 
establishes QPSO as a promising tool for advancing sustainable energy practices in microgrids. This innovative 
approach not only expands the scope of current literature but also offers practical solutions for reducing 
emissions and minimizing the carbon footprint of microgrid operations. By achieving superior performance 
compared to traditional methods, this study highlights the transformative potential of QPSO in enhancing 
the sustainability and operational efficiency of microgrids. In this research work introduces a comprehensive 
multi-objective framework aimed at optimizing the day-ahead scheduling of a microgrid (MG). The proposed 
framework effectively incorporates both cost and emission factors, ensuring a balanced approach to economic 
and environmental objectives. The contributions of this research work as follows.

•	 This study introduces a comprehensive multi-objective framework aimed at optimizing the day-ahead sched-
uling of a microgrid (MG). The proposed framework effectively incorporates both cost and emission factors, 
ensuring a balanced approach to economic and environmental objectives.

•	 The quantum-inspired particle swarm optimization (QPSO) approach is employed to achieve simultaneous 
minimization of costs and emissions, leading to optimal outcomes. This method leverages quantum-inspired 
mechanisms within the particle swarm to thoroughly explore the solution space, enabling convergence to-
wards Pareto-optimal solutions that effectively balance economic and environmental objectives.

•	 The proposed approach demonstrates outstanding performance by delivering superior results in terms of cost 
efficiency, emission reduction, and computational time when compared to other recently published method-
ologies.

The structure of this paper is organized as follows: In “Problem formulation” section outlines the problem 
formulation, detailing the objectives and constraints associated with the optimization challenge. In “Model 
description” section explores the utilization of quantum-inspired particle swarm optimization (QPSO) as a 
novel approach to address these objectives, providing a detailed explanation of its principles and implementation 
for achieving optimal cost and emission minimization. In “Development of the proposed algorithm and 
methodology” section presents the simulation results obtained through the QPSO method, offering a thorough 
analysis of its performance and effectiveness in generating high-quality solutions. This section also identifies 
the most optimal outcomes. Finally, “Conclusion and future research directions” section concludes the study 
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by summarizing the findings and discussing the broader implications of adopting QPSO for tackling multi-
objective optimization issues in the realm of sustainable energy management.

Problem formulation
The main objective of microgrid optimization with distributed energy sources (DERs) is to determine the most 
efficient power generation operating points within a given timeframe. This optimization aims to minimize both 
the cost of operation, and the amount of emissions produced simultaneously. Therefore, the challenge might be 
defined as having two conflicting objectives: the reduction of running costs and the simultaneous reduction of 
emissions. The microgrid is considered to consist of distributed renewable energy sources like solar PV, wind, 
fuel cells, microturbine, battery, and utility.

Refs. Optimization approach Proposed objective
58 Linear and MILP The MG EMS is suggested to have power sharing, continuous run, and an on/off-based design

59 MILP Assessing the net present cost and the impact of DR programs reveals improvements in load factor and reductions in peak 
power demand, optimizing resource efficiency and grid reliability

60 MILP The suggested model addresses the fuel cost reduction issue by addressing the diesel generators’ piecewise linear functions and 
the battery sizing problem

61 MILP A potential energy trading profit-based energy management system (EMS) with thermal storage integration is developed and 
implemented

56 MILP To optimize MG’s daily revenue, the ideal EMS model takes utility grid peak shaving incentives into account

62 DP The objective function considers the operational cost of CGs as well as the penalty cost associated with load shedding. The 
computing time is reduced by applying the Pontryagin Maximum Principle

63 Approximate DP The optimal daily energy schedule for a microgrid is determined by approximating the cost function, ensuring efficiency in 
both economic dispatch and unit commitment processes

64 Rule-based approach The central EMS manages microgrid operations, while the prosumer EMS addresses power imbalances

65 Battery SOC rule-based approach Structure based on state-of-charge for MG batteries for the purpose of power regulation and MG functioning, EMS is 
suggested in conjunction with ultracapacitors

66 Rule-based approach The power balancing of the building-integrated microgrid has been successfully accomplished. Additionally, the stability of the 
DC bus voltage is maintained

67 GA The optimal functioning of MG is considered in a multi-objective EMS model along with emission cost, energy trading profit, 
and operation cost

68 GA Battery degradation cost, in conjunction with MG’s operational cost model, is thought to prolong its longevity
69 GA Optimal scheduling of active, reactive, and reserve power is determined, accounting for load shedding and control switch costs

70 PSO Microgrid operational costs are minimized using a point estimation approach to address uncertainties in RERs, load demand, 
and electricity prices

