Table 1 Comprehensive literature review.
From: The key challenges and best alternatives to environmental sustainability: a comprehensive study
Author | Regions | Test | Outcome |
---|---|---|---|
Linkage of UB with emissions | |||
Khan et al. 25 | Industrialized economies | BPC | UB \(\rightleftharpoons\) CO2 emissions |
Prastiyo et al. 26 | Indonesia | ARDL | UB \(\uparrow\) CO2 emissions CO2 emissions \(\to\) UB |
Sun & Huang 70 | 30 China’s provinces | SFM | UB \(\bigcap\) CO2 emissions |
Shah et al. 11 | Pakistan | VECM | UB \(\bigcup\) CO2 emissions |
Wang et al. 7 | OECD economies | D-ARDL | UB \(\bigcap\) CO2 emissions |
Khan & Su 27 | Newly industrialized economies | PTR | UB \(\uparrow\) CO2 emissions |
Sun et al. 28 | MENA economies | CUP-FM & CUP-BC | UB \(\uparrow\) CO2 emissions |
Tan et al. 29 | China | TM | UB \(\uparrow\) CO2 emissions |
Xie et al. 30 | 42 BRI economies | D-KSE | UB \(\uparrow\) CO2 emissions |
Chen et al. 71 | 125 economies | Spatial Model | UB \(\uparrow\) CO2 emissions |
Shah et al. 72 | 15 natural gas economies | AMG & CS-ARL | UB \(\uparrow\) CO2 emissions |
Jianmin et al. 73 | 29 provincial regions | FE | UB \(\downarrow\) CO2 performance |
Qi et al. 74 | China | SDA model | UB \(\downarrow\) CO2 emissions |
Linkage of RE with emissions | |||
Nguyen & Kakinaka 35 | 107 economies | FMOLS & DOLS | RE \(\uparrow \downarrow \downarrow\) CO2 emissions in lower, middle and higher-income countries |
Saidi & Omri 36 | 15 energy transition | FMOLS & VECM | RE \(\downarrow\) CO2 emissions |
Akram et al. 37 | 66 developing nations | OLS and fixed effect panel quantile regression | RE \(\downarrow\) CO2 emissions |
Doğan et al. 38 | 28 OECD economies | FMOLS & DOLS | RE \(\downarrow\) CO2 emissions |
Vo et al. 39 | CPTPP countries | FMOLS & DOLS | RE \(\downarrow\) CO2 emissions |
Adekoya et al. 40 | 17 economies | FE | Ambiguous outcomes |
Zheng et al. 41 | China | PA | RE \(\downarrow\) CO2 emissions |
Yuping et al. 75 | Argentina | ARDL | RE \(\downarrow\) CO2 emissions |
Ehigiamusoe & Dogan 42 | Low-income countries | FMOLS, PMG and AMG | RE \(\uparrow\) CO2 emissions |
Shah et al. 43 | 8 Asian tourist economies | CS-ARDL | RE \(\downarrow\) CO2 emissions |
Akadiri & Adebayo 44 | India | NARDL | RE \(\downarrow\) CO2 emissions |
Chen et al. 45 | China’s economy | ARIMA | RE \(\downarrow\) CO2 emissions |
Li et al. 46 | BRICS | AMG & CCE-MG | RE \(\downarrow\) CO2 emissions |
Naqvi et al. 76 | 87 middle-income countries | AMG | RE \(\downarrow\) CO2 emissions |
Rahman et al. 77 | Fossil fuel consuming economies | IFE | RE \(\downarrow\) CO2 emissions |
Balsalobre-Lorente et al. 78 | 32 OECD economies | Q-GMM | RE \(\downarrow\) CO2 emissions |
Linkage of Income with Emissions | |||
Altıntaş & Kassouri 47 | 14 European economies | IFE | EKC validated |
Leal & Marques 79 | 20 OECD economies | DKSE | EKC validated |
Villanthenkodath et al. 48 | India | ARDL | EKC validated |
Tenaw & Beyene 80 | SSA economies | CCE-MG & PARDL | EKC validated |
Al-Mulali et al. 81 | 170 economies | Sys. GMM | EKC validated |
Ghana | CCR, DOLS, & FMOLS | EKC validated | |
Wang et al. 12 | 56 countries | MAG & PTM | EKC validated |
Long et al. 51 | China | B-ARDL | EKC validated |
Wang et al. 82 | 147 countries | Threshold Effect | EKC validated |
Li et al. 83 | 38 countries | PTM & PQR | EKC validated |
Gupta et al. 84 | 43 economies | Sys. & GMM Estimators | EKC validated |
Naqvi et al. 52 | Pakistan | Stochastic Model | EKC validated |
Linkage of NRs with emissions | |||
Kwakwa et al. 55 | Ghana | ARDL | NRs \(\uparrow\) CO2 emissions |
Wang et al. 56 | G7 | CS-ARDL | NRs \(\uparrow\) CO2 emissions |
Balsalobre-Lorente et al. 57 | EU-5 economies | CS-ARDL | NRs \(\bigcap\) CO2 emissions |
Nwani & Adams 85 | 93 economies | AMG | NRs \(\uparrow\) P&C emissions |
Li et al. 58 | SEA region | CS-ARDL | NRs \(\uparrow\) CO2 emissions |
Li et al. 86 | China | RE, FE, & FGLS | Cut in NRs \(\downarrow\) CO2 emissions |
Bosah et al. 87 | 159 economies | CS-ARDL | NRs \(\uparrow\) CO2 emissions |
Shang et al. 59 | 10 polluted economies | Q-GMM estimator | NRs \(\uparrow\) CO2 emissions |
Yu 88 | China | ARDL | NRs \(\uparrow\) CO2 emissions |
Linkage of ICT with emissions | |||
Nguyen et al. 89 | Selected G-20 economies | QR, FE, & FMOLS | Mixed outcomes |
Avom et al. 63 | 21 SSA economies | FGLS | ICT \(\uparrow\) CO2 emissions |
Usman et al. 90 | 9 Asian economies | NARDL | Mixed outcomes |
Charfeddine & Kahia 64 | MENA economies | P-VAR | ICT \(\uparrow\) CO2 emissions |
Zhong et al. 65 | Chinese provinces | PTM | ICT \(\uparrow\) CO2 emissions |
Jin & Yu 91 | China | LASSO Method | ICT \(\uparrow\) CO2 emissions |
Li et al. 92 | 91 countries | Sys. GMM | ICT \(\bigcap\) CO2 emissions |
Su et al. 60 | Chinese cities | Spatial Durbin Model | ICT \(\downarrow\) CO2 emissions |
Zhang et al. 62 | China | Two-Way FE | ICT \(\downarrow\) CO2 emissions |
Irfan et al. 61 | BRICS | GMM, AMG, & CCE-MG | ICT \(\downarrow\) CO2 emissions |
Linkage of circular economy with emissions | |||
Gallego-Schmid et al. 93 | Review article | N/A | CE \(\downarrow\) CO2 emissions |
Magazzino et al. 66 | Denmark economy | Causality test | CE \(\downarrow\) CO2 emissions |
Mawutor et al. 67 | Ghana | ARDL | CE \(\uparrow\) CO2 emissions |
Ren et al. 68 | Chinese cities | DID model | Mixed outcomes |
Xiao 69 | China | FAPH model | CE \(\downarrow\) CO2 emissions |