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This paper addresses issues of inadequate accuracy and inconsistency between global search efficacy 
and local development capability in the black-winged kite algorithm for practical problem-solving 
by proposing a black-winged kite optimization algorithm that integrates the Osprey optimization 
algorithm and Crossbar enhancement (DKCBKA). Firstly, the adaptive index factor and the fusion 
Osprey Optimization Algorithm approach are incorporated to enhance the algorithm’s convergence 
rate, and the probability distribution factor is updated throughout the attack stage. Second, the 
stochastic difference variant method is implemented to prevent the method from entering the local 
optima. Lastly, the longitudinal and transversal crossover technique is incorporated to enhance the 
algorithm’s convergence accuracy and to dynamically alter the population’s global and individual 
optimal solutions. Fifteen benchmark functions are chosen to test the effectiveness of the enhanced 
algorithm and to compare the optimization efficiency of each technique. Simulation experiments are 
performed on the CEC2017 and CEC2019 test sets, revealing that the DKCBKA algorithm surpasses 
five standard swarm intelligence optimization methods and six improved optimization algorithms 
regarding solution accuracy and convergence speed. The superiority in meeting real optimization 
challenges is further demonstrated by the optimization of three real engineering optimization 
problems by DKCBKA, with optimization capabilities 18.222%, 99.885% and 0.561% higher than BKA, 
respectively.
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Optimization challenges are becoming significant in disciplines such as engineering, economics, bioinformatics, 
and artificial intelligence, and others as human civilization, science, and technology improve. Historically, 
optimization approaches have been widely utilized across numerous fields, including medical problems1,2, 
engineering optimization3, machine learning4, image processing5, offshore wind generation6, and many more. 
However, many real-world issues are highly nonlinear, multimodal, and unpredictable7, making it challenging 
to solve them using classic optimization strategies.

Meta-heuristic algorithms are categorized into four types according to their sources of motivation: group 
intelligence algorithms, evolution-based algorithms, human-based algorithms, and physics and chemistry-based 
algorithms. Optimization algorithms employing population intelligence are utilized to emulate the behavioral 
traits of biological populations to get the global optimal solution. In accordance with this algorithm, every group 
is a biological group that can complete tasks that are impossible for individuals to do due to the synergistic 
behavior of its members. Its features include excellent robustness, ease of implementation, and a simple 
structure8–10. For example, Spider-Tailed Horned Viper Optimization(STHVO)11, Orangutan Optimization 
Algorithm (OOA)12, Pied Kingfisher Optimizer (PKO)13, Fossa Optimization Algorithm (FOA)14, Secretary 
Bird optimization algorithm (SBOA)15, Addax Optimization Algorithm (AOA)16.

The study of metaheuristic algorithms is an area that is always changing to meet the demands of practical 
applications and ever-morE−complex global optimization issues. The principle of “there is no free lunch” 
posits that not one algorithm may achieve optimal performance across all optimization and search tasks. Thus, 
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many researchers are now concentrating on improving the approach of metaheuristic algorithms. To address 
the inadequate optimization efficacy of the conventional Beluga Whale Optimization Algorithm in complex 
multidimensional issues, a mixed multi-strategy improved Beluga Whale Optimization Algorithm was developed 
in the literature17. Similarly, literatur18 presented a mixed multi-strategy enhanced Sparrow Search Algorithm 
(MISSA) to resolve the traveling salesman problem, addressing deficiencies in its fundamental Sparrow Search 
Algorithm (SSA), such as delayed convergence, local optimum, and convergence speed, among other issues. 
literature19 proposed a hybrid cuckoo search algorithm (LHCS) utilizing a linearly declining population to 
enhance the system’s local search capabilities and expedite convergence. A novel sparrow search method (IBSSA), 
founded on beetle antenna searches, was proposed in the literature20 to enhance the efficacy for the sparrow 
search algorithm in tackling intricate optimization issues. In order to solve problems like reduced population 
diversity and To address issues such as diminished varied populations and the inclination to converge towards 
local optima towards the conclusion of algorithm iterations, a multi-strategy amalgamation of the enhanced 
Osprey Optimization Algorithm (IOOA) was developed in the literature21. To rectify the algorithm’s flaws, 
including its constrained accuracy, slow convergence rate, and susceptibility to local optima, and performance 
that depends on parameter selection during the optimization process, literature22 developed an enhanced seagull 
optimization method with multi-strategy merging.

In practical engineering, swarm intelligent optimization algorithms have been used. For example, Jin et al.23 
combined the Boids model inspired by the bird swarm algorithm with deep reinforcement learning in the UAV 
pursuit task. Zhu et al.24 proposed an IM algorithm based on Phase Evaluation Enhancement (PHEE) for social 
network analysis. Sun et al.25 employed a BFC deployment optimization algorithm that is based on breadth-first 
search to determine the shortest path between the source node and the destination node. They subsequently 
verified that the algorithm is optimized in terms of end-to-end latency and bandwidth resource consumption.

Asha et al.26 modified the parameters of the recurrent neural network (RNN) utilizing the enhanced Honey 
Badger Algorithm (SA-HBA) to forecast the optimal efficacy of the RNN. And Gai et al.27 developed a modified 
YOLO-V4 deep learning method for the detection of cherry fruits Saravanan et al.28 suggested an improved 
technique for scheduling efficiency to resolve the job scheduling issue in cloud computing.

The main structure of this paper is as follows: Chapter 2 is a literature review, Chapter 3 introduces the 
basic BKA optimization process, and chapter 4 introduces the enhanced DKCBKA method. As part of the 
improvement strategy, 1) update the probability factor Ps, introduce dynamic exponential factor, and integrate 
Osprey optimization algorithm (OOA)29 to improve the attack behavior; 2) Stochastic differential variance 
strategy is introduced in the migration stage to improve the overall optimization ability; 3) The accuracy and 
convergence speed of the algorithm are improved by using crossbar method. Horizontal crossing improves the 
global search ability of the method, while vertical crossing enables the system to escape local optimization. 
In Chapter 5, the optimization performance of several improvement strategies is evaluated and compared 
using a total of 15 benchmark functions. The test assesses performance metrics including ideal values, mean 
values, standard deviations, and convergence curves. In Chapter 6, using the CEC 2017 test function set with 
19 functions and the CEC 2019 test function set with 10 functions, the effectiveness of the DKCBKA method is 
evaluated by comparing it with 6 enhancement algorithms and 5 swarm intelligence optimization algorithms. 
In the engineering application part of Chapter 7, three traditional engineering situations are used to evaluate 
the feasibility of the proposed algorithm DKCBKA in the actual engineering environment. Chapter 8 is the 
discussion and chapter 9 is the conclusion.

Literature review
Overview of existing research
The Black-winged Kite Algorithm (BKA)30, a novel swarm intelligence optimization technique, was initially 
introduced by Jun Wang et al. and drew inspiration from the natural behaviors and hunting strategies of black-
winged kite, and is characterized by strong adaptability, few adjustable parameters, and high convergence 
accuracy. Despite combining the leader approach and the Cauchy variation method, BKA performs well in 
determining the best function optimization when compared to other intelligent optimization algorithms31. BKA 
still has a lot of flaws, though. First, there are issues like low population variety, a lackluster ability to search 
globally, and a tendency to rely too much on local optimization in the end, among other things.