71 PSO The global optimal solution is identified by simultaneously factoring in the operational and energy trading costs associated 
with an industrial microgrid

72 PSO The optimization focuses on operational, emission, and reliability costs, using the point estimate method to model solar and 
wind variability

73 Stochastic weight tradeoff PSO The aim is to minimize costs from fuel consumption, emissions, load shedding, voltage fluctuations, power imbalances, and 
energy trading with the main grid

74 HOMER Techno-economic and environmental optimization framework for designing off-grid microgrids to provide sustainable and 
reliable power supply to rural areas in India

75 Quadratic interpolation beluga whale 
algorithm Optimization of a hybrid microgrid for a small hotel using renewable energy and EV charging

76
Hybrid artificial gorilla troops 
optimizer with quadratic 
interpolation

Optimization of grid-connected photovoltaic/wind/battery/supercapacitor systems

77 Integration and optimization 
approach Enhancing efficiency with electric vehicle charging solutions in microgrids

78 Stochastic approach Integration of electric vehicles into hybrid microgrids for future-ready renewable energy management

79 Comprehensive analysis of hybrid 
energy storage systems Optimization of energy dynamics integrating battery banks and supercapacitors

80 Performance comparison of 
metaheuristic algorithms Multi-objective optimization and sustainable design for on-grid and off-grid hybrid energy systems

81 Sophisticated hybrid metaheuristic 
approach Multi-objective optimization of an islanded green energy system

82 Assessment of metaheuristic 
algorithms Dimensioning hybrid energy systems with hydrogen storage for isolated rural environments

83 Jaya-harmony search and ant colony 
optimization algorithms Design optimization of a stand-alone green energy system for a university campus

84 Multi and hybrid metaheuristic 
optimization approaches Performance analysis of autonomous green energy systems

85 HOMER software application Assessing and controlling renewable energy-based hybrid EV charging stations in Turkish cities

Table 1.  MG-EMS-based optimization approaches literature survey.
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The main goal of the function F(Pgm) in Eq. (1) is to reduce the running expenses (OC) throughout a 24-h time 
(T). The system includes the operational expenses of DG units DGc, BES units BESc, and the costs associated 
with exchanging power with the utility. The items in the vector Pgi, as denoted by (2), serve as choice variables 
for the optimization problem. The variables NDG and NBS denote the total count of distributed generation 
(DG) units and behind-the-meter energy storage (BES) units, resctively, that are connected in the microgrid 
(MG) network. The terms specified in (3) include the power output of the ith DG unit, denoted as P_DGi^t, the 
bid cost M_DGi^t, and the startup/shutdown expenses represented by Son

DGi max and Soff
DGi max Likewise, the 

terms mentioned in (4) include the capacity output of the jth BES unit, the bid cost Mt
BESj, and the startup/

shutdown charges Son
BESj max and Soff

BESj max.

Emission
The second purpose is to reduce the overall emission of the system by including non-RESs such as Micro-
Turbine, FC, and BES into the microgrid being studied. This can be mathematically represented as:

	
E (Pgm) =

∑
t∈T

∑
j∈et

{ ∑
m∈µt

Pgµ (t) ∗ Egm (t) +
∑

m∈F C

PgF (t) ∗ EgF (t) +
∑

m∈BS

PgB (t) ∗ EgB (t) + PgGrid (t) ∗ EgGrid (t)

}
� (5)

The formula for E(Pgi) involves calculating the total emissions, which comprise various pollutants emitted 
from different sources. In this context, we focus on three key pollutants: Carbon dioxide (CO2), Sulphur dioxide 
(SO2), and Nitrogen oxides (NOx). The emissions from three specific sources are denoted as Egm (t) , EgF (t) , 
and EgB (t) for Micro-Turbine, FC, and battery. Additionally, EgGrid (t) represents emissions resulting from 
power obtained from the utility grid.

System constraints
The management of a microgrid for optimal functioning involves solving a constraint optimization issue. 
In this investigation, various practical constraints are considered. The primary constraint while solving the 
microgrid energy management problem is the power balance constraint. The total power generated by the 
distributed energy resources and renewable energy sources should meet the total demand, including losses. The 
mathematical representation of the equality constraint is represented as follows.

