Table 7 Quantitative values of performance measures such as MSE, MAE, MAPe, MeAE, MPD, and \(R^{2}\) of several competing ML Regression Models viz. Linear, Bayes Ridge, Support Vector, Decision Tree, Random Forest, Lars, LassoCV, LassoLarsCV, Multi Layer Perceptron, Bagging, and Adaboost.
From: Enhanced slope stability prediction using ensemble machine learning techniques
Regression models | Performance measures | ||||||
---|---|---|---|---|---|---|---|
MSE | MAE | MAPE | MeAE | MPD | \(R^{2}\) | ||
All features [train:test=70:30] | Linear regression | 0.1834 | 0.3266 | 0.2898 | 0.2674 | 0.1414 | 0.7482 |
Bayes ridge regression | 0.1517 | 0.2987 | 0.3266 | 0.2284 | 0.1167 | 0.7565 | |
Elastic net regression | 0.5583 | 0.5457 | 0.5718 | 0.3812 | 0.3333 | 0.1863 | |
Support vector regression | 0.2019 | 0.2126 | 0.1339 | 0.1227 | 0.0710 | 0.7737 | |
Decision tree regression | 0.2796 | 0.3374 | 0.2776 | 0.1850 | 0.1459 | 0.7115 | |
Random forest regression | 0.2538 | 0.3266 | 0.2808 | 0.1981 | 0.1212 | 0.8032 | |
Lars regression | 0.1918 | 0.3338 | 0.2543 | 0.2490 | 0.1224 | 0.7943 | |
LassoCV regression | 0.4136 | 0.4489 | 0.3067 | 0.2853 | 0.1810 | 0.7004 | |
LassoLarsCV regression | 0.1781 | 0.3070 | 0.2536 | 0.2508 | 0.0998 | 0.8412 | |
MLP regression | 0.1629 | 0.2840 | 0.2187 | 0.1852 | 0.0814 | 0.8364 | |
Bagging regression | 0.0782 | 0.2060 | 0.1885 | 0.1395 | 0.0580 | 0.8450 | |
Adaboost regression | 0.2824 | 0.3914 | 0.3385 | 0.2892 | 0.1549 | 0.7461 |