To address the aforementioned issues, Zhang et al.32 suggested a method that integrates a population initiated 
by logistic chaos map with the osprey optimization algorithm, which altered the initialized population’s random 
distribution, enhanced population diversity, and sped up the program’s rate of convergence; Xue et al.33 integrated 
the BKA approach with the artificial rabbit optimization algorithm to maximize the advantages of the two 
algorithms for collaborative search. They utilized the master–slave model technique and incorporated effective 
point sets to initialize the population, hence enhancing the algorithm’s search efficiency and optimizing its 
performance; Fu et al.34 introduced an improved black-winged kite optimization method (IBKA) by substituting 
the Gompertz growth model for the attack phase parameter n. This algorithm achieves a balanced approach 
between local and global search, while exhibiting a reduced rate of step decay; Mu et al.35 used enhanced 
Circle mapping, fused hierarchical reverse learning, and introduced the Nelder—Mead method to improve 
the BKA, which improved the optimization performance of the original algorithm; Zhao et al.36 proposed an 
improved black-winged kite algorithm based on chaotic mapping and adversarial learning, which improves the 
optimization speed and accuracy of the original algorithm.

This work suggests a black-winged kite approach that integrates multi-strategy improvement (DKCBKA) to 
address these drawbacks of BKA.
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A comparative analysis of this study and recent developments
In this section, we compare and analyze the algorithm DKCBKA proposed in this paper with recent relevant 
studies, including IM algorithm based on phase evaluation enhancement (PHEE), DRL method of pursuit based 
on Boids model (BOIDS-PE), Improved SADEKTS algorithm(ISADEKTS)37, optimization algorithm based on 
breadth-first search (SFCDO) and an improved heuristic algorithm combining ClarkE−Wright saving algorithm 
and adaptive large neighborhood search, and introducing Q learning to adjust operator weights(IHA)38. The 
comparison dimensions are algorithm improvement strategies, application problems, advantages and limitations 
respectively, and the results are shown in Table 1.

Black-winged kite optimization algorithm
Black-winged kites nest in wide fields with trees and bushes, farmland, sparse woodlands, and grasslands. 
They eat field mice, insects, small birds, rabbits, and reptiles. Their hunting style consists primarily of perching 
on telephone poles and tall trees, waiting for passing birds and insects, and then diving down to catch them. 
Another strategy is to silently circle, glide, and monitor the ground for hours in the skies before diving down to 
catch their prey when it appears. Black-winged kites migrate to their breeding areas in the spring (April–May) 
and leave in the autumn (October–November). An algorithm model inspired by black-winged kites’ hunting 
abilities and migrating behaviors has been developed.

Initialization stage
The Black-winged Kite algorithm, like other methods, uses a random initialization mechanism.

	 Xi = BKlb + rand (BKub − BKlb) � (1)

where rand represents an arbitrary value within the range of [0, 1], i is an integer within the range of 1 to N, Xi 
is the starting black-winged kite set, and BKlb and BKub denote the lower and higher limits of the i-th black-
winged kite in the j-th dimension, respectively.

Attacking behavior
Birds typically act aggressively because they need to defend their area and for self-defense. They might squawk, 
peck, and flap their wings in an aggressive manner when they feel threatened. During flight, black-winged kites 
modify the angle of their wings and tails to suit the speed of the wind. They then hover silently to examine 
their prey before swiftly diving and attacking. The black-winged kite’s assault behavior can be mathematically 
modelled as follows:

When p < r, at a great pace, the black-winged kite charges at its target, and the position update equation is

	 Xt+1 = Xt + n (1 + sin (r)) × Xt � (2)

When p > r, the most recent formula for the black-winged kite’s attack state position when it is hovering in midair 
is

	 Xt+1 = Xt + n (2r − 1) × Xt � (3)

	 n = 0.05 × e−2×( t
T )2

� (4)

Contrast 
dimension DKCBKA PHEE Boids-PE ISADEKTS SFCDO IHA

Improvement 
technique

Integration of Osprey 
optimization algorithm, 
random difference variation 
and crossbar

Evolutionary algorithm 
based on random 
range partitioning, fast 
convergence strategy

Combine the advantages 
of bio-inspired 
algorithms and swarm 
intelligence of deep 
reinforcement learning

Knowledge 
transfer 
technique

Service function chain 
deployment optimization 
algorithm based on breadth-first 
search

ClarkE−Wright 
saving algorithm and 
Q Learning dynamic 
adjustment

Application 
problem

High dimensional nonlinear 
constraints Social network Drone tracking problem Inflatable wing 

problem

Optimization of service function 
deployment with low latency 
and high resource efficiency in 
network function virtualization

Dynamic pickup and 
delivery problem

Advantage

The convergence speed is 
fast and the convergence 
precision is high when 
dealing with practical 
problems

The convergence speed 
is fast and the ability to 
jump out of local optimal 
is enhanced

Improvement of swarm 
intelligence algorithm 
combined with deep 
reinforcement learning

Improve 
optimization 
efficiency 
and design 
accuracy

High resource efficiency, network 
load balancing, improve network 
reliability

The improved 
algorithm has efficient 
initial solution and 
great potential for 
practical application

Limitation
The computational cost 
increases slightly in higher 
dimensional problems

Overreliance on the 
neighbor structure 
of a vertex in social 
networking applications

Computation costs 
are high in high 
dimensional problems

Parameter 
sensitivity 
analysis was 
not performed

The algorithm complexity 
increases significantly as the 
network scale increases

Model extensibility 
limitation

Table 1.  Comparison of DKCBKA with recent studies.

 

Scientific Reports |         (2025) 15:6737 3| https://doi.org/10.1038/s41598-025-90660-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where the locations of the black-winged kite in the t-th and (t + 1)-th iterations are indicated by Xt and Xt+1, 
respectively, p is an integer valued at 0.9, and r is a stochastic constant inside the interval [0, 1]. T represents the 
maximum amount of iterations, whereas t is the amount of iterations that have been completed to date.

Migration behavior
Bird migration represents an instinctual behavior in which birds navigate according to environmental cues. 
The migration behavior of BKA integrates Cauchy’s mutation with the leader’s strategy: The leader relinquishes 
their position and integrates into the migrating population if the current group’s fitness value is inferior to that 
of a random population. The current population will maintain its leadership and guidance until it reaches its 
objective, provided its fitness value exceeds that of the random population. The following mathematical model 
illustrates the BKA’s dynamic migration conduct:

	
Xt+1 =

{
Xt + C (0,1) × (Xt − Lt) Fi < Fri

Xt + C (0,1) × (Lt − m × Xt) else � (5)

	 m = 2 × sin
(
r + 2

π

)
� (6)

Lt symbolizes the commander of the black-winged kite during the t-th iteration to date. Xt and Xt+1 reflect the 
location of the black-winged kite during the t-th and (t + 1)-th iterations, respectively. Fi denotes the fitness 
score of an individual in the t-th iteration. Fri reflects the fitness value of a black-winged kite during the t-th 
iteration. C(0, 1) symbolizes the Cauchy mutation.