	

∑
m∈µt

Pgµ (t) +
∑

m∈F C

PgF C (t) +
∑

m∈W T

PgW T (t) +
∑

m∈P V

PgP V (t) +
∑

m∈BS

PgBS (t) +
∑

m∈grid

PgGrid (t) + Pl (t) = PD (t)� (6)

In this context, PD (t) signifies the aggregate energy demand during the hour t., while Pl (t) represents the 
aggregate loss during that time. For this study, we consider a low-voltage, 3-feeder system where losses are 
minimal; thus, we neglect them for simplicity. During the evaluation of the decision variables, they must be 
restricted to the upper bound and lower bound values. To maintain the decision variables within the permissible 
ranges, the mathematical representation of the upper bound and lower bound of the decision variables are 
represented in Eqs. (7) to (11) and as follows.

	 P min
gW T (t) ∗ SW T (t) ≤ PgW T (t) ≤ P max

gW T (t) ∗ SW T (t)� (7)

	 P min
gP V (t) ∗ SP V (t) ≤ PgP V (t) ≤ P max

gP V (t) ∗ SP V (t)� (8)

	 P min
gF C (t) ∗ SF C (t) ≤ PgF C (t) ≤ P max

gF C (t) ∗ SF C (t)� (9)

	 P min
gµt (t) ∗ Sµt (t) ≤ Pgµt (t) ≤ P max

gµt (t) ∗ Sµt (t)� (10)

	 P min
gBS (t) ∗ SBS (t) ≤ PgBS (t) ≤ P max

gBS (t) ∗ SBS (t)� (11)

	 P min
gGrid (t) ≤ PgGrid (t) ≤ P max

gGrid (t)� (12)

In this scenario, the minimum and maximum power outputs from the wind turbine (WT) and photovoltaic 
(PV) sources are denoted by P min

gW T (t) and P max
gW T (t), and P min

gP V (t) and P max
gP V (t) respectively, for each 

scheduling period. Additionally, P min
gµt (t) and P max

gµt (t) represents the min and max constraints of total power 
generation by the microturbine (MT), while P min

gF C (t) and P max
gF C (t) specifies the corresponding metrics for the 

fuel cell. (FC). The minimum and maximum power constraints of the battery are indicated by P min
gBS (t) and 
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P max
gBS (t) respectively. Furthermore, the power transaction limits of the microgrid (MG) with the utility grid are 

represented by P min
gGrid (t) and P max

gGrid (t) as the lower and upper constraints.

Model description
The illustration in Fig. 2 depicts a prototypical low-voltage grid-connected microgrid, serving as the basis for 
evaluating the proposed framework. Central to this setup is the microgrid central controller (MGCC), which is 
responsible for the supervision and regulation of power exchange between the microgrid (MG) and the utility. 
Its principal function lies in the allocation of power references to local controllers, thereby ensuring compliance 
with linear constraints throughout the scheduled period T. Supporting this endeavor are the micro-source 
controller and load controller, tasked with fulfilling power requirements by either absorbing or supplying excess 
or deficit energy, respectively. This approach incorporates storage devices to address uncertainties in forecasting, 
ensuring stable and reliable system performance. The architecture includes various distributed generation (DG) 
units, such as photovoltaic (PV) systems, wind turbines (WT), fuel cells (FC), and microturbines (MT), along 
with multiple energy storage solutions. A schematic representation of a typical low voltage microgrid setup is 
provided in Fig. 3. This study also incorporates mathematical models for distributed energy resources, including 
Solar PV, WT, FC, MT, battery energy storage, and market bid prices, as referenced in74.

Development of the proposed algorithm and methodology
Microgrid optimum functioning under environmental restrictions is addressed in the following section by 
outlining the algorithm that has been proposed. An accurate portrayal of people and their components is crucial 
to the performance of any algorithm that relies on population-based data. Optimization techniques inspired by 
quantum mechanics present a fundamental departure from conventional heuristics, meta-heuristics, and other 
optimization methods when it comes to problem-solving strategies.

These methodologies are motivated by quantum mechanical principles, including entanglement, tunneling, 
and superposition, to more effectively explore and exploit search spaces. In contrast to conventional 
optimization algorithms, quantum-inspired methods possess the capability to investigate numerous potential 
solutions concurrently. This results in enhanced global optimization and accelerated convergence. Furthermore, 
they exhibit resilience when confronted with intricate, high-dimensional optimization challenges involving 
non-linear and discontinuous objective functions, which conventional approaches may encounter difficulties 
with because of computational inefficiencies or local optima traps. A prominent optimization technique that 
draws inspiration from quantum mechanics is quantum particle swarm optimization (QPSO). QPSO integrates 

Fig. 3.  Typical LV microgrid system.
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concepts from quantum mechanics with the collective intelligence of particle swarm optimization. QPSO utilizes 
particles as representations of potential solutions to the optimization problem, with their movements being 
influenced by a combination of classical and quantum behaviors. QPSO utilizes quantum-inspired operators, 
such as the quantum rotation gate and quantum probability measurement, to explore the solution space and 
preserve variety among the particles. The hybrid technique employed by QPSO allows for the efficient handling 
of multi-objective optimization problems by successfully balancing the exploration and exploitation processes. 
This results in the discovery of a wide range of Pareto-optimal solutions. Furthermore, the capability of QPSO to 
flexibly modify its settings and actively manage the search process improves its efficiency in discovering optimal 
trade-off solutions for multi-objective optimization tasks.

PSO stands out as a widely embraced swarm intelligence-based algorithm, effectively addressing essential 
electrical domain issues like ED and OPF problems respectively69. Inspired by quantum mechanics theory 
and particle dynamics analysis, Sun et al. introduced quantum particle swarm optimization (QPSO)70. The 
conventional PSO exhibits limitations, particularly when a small subset of particles fails to converge towards 
the global optimum, leading to their exclusion from the swarm during subsequent iterations. This exclusion 
adversely impacts the algorithm’s global search capability. To address this, QPSO introduces the concept of mean 
best, reincorporating lagged particles into the swarm. Additionally, QPSO streamlines parameter adjustments 
compared to the canonical PSO, as it doesn’t necessitate a velocity vector model for particles and relies on a 
minimal number of parameters. In QPSO, a particle’s state is denoted by a wave function, ψ(x,t). The position of 
the particle at each iteration undergoes updates according to Eqs. (13) and (14). The rest of the algorithm-related 
information is considered from the69,70 respectively.

	
xp,q (t + 1) = pp,q (t) ± ξ · |Mbp,q (t) − xp,q (t)| · ln 1

u
� (13)

	 pp,q (t) = (φ · pp,q (t) + (1 − φ) Gq (t)) , (1 ≤ p ≤ N, 1 ≤ q ≤ M)� (14)

	
φ = c1r1

c1r1 + c2r2
� (15)

The parameters of the microgrid system are initially established in accordance with the prescribed framework. 
The fitness of each solution is subsequently assessed for a maximum of 200 iterations to ascertain the personal 
and global finest. To avert premature convergence, the contraction-expansion coefficient must be meticulously 
adjusted. The mean-best, which is determined during each iteration, aids in the preservation of population 
diversity. In the case where a randomly generated number is less than 0.5, a positive sign is appended to (14); 
otherwise, a negative sign is appended. The algorithm’s stopping criteria rely on either convergence or reaching 
the maximum iteration count. Once the algorithm has converged, the updated personal best and global best 
values provide the optimal set points for distributed generation units, along with the calculated cost over a 
24-hour period. The overall methodology of the proposed QPSO optimizer flowchart is represented in Fig. 4 
respectively.

Methodology
QPSO offers an effective approach for managing energy in microgrids by optimizing the configuration of 
distributed generators (DGs) to reduce operational costs and minimize emissions. Its quantum-inspired 
algorithms are particularly well-suited for multi-objective optimization, as they allow for efficient exploration 
of complex solution spaces while striking a balance between exploration and exploitation. Additionally, QPSO 
effectively addresses both equality and inequality constraints, making it a robust choice for solving intricate 
energy management problems.

Initialization  The QPSO algorithm begins by generating a population of particles, each representing a potential 
solution to the microgrid scheduling problem. The position of each particle within the solution space reflects a 
unique combination of scheduling parameters for distributed generators (DGs), including power output, start/
stop timings, and fuel consumption.

Fitness evaluation  A fitness function is designed to evaluate multiple objectives, typically balancing operational 
costs and emissions. This function accounts for costs associated with fuel, maintenance, and other operational 
factors, alongside the environmental impact of emissions. The goal is to minimize these variables while meeting 
the required energy demands.

Quantum-inspired operations  QPSO incorporates concepts from quantum mechanics, such as superposition, 
to perform a comprehensive and efficient exploration of the solution space. The “mean best” strategy is employed 
to guide particles toward improved solutions while maintaining diversity within the swarm. These quantum-in-
spired mechanisms enable the algorithm to explore a wide array of possible solutions concurrently, reducing the 
chances of premature convergence to suboptimal points.

Handling constraints  The microgrid scheduling problem involves both equality and inequality constraints, 
such as meeting energy demands, adhering to operational limits, and maintaining system stability. QPSO ad-
dresses these constraints by incorporating penalties into the fitness function for violations, thereby steering the 
optimization process toward feasible solutions.
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Iterative optimization  Through multiple iterations, QPSO refines particle positions by considering personal 
bests, global bests, and quantum-inspired adjustments. This iterative process ensures convergence toward an 
optimal solution that balances cost minimization and emission reduction while meeting the defined constraints.