Two parameters define the continuous probability distribution known as the onE−dimensional Cauchy 
distribution. The density function of probability of the a onE−dimensional Cauchy distribution is shown by the 
given formula.

	 f (x, δ, µ) = 1
π

δ
δ2+(x−µ)2 , −∞ < x < +∞ � (7)

The probability distribution function acquires standard form when δ = 1 and µ equals 0. The following are the 
formulas that follow:

	 f (x, δ, µ) = 1
π

δ
x2+1 , −∞ < x < +∞ � (8)

Enhanced optimization algorithm for the black-winged kite
The basic black-winged kite optimization algorithm exhibits limitations in its attack phase, where the dynamic 
selection strategy does not fully enhance adaptive capability. Furthermore, the algorithm’s global search ability is 
insufficient, resulting in a propensity to converge on local optima. Additionally, the position update formula for 
alternative members of the population generates new candidates in proximity to the current individual and the 
best individual, potentially diminishing population diversity and contributing to local optima entrapment and 
reduced convergence efficiency. Building on previous research, this work suggests a fusion multi-strategy black-
winged kite optimization methods to improve the analytical algorithm’s optimization efficiency. The particular 
strategies are delineated in the following order:

Dynamic exponential factoring and fusion osprey algorithm strategy
The black-winged kite optimization technique employs a dynamic selection strategy for global search during the 
attack phase; however, it encounters difficulties in properly balancing worldwide search capabilities with local 
exploitation, rendering it susceptible to local optimization. To augment the method’s improvement efficacy for 
seeking, this work integrates the Osprey algorithm’s method for updating the black-winged kite’s place with a 
dynamic index factor and selection strategy.

The nonlinear probability element ω is introduced to modify the original linear segmentation factor ω, as 
expressed below:

	 ω = −e(1− t
T )3

� (9)

The dynamic exponential factor is crucial in optimizing the objective function, as an appropriate dynamic 
factor can enhance algorithm convergence and effectively balance domestic and international search. In the 
initial phase of iteration, a dynamic exponential factor is incorporated into the positional iteration formula to 
improve the targeted search capabilities of the method. This adjustment facilitates effective exploration of the 
ideal outcome, compensates for the initial limitations in local optima, and improves overall search efficacy in 
subsequent stages. The formula for the dynamic exponential factor is presented below:

	
α =

(
e

(
1−( t

T )2
))2kt

� (10)

If k represents a random variable in an exponential distribution, t represents the current number of iterations, 
and t represents the maximum number of iterations.

Scientific Reports |         (2025) 15:6737 4| https://doi.org/10.1038/s41598-025-90660-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


During the attack phase, the exploration strategy of the osprey optimization method can expand the target 
region, inhibit the technique from converging on an individual optimum, and augment the global search 
capabilities of the BKA.

	 Xp1
i,j = Xi,j + ri,j · (SFi,j − Ii,j · Xi,j) � (11)

where SFi,j  is the fish chosen from i-th osprey during the j-th dimension, ri,j  is an arbitrary value in [0, 1], Ii,j  
is a random value in the collection {1, 2}, and Xp1

i,j  is the new position of the i-th osprey in the j-th dimension.

A dynamic exponential factor is incorporated into the assault phase of the black-winged kite, which enhances 
the swarm intelligence algorithm’s robustness, global search capability, and convergence speed by dynamically 
modifying the parameters to prevent premature convergence. Meanwhile, fusing the osprey optimization 
algorithm in the attack phase improves the fusion of the two swarm intelligence algorithms, which can combine 
the advantages of each and make up for the shortcomings of a single algorithm, thus enhancing the overall 
effectiveness. The Black-winged Kite algorithm’s precision in searching in the local area can be enhanced by the 
fusion, which also concentrates on fine search during the attack phase of the osprey optimization algorithm, 
thereby facilitating the discovery of a superior solution.

The subsequent formula delineates the position upgrade for the enhanced algorithm during the attack phase.

	
Xt+1 =

{
α × Xt + n (1 + sin (r)) × Xt ω < r
Xt + ri,j · (SFi,j − Ii,j · Xt) else � (12)

Differential variation randomized
An examination of the relocation process of the black-winged kite reveals that the positional adjustment of 
individuals within the population occurs in proximity to the current individual Xt and the optimal individual 
Lt, indicating that other individuals are directed to migrate towards the optimal area represented by Lt. When 
Lt represents a locally optimal solution, the population will likely converge around this solution as iterations 
advance, resulting in diminished population variety, which may induce untimely convergence and decrease 
the precision with the algorithm’s convergence. To ensure convergence, the population intelligence algorithm 
implements an optimal preservation strategy following each iteration. To address this challenge, it is customary 
to implement mutation operations to enhance population variety and prevent convergence to local optima. 
Literature39 introduced an enhanced whale optimization algorithm utilizing stochastic differential mutation, 
drawing inspiration from the differential evolutionary algorithm.

This idea is adopted in this paper by incorporating a stochastic differential mutation strategy during the 
migration phase. This technique employs the present individual, the most effective private, and randomly selected 
individuals from the community to generate a new individual. By incorporating this strategy into the migration 
phase of the black-winged kite algorithm, the search diversity can be enhanced, the global search capability can 
be enhanced, and the algorithm can be prevented from entering the local optimal state, as illustrated by the 
subsequent expression:

	 Xt+1 = r × (Lt − Xt) + r ×
(
X ′

p (t) − Xt

)
� (13)

where Xt+1 represents a novel entity acquired through stochastic differential evolution, and r is a variable 
constrained inside the interval of 0 to 1. Lt is the best person’s present location. X′

p (t) designates the position of 
a randomly chosen member from a cohort.

Vertical and horizontal crossover strategy
The black-winged kites in the population exhibit a tendency to congregate around optimal individuals as the 
amount of repetitions grows. The method’s ability to find the best solution is hampered by this trend, which 
gradually reduces population variety. This paper presents a crossover strategy that incorporates both vertical 
and horizontal elements, specifically detailing horizontal and vertical crossover methods. In the literature40,41, 
the vertical and horizontal crossover technique serves to enhance the method’s convergence efficiency and 
international inquiry capabilities while reducing local optimality. The horizontal crossover operation facilitates 
an expansion of the search range and diminishes search blind spots, thereby further improving the algorithm’s 
international inquiry ability. Premature convergence in many population-based intelligent search algorithms 
frequently results from the stagnation of certain dimensions within the population. By making it easier to activate 
these stagnant dimensions, vertical crossover enables the algorithm to circumvent local optimal solutions.

Crossover strategy can provide a better balance between exploration and development of algorithms, and 
effectively improve the convergence accuracy. Applying it after the migration phase can help the algorithm 
explore new regions while also digging deeper into areas of potential that have been found. In addition, the 
crossover operation effectively enhances population diversity. The vertical and horizontal crossover strategy 
incorporates a competitive mechanism that facilitates population updates by evaluating the relative strengths 
and weaknesses of offspring compared to their parents. Sequential execution of horizontal and vertical crossover 
improves the algorithm’s convergence speed and solution correctness. A quick explanation of these two crossover 
processes is given below.
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A transverse crossover is an arithmetic crossover that involves two separate persons across all dimensions. 
Members of the population are originally partnered randomly, followed by the execution of a transverse crossover 
between the two paired individuals, as represented by the following equation.

	 Xhc
i,d = a1 ∗ X (i, O) + (1 − a1) ∗ X (j, O) + c1 ∗ (X (i, O) − X (j, O)) � (14)

	 Xhc
j,d = a2 ∗ X (j, O) + (1 − a2) ∗ X (i, O) + c2 ∗ (X (j, O) − X (i, O)) � (15)

where a1, a2 are [0,1] random numbers, c1, c2 are [− 1,1] random numbers, X (i, O) and X (j, O) are the parent 
individuals after pairing of X (i) and X (j) in the d-dimension, and Xhc

i,d and Xhc
j,d stand for the d-dimensional 

X (i, O) and X (j, O) produced by lateral crossover, respectively. offspring. Individuals with lower objective 
function values are kept after the produced children are compared to their parents.