Simulated results  The final output of QPSO is the optimal scheduling for the microgrid, which minimizes 
operating costs and emissions. The solution provides specific recommendations for DG scheduling, including 
when to operate each generator, how much power to produce, and how to manage fuel consumption effectively. 
This optimal solution contributes to a more efficient and environmentally friendly operation of the microgrid.

Quantum particle swarm optimization (QPSO) presents a versatile and resilient method for addressing intricate 
multi-objective optimization challenges in microgrid energy management through the integration of quantum 
principles.

Simulation results with different test systems
The implemented QPSO optimizer is employed on two different test systems to show the ability and efficacy of 
the optimization approach. It is implemented and tested under the MATLAB environment with the configuration 
of 1.4 GHz,12 GB RAM System ModelHP Laptop 15t-dy100, respectively.

Test system 1
As an initial step toward a direct comparison, the recommended method is implemented on a test system 
comprising three plants and six thermal generators. The system is illustrated in Fig. 5 as a schematic diagram. 
The system’s theoretical maximum load demand is 900  MW. In this instance, two competing objectives, the 
achievement of fuel cost reduction while minimizing operating expenses, are also considered.

The initial solution is focused solely on optimizing the economic schedule, where minimizing fuel costs is the 
primary goal. The suggested method utilizes a quantum-inspired particle swarm optimization (QPSO) algorithm 
to optimize a sample test system consisting of 3 plants and a total of 6 thermal generators. This configuration 
enables a direct comparison with different optimization techniques. The QPSO algorithm’s performance can be 
evaluated by considering load demand, which is set at 900 MW. Emission and cost coefficients of Test System-1 
are depicted in Table 2.

The number of particles (num_particles = 50) represents the swarm size, striking a balance between solution 
diversity and computational efficiency. A smaller swarm may limit solution quality, while a larger one could 

Fig. 4.  Implemented methodology.
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unnecessarily increase computation time. The maximum number of iterations (max_iter = 500) is set to allow 
sufficient opportunity for convergence while ensuring practical computational feasibility for real-world scenarios. 
The contraction-expansion coefficient (beta = 1.5) plays a pivotal role in controlling the search behavior of 
particles. It balances global exploration, which prevents premature convergence to suboptimal solutions, with 
local exploitation, which refines the search around promising areas. The convergence criterion (epsilon = 1e−6) 
ensures the algorithm halts when there is negligible improvement in solution quality, avoiding unnecessary 
computations during the stable convergence phase. These include the power balance constraint, which ensures 
total generation meets demand, and generation limits for various distributed energy resources, ensuring feasible 
solutions. Penalty terms are introduced in the fitness function to steer the optimization toward feasible regions 
of the search space. These parameter choices and constraint-handling methods are pivotal in achieving the dual 
objectives of microgrid energy management: Fig. 5 depicts the schematic diagram of the test system, emphasizing 
the arrangement and interconnections of the three plants and the six thermal generators. The primary objective 
is to optimize the scheduling of the generators to satisfy the 900  MW load demand while minimizing fuel 
expenditures. The simulated results of pure economic scheduling that were obtained are tabulated in Table 3. 
Taking emission objectives exclusively into account, the issue is now resolved. Table 3 contains a comparison of 
the optimal outcomes to those of alternative approaches. As shown in Table 4, improved outcomes are achieved 
with regard to petroleum expenditure, emissions, and losses. Economic and emission factors are currently 
considered concurrently. With the obtained simulated results regarding the pure emission scheduling problem, 
the QPSO optimizer shows superiority and is compared with other implemented optimization approaches. The 
market bid costs, market prices, load demand and the real-time power generation of solar PV and wind power 
values have been taken from92, respectively.

A comparison of the costs and emissions for three distinct scenarios is displayed in Table 5. These scenarios 
are economically constrained economic scheduling (ECES), which prioritizes emission reduction over cost 

Unit P min
gi P max

gi ai bi ci αi βi γi

1 10 125 0.15274 38.5397 756.799 0.00419 0.32767 13.8593

2 10 150 0.10578 46.1592 451.325 0.00419 0.32767 13.8593

3 40 250 0.02803 40.3965 1049.32 0.00683 − 0.54551 40.2669

4 35 210 0.03546 38.3055 1243.53 0.00683 − 0.54551 40.2669

5 130 325 0.02111 36.3278 1658.57 0.00461 − 0.5116 42.8955

6 125 315 0.01799 38.2704 1356.66 0.00461 − 0.5116 42.8955

Table 2.  Emission and cost coefficients of test system-1.