A longitudinal crossover refers to a crossover variant involving all individuals across two distinct dimensions. 
The BKA algorithm may demonstrate a propensity to converge to a local optimal value in subsequent iterations, 
typically resulting from the formation of a local optimum in a specific dimension during the update process. Each 
individual executes a longitudinal crossover to modify a single dimension while maintaining the integrity of the 
other dimensions. This approach allows the stagnant dimension to escape a local optimum without compromising 
the potential of another dimension that may also represent a local optimum. Two distinct dimensions, d1 and d2, 
are randomly chosen for longitudinal crossover to produce offspring using the subsequent formula:

	 Xvc
i,D1 = b ∗ X (i, D1) + (1 − b) ∗ X (j, D2) � (16)

where b is a stochastic variable inside the interval [0,1] and Xvc
i,D1  is the parent generating offspring by 

longitudinal crossover in D1 and D2 dimensions. Individuals exhibiting lower objective function values are 
retained following the comparison of the offspring with their progenitors.

DKCBKA implementation procedure and pseudo-code
The pseudo-code and complete implementation procedure of DKCBKA are detailed below, and Fig. 1 illustrates 
the algorithm’s flowchart.

Step 1 Initialize the location of individual black-winged kites, within the search range, randomly generate an 
N × D dimensional matrix to store the place information of the population; set the algorithm related parameters, 
assigning values to the population size N, the maximum iterations T, the dimensionality D, and the population 
search boundaries lb, ub, and so on.

Step 2 Compute and order the fitness Xt of every individual within the population. and record the current 
best fitness value noted as Lt.

Step 3 update the parameters ω and α according to Eqs. (9) and (10).
When ω<rand, a dynamic exponential factor is introduced to update the black-winged kite position 

throughout the attack stage according to the improved position update formula (12).
When ω>rand, the position update formula (12) of the fundamental osprey optimization algorithm is used 

to revise the location of the black-winged kite; the fitness value of the black-winged kite is computed, and a 
determination is made regarding the revision of the desired position and target fitness score.

Step 4 Update the black-winged kite migration stage position in accordance with the judgment condition of 
Eq. (5).

Step 5 Update the black-winged kite position in accordance with the random difference variant of Eq. (13); 
calculate the black-winged kite fitness value and determine whether to update the target position and target 
fitness value.

Step 6 Select random positional crossover mutations to update black-winged kite positions according to the 
longitudinal crossover Eqs. (14)–(16).

Step 7 Ascertain the necessity of updating the optimal position by calculating the fitness score.

Step 8 Evaluate whether the algorithm satisfies the termination criterion; if it does, terminate the main 
iteration and display the target place and target value; if not, back to step 3.
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Fig. 1.  DKCBKA flow chart.
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Algorithm 1.  Improved the pseudocode of black-winged kite algorithm

Analysis of the DKCBKA algorithm’s time complexity
This paper examines the temporal complexity of the DKCBKA algorithm. Population initialization, location 
updates, fitness assessment during iterations, and vertical and horizontal crossover operations are the main parts 
for the method. The initialization process exhibits a temporal challenge of O(N × D), with N representing the 
group’s size and D denoting the problem’s dimension. In each iteration, the time complexity for computing the 
fitness values within the population is O(N × D). The dynamic exponential factor in the attack strategy is enhanced 
based on the original linear factor. The original attack phase formula is replaced by the Osprey optimization 
algorithm’s global search technique. Both modifications maintain the algorithm’s temporal challenge at O(N × D). 
Additionally, the temporal challenge of the stochastic difference variant during the migration phase is O(N × D). 
The longitudinal and transversal crossover operation is segmented into two components, horizontal and vertical, 
with respective time complexities of O(N/2 × D) and O(N × D). The overall temporal challenge for each iteration 
is O(2.5 × N × D). The algorithm executes T iterations, resulting in a temporal challenge of O(2.5 × T × N × D). The 
simplified time challenge is typically expressed as O(T × N × D),disregarding the constant factor. The DKCBKA 
algorithm described in this study has a time complexity that is comparable to the BKA algorithm.

Algorithm abbreviation
The acronyms for each method and comparison algorithm used in this study are displayed in Table 2.

Analysis of experimental simulation results
Experimental environment
The computer configuration employed for the simulation tests in this study is an Intel(R) Core(TM) i5-10210U 
processor operating at 1.60 GHz, with 12.0 GB of RAM, running the Windows 11 operating system, and utilizing 
the Matlab2020(b) computational environment.
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Introduction to test functions
This study evaluates the algorithm’s optimization capabilities and efficacy by conducting simulated tests that 
employ 15 established benchmark test functions. The standard test functions’ names, dimensions, value ranges, 
and theoretically ideal values are presented in “Supplementary information”. The singlE−peak evaluation 
functions F1–F7 assess the algorithm’s precision and convergence rate. The multi-peak evaluation functions 
F8–F13 are designed to evaluate the algorithm’s global search capability. The composite evaluation functions 
F14 and F15, with a singular global optimum and several local optima, the assessment of the algorithm’s stability 
and local development capabilities is conducted. N = 50 is the population size, T = 1000 is the maximum amount 
of iterations, the dimension is D = 30, and 30 iterations are carried out to determine the ideal value, standard 
deviation, and mean for comparison analysis.

Comparison of optimization performance of each improvement strategy
Three improvement strategies—BKA (DBKA) with the addition of dynamic exponential factor and fusion 
of osprey algorithm strategy, BKA (KBKA) with the addition of stochastic differential variance strategy, and 
BKA (CBKA) with the addition of longitudinal and transversal crossover strategy—are employed in this paper 
to confirm the accuracy and efficacy of the algorithms. BKA, DBKA, KBKA, CBKA, and DKCBKA were 
evaluated using 15 benchmark functions exhibiting various optimization characteristics. To assess how well the 
aforementioned algorithms find the best solution, the population size is set at N = 50, the maximum iteration at 
T = 1000, the dimensionality of a search space is D = 30. The experiment is conducted independently 30 times, 
with results presented as optimal value, mean, and standard deviation.

The ideal value, the average, and deviation from the mean of DKCBKA at 30 dimensions are substantially 
superior to those of BKA, according to Table 3. DKCBKA demonstrates convergence to the ideal value in theory 
in both simple single−peak functions F1–F6 and multiple−peak functions F9 and F11. The mean outcomes 
closely align with the theoretical desired values of the corresponding functions, exhibiting a standard deviation 
of 0. This indicates that DKCBKA exhibits superior optimization performance and enhanced robustness. 
While DKCBKA does not attain convergence to the hypothetical optimal value in F7–F8 and F14–F15, it has 
the utmost convergence precision when compared to other techniques. The complex multi-peak functions F12 
and F13 indicate that the desired value, mean, deviation from the mean of DKCBKA and CBKA outperform 
the original approach by more than 26 orders of magnitude. This means that the addition of the vertical and 
horizontal crossover techniques significantly enhances the method’s ability to ascertain this ideal result and 
avoid neighborhood optima. DKCBKA surpasses the fundamental algorithm regarding optimization capability. 
The addition of a dynamic index component, together with the osprey optimization algorithm method and 
stochastic difference variant strategy, significantly enhances both method rate and convergence precision. 
Additionally, a balance between regional investigation capabilities and worldwide inquiry is made possible by 
the introduction of longitudinal and transversal crossover tactics. When these three tactics are combined, the 
original algorithm’s performance in finding the best answers is significantly improved.