 

Fig. 5.  Test system 1.
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minimization, and emission scheduling, which focuses on cost minimization alone. As shown in Table  5, 
emission scheduling produces the highest level of emissions, while economic scheduling produces the least 
amount of fuel. A mutually agreeable resolution is reached when ECES occurs. The inherent contradiction 
between the objectives of pollution reduction and economic efficiency is illustrated in Table 5.

Test system II
A typical microgrid consisting of a battery, fuel cell, wind turbine, and microturbine (MT) has been investigated 
for this scenario. All data and components of the system are identical to those in Reference88 to allow for a 
direct comparison. The microgrid that was taken into account for this case study is depicted in Fig. 3. Through 
the PCC, the microgrid is linked to the utility grid, allowing for the exchange of power as required. A typical 
microgrid is illustrated schematically in Fig.  3. The acronyms for various parts are shown in Fig.  3: The 
acronyms MV for medium voltage, LV for low voltage, MT for the microturbine, WT for the wind turbine, MC 
for the microcontroller, LC for local controller, and MGCC for microgrid central controller are all capitalized. 
Microturbines (MT) are connected to AC–AC controllers to meet grid criteria, whereas photovoltaic (PV) and 

Unit (MW) Proposed method TMDE MBFO AMPSO

P1 91.9782 92.1215 51.8200 51.8200

P2 93.8342 93.6992 32.6500 32.6500

P3 151.4474 147.9038 208.780 208.770

P4 149.7052 150.3034 128.120 128.120

P5 212.1603 225.9806 292.020 292.030

P6 234.8748 226.4802 223.570 223.570

Total cost ($/h) 47,379.44 47,398.00 47,548.96 47,548.97

Total emission (Kg/h) 818.62 808.9096 823.350 823.350

Total loss (MW) 33.97 36.4885 36.9600 36.8900

CPU time 3.60 6.82 14.3600 12.5400

Table 5.  Simulated test results for test system 1 environmentally constrained economic emission (ECES) 
scheduling. Significant values are in [bold].

 

Unit (MW) Proposed method TMDE MBFO AMPSO

P1 125.0000 122.4950 124.51 124.51

P2 150.0000 122.4950 124.51 124.51

P3 107.3280 139.0694 140.305 140.306

P4 130.7034 141.3010 140.305 140.306

P5 206.0114 205.6206 204.14 204.14

P6 200.3292 206.5719 204.14 204.14

Total cost ($/h) 50,063.6678 50,080.00 50,217.51 50,217.47

Total emission (kg/h) 696.63 696.5099 696.906 696.91

Total loss (MW) 19.372 37.5530 37.91 37.91

CPU time 3.60 6.15 10.52 10.33

Table 4.  Simulated test results for test system 1 only emission scheduling. Significant values are in [bold].

 

Unit (MW) Proposed method TMDE MBFO AMPSO

P1 33.7100 33.8686 33.71 33.71

P2 12.6500 12.7914 12.65 12.65

P3 150.5300 151.1071 150.53 150.54

P4 148.5000 147.0570 148.5 148.5

P5 296.3200 293.8652 296.33 296.32

P6 293.7100 296.5686 293.71 293.71

Total cost ($/h) 47,176.6963 47,179.00 47,187.34 47,187.36

Total emission (kg/h) 858.96 857.5902 857.80 857.79

Total loss (MW) 35.12 35.2579 35.43 35.43

CPU time 3.60 6.02 10.12 10.35

Table 3.  Simulated test results for test system 1 only economic scheduling. Significant values are in [bold].
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fuel cells (FC) are connected to DC–AC converters. Every hour, new generation schedules are set up, and the 
scheduling horizon is set at 24 h. At any given hour, it is anticipated that all units, including the utilities, are 
operating within their designated boundaries and fulfilling the essential limits. The main goal of this challenge is 
to provide a 24-hour scheduling technique that reduces emissions and operating expenses.