Figure 2 illustrates the linear image iteration curves produced by the DKCBKA for functions F1–F2, F5–
F7, F9, F11–F13, and F15. This demonstrates that the fitness values derived from the enhanced method at the 
initial stages of iteration are closely aligned with the optimal fitness values achieved at final convergence. The 
convergence curves of functions F4, F10, and F14 exhibit rapid convergence, albeit with slight fluctuations. The 
DKCBKA convergence curve in the F8 function shows several inflection points, suggesting that the suggested 
strategy can more easily exit the local most effective than the original technique. The global most effective is 
reached at the quickest rate in the F3 function image, and the DKCBKA’s convergence rate is noticeably higher 
than the basic BKA’s. The DKCBKA clearly shows the best optimization performance out of all the function 
images in Fig. 2.

Short form of algorithm Name of the algorithm or its policy

DBKA BKA with the addition of dynamic exponential factor and fusion of osprey algorithm strategy

KBKA BKA with the addition of stochastic differential variance strategy

CBKA BKA with the addition of longitudinal and transversal crossover strategy

DKCBKA Black-Winged Kite Optimization Algorithm Enhanced by Osprey Optimization and Vertical and Horizontal Crossover Improvement

GSABO Subtractive optimizer algorithm incorporating golden sines

ECWOA Whale optimization algorithm based on elite dyadic and cross-optimization

EOSMICOA Multi-strategy chimpanzee optimization algorithm and its application to engineering problems

IGWO Nonlinear parametric grey wolf optimization algorithm based on elite learning

CWXSCSO Sand cat swarm optimization algorithm combining elite decentralization and crossover strategy and its application

IWKGJO Improved golden jackal optimization algorithm based on hybrid strategy

GO Goose algorithm

NOA Nutcracker optimization algorithm

PO Parrot optimization algorithm

SOA Seagull optimization algorithm

SSA Sparrow search algorithm

Table 2.  Algorithm abbreviation table.
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Function Algorithm Optimal value Mean value Standard deviation

F1

BKA 6.5980E−217 3.4498E−193 0

DBKA 0 0 0

KBKA 0 2.9596E−86 1.1463E−85

CBKA 0 0 0

DKCBKA 0 0 0

F2

BKA 8.3634E−109 2.1247E−92 8.2290E−92

DBKA 5.9450E−306 4.2284E−263 0

KBKA 0 3.4177E−56 9.0245E−56

CBKA 0 0 0

DKCBKA 0 0 0

F3

BKA 2.7378E−216 1.5361E−180 0

DBKA 0 0 0

KBKA 0 2.4868E−114 9.6024E−114

CBKA 0 0 0

DKCBKA 0 0 0

F4

BKA 1.2149E−107 5.4117E−96 2.0959E−95

DBKA 0 3.8028E−268 0

KBKA 0 1.1303E−55 3.8704E−55

CBKA 3.4314E−102 1.4802E−96 4.0434E−96

DKCBKA 0 0 0

F5

BKA 2.4200E+01 2.6490E+01 1.4657E+00

DBKA 2.8840E+01 2.8873E+01 2.2495E−02

KBKA 2.5149E+01 2.6451E+01 1.1641E+00

CBKA 0 0 0

DKCBKA 0 0 0

F6

BKA 3.4484E−05 4.5658E−01 1.3162E+00

DBKA 3.3608E+00 4.6133E+00 7.2642E−01

KBKA 4.0095E−05 1.8233E−01 5.3615E−01

CBKA 0 0 0

DKCBKA 0 0 0

F7

BKA 1.0525E−05 8.9049E−05 8.0599E−05

DBKA 1.3999E−06 2.8804E−05 2.1090E−05

KBKA 7.9768E−06 1.9858E−04 2.9379E−04

CBKA 1.7795E−06 7.2265E−06 4.9318E−06

DKCBKA 4.9317E−07 2.1098E−06 1.7472E−06

F8

BKA − 1.1260E+04 − 9.0892E+03 1.4812E+03

DBKA − 8.9139E+03 − 7.1840E+03 1.1355E+03

KBKA − 1.2316E+04 − 1.0478E+04 1.0622E+03

CBKA − 1.2569E+04 − 1.2569E+04 1.8828E−12

DKCBKA − 1.2569E+04 − 1.2569E+04 1.8828E−12

F9

BKA 0 0 0

DBKA 0 0 0

KBKA 0 0 0

CBKA 0 0 0

DKCBKA 0 0 0

F10

BKA 4.4409E−16 4.4409E−16 0

DBKA 4.4409E−16 4.4409E−16 0

KBKA 4.4409E−16 4.4409E−16 0

CBKA 4.4409E−16 4.4409E−16 0

DKCBKA 4.4409E−16 4.4409E−16 0

F11

BKA 0 0 0

DBKA 0 3.4793E−04 1.8921E−03

KBKA 0 0 0

CBKA 0 0 0

DKCBKA 0 0 0

Continued
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In conclusion, DKCBKA offers numerous advantages for identifying the best possible answer of a function 
and has superior performance in convergence and optimization search efficiency.

Comparison of DKCBKA with other improved algorithms
The DKCBKA algorithm is evaluated against the initial BKA algorithm and six superior enhanced optimization 
techniques.to further validate its effectiveness: the sand cat swarm optimization algorithm combining elite 
decentralization and crossover strategy and its application (CWXSCSO)42, the whale optimization algorithm 
based on elite dyadic and cross-optimization (ECWOA)43, the multi-strategy chimpanzee optimization 
algorithm and its application to engineering problems (EOSMICOA)44, the nonlinear parametric grey wolf 
optimization algorithm based on elite learning (IGWO)45, the subtractive optimizer algorithm incorporating 
golden sines (GSABO)46, and the improved golden jackal optimization algorithm based on hybrid strategy 
(IWKGJO)47. In order to fairly examine the performance of DKCBKA in high dimensions, the total population 
size for every method in this experiment is established at N = 50, iteration T = 1000, and dimensions are 30 
and 100 dimensions, respectively. Each experiment is carried out independently 30 times. Table 4 displays the 
parameter configurations of the algorithms that are the subject of this paper.

CEC2017 test function information
Nineteen of the twenty-nine functions in the CEC2017 test set were chosen to assess DKCBKA’s optimization 
performance. The algorithm’s speed and efficiency in identifying a singular optimal solution can be accurately 
assessed, as F1 and F3 are single−peak operates with one ideal solution. Conversely, the straightforward multi-
peak functions F4–F10, that have numerous local optimum answers, are employed in evaluating the method’s 
capacity to evade local optima. The algorithm’s ability to address more complex optimization challenges is 
evaluated using the hybrid functions F11–F20, which combine the characteristics of single−peak and multi-peak 
functions. These functions complicate the optimization of algorithms and evaluate their flexibility and resilience 
across many contexts. “Supplementary information” presents the essential information regarding the CEC2017 
test function.

Analysis of experimental results
Table 5 contains the optimization indexes, which are denoted as min., avg., and std., the optimal value, average 
value, and standard deviation, respectively. Examining the comparative statistics presented in Table 5 at a 
dimension of 100 shows that DKCBKA outperforms the original BKA algorithm and performs better regarding 
optimization than the other six improved optimization techniques. The DKCBKA shows better optimal and 
average fitness values in functions C1 and C3, having an average deviation ranking somewhat lower than those 
of the CWXSCSO and GSABO. However, in functions C4, C11–C15, and C17–C19, the DKCBKA outperforms 
comparative algorithms, including IWKGJO, across all three optimization indices. The standard deviation of the 
algorithm described in this study is lower than that of the GSABO in C5, C7, C8, and F20, and it ranks second to 
the CWXSCSO in C9 and C11, and third in C10. Furthermore, in C16, the IWKGJO outperforms DKCBKA. The 
proposed approach attains the highest optimum value and a mean fitness score among the given functions. The 

Function Algorithm Optimal value Mean value Standard deviation

F12

BKA 2.3466E−06 4.5571E−02 9.2764E−02

DBKA 1.0802E−01 3.5247E−01 1.1289E−01

KBKA 2.1041E−06 3.9427E−02 6.7684E−02

CBKA 1.5705E−32 1.5705E−32 2.8330E−48

DKCBKA 1.5705E−32 1.5705E−32 2.8330E−48

F13

BKA 2.3359E−01 1.2791E+00 8.1901E−01

DB.KA 1.4705E+00 2.3089E+00 4.1883E−01

KBKA 1.1051E−02 1.2931E+00 8.0404E−01

CB.KA 1.3498E−32 1.3498E−32 2.8330E−48

DKCBKA 1.3498E−32 1.3498E−32 2.8330E−48

F14

BKA 9.9800E−01 9.9800E−01 5.9344E−17

DBKA 9.9800E−01 2.1193E+00 1.6218E+00

KBKA 9.9800E−01 9.9800E−01 1.4536E−16

CBKA 9.9800E−01 9.9800E−01 0

DKCBKA 9.9800E−01 9.9800E−01 0

F15

BKA 3.0749E−04 3.6853E−04 2.3643E−04

DBKA 3.0749E−04 4.0160E−04 3.0265E−04

KBKA 3.0749E−04 5.7583E−04 4.1267E−04

CBKA 3.0749E−04 3.0749E−04 9.8264E−20

DKCBKA 3.0749E−04 3.0749E−04 9.5006E−20

Table 3.  Compares the optimization outcomes of 15 benchmark functions (F1–F15) utilizing different 
approaches to improvement. Significant values are displayed in bold.
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efficiency of the DKCBKA is subpar compared to the ECWOA concerning function C6. The DKCBKA exhibits 
a comparative advantage, signifying its capacity to tackle intricate optimization challenges in high-dimensional 
spaces, as well as remarkable adaptability and resilience in diverse contexts.

The 100-dimensional convergence image in Fig. 3 demonstrates that the DKCBKA has greater convergence 
accuracy compared to advanced methods such as the IWKGJO, particularly in functions C1–C20. In contrast to 
previous comparison algorithms and the initial method, the DKCBKA can converge rapidly before 200 iterations 
in C5–C10, C13, C15–C17, and C19–C20. Additionally, each function’s convergence curves experience slight 
oscillations during the prE−convergence phase, demonstrating the algorithm’s capacity to diverge from its 
regional optimum.

The optimization results of the DKCBKA on 19 CEC2017 test functions demonstrate enhanced performance 
relative to the initial method and six other advanced sophisticated algorithms for solution precision, convergence 
velocity, and stability.

Fig. 2.  Convergence graph for comparison between strategies.
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Figure 2.  (continued)

Algorithm Basic parameter

CWXSCSO S = 2
ECWOA amin = 0, amax = 2, b = 1
EOSMICOA b1 = 0.5, b2 = 0.5
IGWO ainitial = 2, afinal = 0

GSABO a = −π, b = π, r ∈ [0,1]
IWKGJO b = 1

Table 4.  Algorithmic parameter.
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Function
optimization
indicator DKCBKA BKA GSABO ECWOA EOSMICOA HMSWHO CWXSCSO IWKGJO