The power generated by photovoltaic (PV) and wind turbine (WT) systems is intermittent in nature. 
Consequently, given the present conditions, the amount of electricity that can be obtained from these sources 
the following day must be calculated. Microgrids require precise forecasts of wind and solar power generation 
throughout the entire scheduling timeframe to operate efficiently. The microgrid considered for this case study 
is taken from88 and includes all the parameters associated with low voltage microgrids. Three distinct instances 
are examined in this study, each contingent upon specific aims. Initially, the primary focus is on the economy, 
with the outcomes being presented solely in terms of economic planning. Subsequently, the sole focus is on 
emissions, disregarding the economy, resulting in a schedule that is purely based on emissions. In the final 
scenario, both the economy and emissions are the principal objectives. The outcomes are categorized under 
the acronym ECES (ecologically constrained economic scheduling). To evaluate the robustness of the proposed 
algorithm, fifty iterations were performed for each case, yielding an approximate success rate of 100%. Table 6 
displays the optimal outcomes attained through pure economic scheduling. The minimal operational cost is 
158.87 Euro, as shown in Table 6, and it corresponds to an emission of 513.7017 kg. From hour one to hour 
eight, the active power output of most DG units is either zero or negligible, as shown in Table 6. Thus, electricity 
is procured from the power grid to satisfy the demand. It is evident from Table 7 that the anticipated electricity 
generation of PV and WT systems is either non-existent or significantly diminished throughout the specified 
time periods. Power could be supplied by MT at its maximum capacity during those hours; however, the expense 
would be considerably elevated because of elevated price proposals and SUC/SDC costs (refer to Table 6). Hence, 
contingent upon the price proposed, the battery and the grid provide the maximum amount of power necessary. 
Equal validity can be attributed to additional temporal epochs. The convergence characteristics that correspond 
to each other are illustrated in Fig. 6.

Implemented method CEDE TMDE DE

Operating cost (Euros) 174.1129 175.7541 180.40 191.0

Emission (kg) 401.63 408.0673 529.30 721.1

Table 7.  Comparative results of ECES test system-II. Significant values are in [bold].

 

Hour MT FC PV WT BES Utility

1 6 30 0 1.785 − 15.785 30

2 6 30 0 1.785 − 17.785 30

3 6 30 0 1.785 − 17.785 30

4 6 30 0 1.785 − 16.785 30

5 6 30 0 1.785 − 11.785 30

6 6 30 0 0.915 − 3.915 30

7 6 30 0 1.785 2.215 30

8 6 30 0.2 1.305 30 7.495

9 30 30 3.75 1.785 30 − 19.535

10 30 30 7.525 3.09 30 − 20.615

11 28.775 30 10.45 8.775 30 − 30

12 21.64 30 11.95 10.41 30 − 30

13 14.185 30 23.9 3.915 30 − 30

14 18.58 30 21.05 2.37 30 − 30

15 30 30 7.875 1.785 30 − 23.66

16 30 30 4.225 1.305 30 − 15.53

17 30 30 0.55 1.785 30 − 7.335

18 30 30 0 1.785 30 − 3.785

19 6 30 0 1.302 30 22.698

20 30 30 0 1.785 30 − 4.785

21 30 30 0 1.305 30 − 13.305

22 30 30 0 1.3005 30 − 20.305

23 6 30 0 0.915 − 1.915 30

24 6 30 0 0.615 − 10.615 30

Table 6.  Outcomes for pure economic scheduling (test system II).
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From the observations the QPSO techniques outperform when compared to other algorithms. The optimal 
cost obtained by implementing the QPSO technique is 158.87 €ct, while DE is found to be 174.2450 €ct. The 
significant improvement in cost reduction is around 9.67%, which is comparable to other algorithms like DE 
and TMDE approaches when solving the microgrid energy management problem. In this work, the problem 
is resolved by solely focusing on emissions as the primary objective, which is referred to as pure emission 
scheduling. In this case, the study reveals that the emission amounts to 97.6597 kg and incurs a cost of 1365.3095 
euros, which is significantly greater than the cost associated with pure economic scheduling. The sole purpose 
of this scenario is to minimize emissions without considering economic factors. In this scenario, the power 
generated by the MT is zero for every hour. This occurs due to the elevated emission coefficients, particularly 
for CO2, associated with MT. Consequently, to ensure minimal emissions, no power is sourced from MT. This 
rationale also applies to fuel cells. During the intervals of hours 1–5, 11–13, and 24, power extraction from 
the fuel cell is zero, again due to its high emission coefficients. As a result, energy is obtained from alternative 
sources. The convergence characteristics for this scenario are illustrated in Fig. 7.