C1

Min. 5.7951E+04 5.5498E+10 2.5547E+11 1.5042E+06 1.0947E+11 2.4602E+11 1.0711E+06 1.1164E+09

Avg. 1.3115E+06 7.9798E+10 2.6020E+11 2.5424E+06 1.2533E+11 2.6731E+11 1.8218E+06 2.0713E+09

Std. 2.0955E+06 1.7476E+10 2.8484E+09 9.8531E+05 1.1213E+10 8.4158E+09 5.4074E+05 5.4704E+08

C3

Min. 1.4213E+05 1.6284E+05 3.5034E+05 3.0830E+05 3.5591E+05 3.0250E+05 1.9499E+05 2.1841E+05

Avg. 1.6799E+05 2.0378E+05 3.5230E+05 5.8768E+05 4.6775E+05 3.8320E+05 2.3631E+05 2.6055E+05

Std. 1.7924E+04 5.8775E+04 1.4734E+03 1.5686E+05 7.0277E+04 1.2905E+05 2.5165E+04 2.4387E+04

C4

Min. 5.4445E+02 4.7989E+03 9.2752E+04 7.0011E+02 1.3416E+04 9.4196E+04 6.9452E+02 1.1980E+03

Avg. 6.1451E+02 1.5664E+04 1.0321E+05 8.2081E+02 1.7246E+04 1.0701E+05 7.9724E+02 1.5897E+03

Std. 5.6346E+01 1.7244E+04 5.4770E+03 7.4968E+01 2.6537E+03 7.5160E+03 6.1346E+01 2.5155E+02

C5

Min. 1.1391E+03 1.2912E+03 2.0476E+03 1.2014E+03 1.6856E+03 2.0858E+03 1.2513E+03 1.1503E+03

Avg. 1.2798E+0.3 1.4177E+03 2.1386E+03 1.2967E+03 1.7812E+03 2.1535E+03 1.3512E+03 1.3253E+03

Std. 8.3463E+01 6.9428E+01 3.0610E+01 7.7548E+01 5.6996E+01 4.0107E+01 4.0851E+01 1.1937E+02

C6

Min. 6.0428E+02 6.6814E+02 7.1035E+02 6.0059E+02 6.8182E+02 7.1288E+02 6.0463E+02 6.4647E+02

Avg. 6.1315E+02 6.7900E+02 7.1619E+02 6.0112E+02 6.8880E+02 7.1789E+02 6.2846E+02 6.5705E+02

Std. 6.4317E+00 1.2915E+01 2.8643E+00 4.0744E−01 3.8940E+00 2.5452E+00 1.6038E+01 8.4869E+00

C7

Min. 1.8639E+03 3.0630E+03 4.0462E+03 2.1235E+03 2.8761E+03 3.9468E+03 2.4509E+03 2.1602E+03

Avg. 2.2650E+03 3.2932E+03 4.1078E+03 2.5306E+03 3.1442E+03 4.0499E+03 2.9843E+03 2.4538E+03

Std. 2.6565E+02 2.0484E+02 2.7317E+01 2.5237E+02 1.4846E+02 4.9442E+01 2.3062E+02 1.8999E+02

C8

Min. 1.4658E+03 1.7562E+03 2.5986E+03 1.4828E+03 2.0195E+03 2.5701E+03 1.6233E+03 1.4936E+03

Avg. 1.6240E+03 1.8995E+03 2.6452E+03 1.6909E+03 2.0841E+03 2.6270E+03 1.7779E+03 1.6832E+03

Std. 8.6512E+01 1.5930E+02 1.7472E+01 9.0720E+01 4.7750E+01 2.6628E+01 7.7706E+01 1.4195E+02

C9

Min. 1.8326E+04 2.6471E+04 6.5870E+04 2.0510E+04 5.5637E+04 8.0407E+04 2.1569E+04 2.6893E+04

Avg. 2.1976E+04 3.2320E+04 7.6333E+04 2.5591E+04 6.9348E+04 8.6990E+04 2.4018E+04 4.6272E+04

Std. 1.4822E+03 9.8866E+03 7.7284E+03 5.3322E+03 5.3106E+03 3.6927E+03 1.3674E+03 1.3555E+04

C10

Min. 1.0816E+04 1.6176E+04 3.1288E+04 1.2038E+04 3.1183E+04 3.0706E+04 1.2856E+04 1.6953E+04

Avg. 1.3602E+04 2.0200E+04 3.3536E+04 1.6206E+04 3.2291E+04 3.3348E+04 1.4706E+04 2.3465E+04

Std. 1.2045E+03 4.4992E+03 1.0575E+03 1.6756E+03 4.7514E+02 7.6274E+02 1.0086E+03 4.7599E+03

C11

Min. 2.4238E+03 1.1282E+04 1.8305E+05 1.3849E+04 7.6453E+04 1.7023E+05 7.5182E+03 2.2173E+04

Avg. 3.6577E+03 4.7694E+04 2.1070E+05 3.5413E+04 1.0664E+05 2.3386E+05 1.6219E+04 3.2109E+04

Std. 8.2261E+02 4.7586E+04 3.2602E+04 1.2814E+04 1.7334E+04 7.4458E+04 4.9685E+03 7.7774E+03

C12

Min. 2.1157E+06 5.3289E+09 2.2186E+11 2.3018E+07 2.7477E+10 1.8340E+11 1.2960E+07 3.9690E+08

Avg. 5.9175E+06 2.7325E+10 2.2946E+11 5.4718E+07 4.3306E+10 2.0307E+11 3.6590E+07 9.6555E+08

Std. 3.6502E+06 4.2645E+10 5.1416E+09 3.1603E+07 7.9921E+09 9.4418E+09 2.0226E+07 3.9644E+08

C13

Min. 2.0417E+03 1.1404E+07 6.0791E+10 2.3405E+04 5.0955E+09 4.5482E+10 1.3819E+04 3.4793E+06

Avg. 8.5128E+03 7.9331E+08 6.0821E+10 1.7311E+05 8.1272E+09 4.9799E+10 3.8894E+04 4.3847E+07

Std. 7.5248E+03 1.2390E+09 7.2619E+07 1.7568E+05 2.5803E+09 2.7300E+09 1.8915E+04 5.0201E+07

C14

Min. 4.7733E+04 3.9883E+05 4.7182E+07 2.3018E+06 8.2636E+06 4.7307E+07 1.4147E+06 4.2037E+06

Avg. 1.5461E+05 6.1716E+06 7.4098E+07 5.8920E+06 1.1828E+07 1.1334E+08 3.1199E+06 7.6766E+06

Std. 8.8617E+04 1.0467E+07 5.6269E+07 2.7451E+06 2.7100E+06 5.1557E+07 2.0119E+06 2.4732E+06

C15

Min. 1.9276E+03 6.8046E+05 3.4475E+10 1.1941E+04 1.3816E+09 2.1316E+10 3.7900E+03 1.3426E+06

Avg. 2.7193E+03 2.8822E+07 3.4631E+10 6.7574E+04 2.6049E+09 2.6081E+10 9.2354E+03 1.2882E+07

Std. 9.1225E+02 6.8354E+07 5.2971E+07 8.0745E+04 9.5503E+08 2.3933E+09 4.7474E+03 2.4127E+07

C16

Min. 4.2833E+03 6.2721E+03 2.8890E+04 5.2096E+03 1.0014E+04 2.1728E+04 5.5377E+03 6.0961E+03

Avg. 5.8844E+03 9.9701E+03 2.9707E+04 6.0861E+03 1.1290E+04 2.5561E+04 6.4615E+03 6.7031E+03

Std.. 9.7145E+02 3.8002E+03 5.5213E+02 6.8498E+02 8.1946E+02 1.9287E+03 7.6697E+02 5.0500E+02

C17

Min. 4.0405E+03 5.4653E+03 1.1495E+07 4.4435E+03 8.4989E+03 2.6041E+06 4.4477E+03 5.1891E+03

Avg. 5.2425E+03 7.6013E+03 1.5185E+07 5.6376E+03 1.0398E+04 1.3192E+07 5.4570E+03 6.2111E+03

Std. 5.4133E+02 2.1872E+03 6.3936E+06 7.0652E+02 1.4604E+03 7.4668E+06 6.3148E+02 6.5756E+02

C18

Min 1.2777E+05 3.9399E+05 1.5478E+08 1.7932E+06 1.0635E+07 1.2534E+08 1.6758E+06 2.5230E+06

Avg. 2.3828E+05 8.1834E+06 3.1918E+08 5.0694E+06 2.0665E+07 2.9345E+08 3.5746E+06 7.7768E+06

Std. 8.9920E+04 1.7738E+07 5.9644E+07 3.1753E+06 6.2207E+06 1.0235E+08 2.4767E+06 4.0074E+06

C19

Min. 2.2445E+03 2.6556E+06 3.6291E+10 1.5149E+04 8.7306E+08 2.0858E+10 4.6965E+03 3.1202E+06

Avg. 7.8480E+03 1.5053E+07 3.8718E+10 8.2186E+04 1.5580E+09 2.6498E+10 1.3231E+04 1.3180E+07

Std. 6.6878E+03 1.5078E+07 6.7150E+08 1.2587E+05 5.5380E+08 2.8511E+09 8.0032E+03 8.4490E+06
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CEC2017 Wilcoxon rank sum test
The effectiveness and precision of different approaches are illustrated by executing the ideal fitness values, typical 
fitness values, and average deviations of the seven compared methods independently for 30 iterations. However, 
this does not confirm whether DKCBKA and the seven algorithms above differ significantly in their capacity 
to resolve intricate optimization challenges. This section evaluates the optimization effectiveness of the BKA, 
GSABO, ECWOA, EOSMICOA, IGWO, CWXSCSO, and IWKGJO by applying the DKCBKA to the Wilcoxon 
rank-sum test for the 19 test functions in the test set CEC2017 in different dimensions. Relevant Wilcoxon rank 
sum test results and values for P are shown in Table 6. For hypothesis testing, 5% is the crucial amount, which is 
the significance level. The two comparison methods are thought to differ significantly if the P-value is less than 
5%; if it is larger than 5%, the distinction between DKCBKA and the comparison algorithm with regard to of 
optimization results is not immediately evident. The performance of the DKCBKA is “far superior than,” “the 
same to,” or “lower to” other comparison algorithms, as shown by the symbols “+ ”, “ = ”, and “−”.

From Table 6, comparing the DKCBKA to the GSABO, IGWO, and EOSMICOA, it has a 95% chance of 
producing a significant difference in the overall optimization results. In C20, it performs marginally inferior 
than the BKA and IWKGJO algorithms, and in C5 and C8, it performs inferior than the ECWOA and IWKGJO, 
respectively. The ECWOA and CWXSCSO outperform the DKCBKA in C16 and C17, respectively.

Analysis of CEC2019 test function results
For thoroughly assess the optimization effectiveness of the DKCBKA, we selected 10 CEC2021 test functions 
characterized by distinct optimization features. “Supplementary information” displays the fundamental details 
of the CEC2019 test function. The DKCBKA was compared with five traditional optimization algorithms: 
GOOSE Algorithm (GO)48, Nutcracker Optimization Algorithm (NOA)49, Parrot Optimization Algorithm 
(PO), Seagull Optimization Algorithm (SOA)50, and Sparrow Search Algorithm (SSA)51. The following settings 
are set: population size N = 50, maximum iterations T = 1000, and dimensionality D = 10. Table 7 shows the 
parameter settings of the comparison algorithm.