The considered problem is solved by taking the economy and emissions into consideration concurrently in 
this third case study, which is a crucial and final case study. To put it another way, minimizing emissions and 
operating costs are equally important. Ecological constraints economic scheduling (ECES) is the name given to 
this effort. According to the obtained simulation results, the emission of 401.063 kg and an ideal operational cost 
of 174.1129 euros are found. The load requirement is satisfied every hour according to the necessary demand 
from the end users. During hours 1–4, there is no electricity drawn from microgrid elements. Although capable 
of generating power during these periods, neither MT nor FC are used due to higher emission coefficients and 
higher price bids. When compared to alternative power sources like batteries and the utility grid, the price bid 
for power from WT is also greater. Power is, therefore, taken from the utility grid and battery to meet the load 
requirement. For further hours, a similar conclusion might be made. During hours 18–24, for instance, very little 
power is taken from WT, and no power is drawn from the PV system due to the forecasted power output being 
zero. The suggested method, which is based on quantum theory, can yield better outcomes in the aspects of overall 
cost and emission. The corresponding convergence characteristics of the third case study are represented in 
Fig. 8 respectively. The overall obtained simulated results of three different case studies were tabulated in Table 7, 
respectively. The simulated results presented in Tables 3, 4, 5, 6 and 7 highlight the exceptional performance of 
the proposed quantum particle swarm optimization (QPSO) framework in optimizing microgrid operations. 
Specifically, QPSO consistently achieves superior results in terms of cost reduction and emission minimization 
compared to other optimization methods. For instance, the economic scheduling scenario demonstrates a 
significant reduction in operational costs, with QPSO achieving approximately 9.67% lower costs than traditional 
approaches, reflecting its efficiency in resource allocation. Additionally, the environmentally constrained 
economic scheduling (ECES) scenario showcases QPSO’s ability to balance economic and environmental 
objectives effectively, achieving a notable decrease in emissions while maintaining competitive operational 
costs. These results underscore QPSO’s robustness in addressing multi-objective optimization challenges. 
Furthermore, the algorithm demonstrates remarkable computational efficiency, completing optimization tasks 
in significantly less time compared to alternative methods, which enhances its practical applicability in real-time 

Fig. 6.  Convergence characteristics of QPSO on test system-II.
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energy management systems. By combining these insights, the results validate the transformative potential of 
QPSO in advancing sustainable and efficient microgrid operations.

Conclusion and future research directions
In this research work the primary objective is to investigate a conventional six-generator test system and a 
microgrid energy management framework incorporating renewable energy sources such as photovoltaics (PV), 

Fig. 8.  Convergence characteristics of QPSO on test case study 3.

 

Fig. 7.  Convergence characteristics of QPSO on test case study 2.
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wind turbines (WT), fuel cells (FC), and batteries. A novel quantum particle swarm optimization (QPSO) 
algorithm was proposed, leveraging quantum-inspired mechanisms to overcome limitations like premature 
convergence and solution stagnation commonly encountered in traditional methods. The results demonstrate 
the effectiveness of QPSO in achieving significant improvements in energy management outcomes. Specifically, 
the proposed approach achieved a 9.67% reduction in operational costs, lowering costs from €174.25 to €158.87 
in the economic scheduling scenario, while also reducing carbon emissions by 13.23%, from 592.13 to 513.70 kg 
of CO2 equivalent. In the environmentally constrained economic scheduling (ECES) scenario, the method 
balanced economic and environmental objectives, achieving operational costs of €174.11 and emissions of 
401.63 kg of CO2 equivalent. Compared to conventional optimization techniques such as differential evolution 
(DE) and TMDE, QPSO demonstrated superior performance in cost reduction, emission minimization, and 
computational efficiency. These results underscore the algorithm’s robustness and practicality in addressing the 
dual challenges of economic efficiency and environmental sustainability in microgrid energy management. Future 
research can focus on developing hybrid quantum-inspired optimization methods to enhance the efficiency and 
scalability of microgrid energy management. Integrating advanced energy resources like hydrogen fuel cells and 
next-generation storage technologies can improve resilience, especially in high renewable energy penetration 
scenarios. Real-world implementation and testing of QPSO systems are essential to validate performance and 
address deployment challenges. Expanding the framework to interconnected multi-microgrid systems can 
enable scalable and collaborative resource management. Incorporating real-time forecasting tools for renewable 
energy uncertainties and aligning QPSO solutions with dynamic electricity markets and policies will further 
improve reliability and adoption in sustainable energy systems. QPSO is scalable for interconnected microgrids, 
optimizing energy flows and storage across diverse distributed resources. Additionally, its compatibility with 
emerging technologies, such as bidirectional electric vehicle charging and advanced hybrid storage systems, 
highlights its relevance in managing renewable energy intermittency. With the capability to leverage real-time 
data and predictive analytics, QPSO provides dynamic, resilient, and sustainable solutions for modern energy 
systems.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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