The optimization indexes in Table 8 are respectively the optimal value, average value and standard deviation 
represented by min, avg and std. Table 8 demonstrates it, relative to six other advanced optimization algorithms, 
the DKCBKA exhibits enhanced performance in FC1–FC10 and achieves the optimal value. Across all 10 
functions, the enhanced method, DKCBKA, has a significantly higher convergence accuracy than the comparison 
approach. Additionally, the average fitness value ranks first. However, in functions FC2 and FC10, the DKCBKA 
performs somewhat worse than the SSA approach regarding standard deviation. In FC1, FC3, FC5, and FC9, the 
performance is notably robust. The SSA outperforms the DKCBKA in FC2 and FC10. The NOA in FC4, FC6, 
FC7, and FC8 is slightly more effective than the enhanced technique described in this study.

Figure 4 illustrates that the DKCBKA has enhanced optimization performance relative to the other methods. 
In FC1-FC3, the DKCBKA demonstrates a rapid convergence speed, facilitating its attainment of the global 
optimum with efficiency. In the FC6, FC9, and FC10 test routines, the initial value of the DKCBKA at the start 
of the iteration is nearly equivalent to the worldwide ideal In comparison to the other algorithms, the DKCBKA 
demonstrates superior optimization accuracy, as evidenced by the results from FC4, FC7, and FC8.

In conclusion, the CEC2019 test set demonstrates that the DKCBKA outperforms five traditional optimization 
algorithms.

CEC2019 Wilcoxon rank sum test
The rank sum check is a quantitative statistical method that is used to determine whether there is a significant 
variation in the distribution locations of two distinct samples. The rank sum test is effective in assessing 
performance differences among various algorithms on specific functions in optimization studies of method 
performance comparison. This section of the article compares the results of the CEC2019 test benchmark. 
The optimization efficacy of the GO, NOA, PO, SOA, and SSA algorithms is statistically assessed against the 
performance of the DKCBKA algorithm employing the Wilcoxon rank sum test.

Table 9 indicates that the DKCBKA outperforms both the NOA and SOA, but DKCBKA is inferior to PO and 
SSA algorithm in FC1, and inferior to PO and GO in the functions FC2 and FC10, respectively, but it surpasses 
the comparison technique utilized in the other functions, and the optimization performance is substantial. The 
findings indicate that DKCBKA possesses a substantial optimization superiority compared to the five swarm 
intelligence methods.

Application examples
Mathematical models and mechanical optimization problems are strongly related, determining the design 
variables, objective functions, and constraints is essential to developing the optimal design mathematical model. 
In this section, DKCBKA is chosen to be run 30 times for comparative analysis with WOA52, HHO53, GWO54, 

Function
optimization
indicator DKCBKA BKA GSABO ECWOA EOSMICOA HMSWHO CWXSCSO IWKGJO

C20

Min. 2.0720E+03 2.3193E+03 3.1418E+03 2.1815E+03 2.7771E+03 2.9359E+03 2.2672E+03 2.2062E+03

Avg. 2.3369E+03 2.5300E+03 3.4628E+03 2.6324E+03 3.0006E+03 3.2541E+03 2.6143E+03 2.4382E+03

Std. 1.2362E+02 1.6188E+02 9.7950E+01 1.9973E+02 1.3677E+02 1.8025E+02 1.7979E+02 1.7186E+02

Table 5.  100-dimensional optimization metrics for CEC2017.
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Fig. 3.  Convergence curve of the 100-dimensional function for CEC2017.
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OOA, SO55, and BKA for three common engineering problems: the pressure vessel design problem, the triplE−
bar truss design problem, and the speed reducer design problem. To assess the optimization efficacy of DKCBKA 
in engineering applications, the group size is established at 30, and the total number of iterations is fixed at 1000.

Pressure vessel design issues
The pressure vessel is designed as efficiently as possible to reduce the overall production cost. Shell thickness (Ts), 
head thickness (Th), inner radius (R), and cylinder length (L) are four of the optimization variables. Figure 5 
illustrates the convergence diagram of its optimization of structure. The upper and lower limits of the above size 
parameters are set in DKCBKA, and the penalty function method is used, when the design exceeds these limits, 
the algorithm will give a large penalty. The cost function is considered as part of the optimization problem, and 
the cost is controlled by minimizing minf (−→x ) by the objective function. The following is the pressure vessel 
design’s mathematical model:

Variant

Figure 3.  (continued)
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−→x = [x1x2x3x4] = [TsThRL]

Function

	 minf (−→x ) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

Subject to

	 g1 (−→x ) = −x1 + 0.0193x3 ≤ 0

	 g2 (−→x ) = −x3 + 0.00954x3 ≤ 0

	
g3 (−→x ) = −πx2

3 − 4
3πx3

3 + 1296000 ≤ 0

	 g4 (−→x ) = x4 − 240 ≤ 0

design variable

	 x1,2 ∈ [0.1,99]

	 x3,4 ∈ [10,200]

Figure 5 illustrates the optimal convergence rate and precision of the DKCBKA. Table 10 indicates that the total 
cost of the optimized design, achieved by DKCBKA is 6037.613549, which is 15.619% less than the base BKA 
and lowers the production cost by 18.222% when compared to WOA, HHO, GWO, OOA, and SO algorithms by 
18.222%, 12.146%, 10.951%, 96.328%, and 11.488%, respectively. According to the results, DKCBKA has clear 
advantages over existing algorithms and can reduce the overall cost of pressure container design.

Algorithm Basic parameter

GO –

NOA α = 0.05,

PO β = 1.5
SOA fc = 2
SSA ST = 0.6, P D = 0.7, SD = 0.2

Table 7.  Algorithmic parameter.

 

Function DKCBKA-BKA DKCBKA-GSABO DKCBKA-ECWOA DKCBKA-EOSMICOA DKCBKA-IGWO DKCBKA-CWXSCSO DKCBKA-IWKGJO

C1 3.0199E−11 3.0199E−11 4.5726E−09 3.0199E−11 3.0199E−11 7.2208E−06 3.0199E−11

C3 1.2860E−06 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 5.4941E−11 3.0199E−11

C4 3.0199E−11 3.0199E−11 1.9568E−10 3.0199E−11 3.0199E−11 5.4620E−06 3.0199E−11

C5 9.7555E−10 3.0199E−11 1.9073E−01 3.0199E−11 3.0199E−11 1.3367E−05 5.0842E−03

C6 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 9.2113E−05 3.0199E−11

C7 6.6955E−11 3.0199E−11 5.8282E−03 3.8202E−10 3.0199E−11 7.5991E−07 1.6955E−02

C8 8.8910E−10 3.0199E−11 6.9724E−03 3.0199E−11 3.0199E−11 2.0283E−07 3.0418E−01

C9 3.0199E−11 3.0199E−11 1.0576E−03 3.0199E−11 3.0199E−11 2.8389E−04 3.0199E−11

C10 3.0199E−11 3.0199E−11 9.0632E−08 3.0199E−11 3.0199E−11 6.5486E−04 3.0199E−11

C11 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11

C12 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11

C13 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 5.4941E−11 3.0199E−11

C14 2.5101E−02 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 4.5043E−11 3.3384E−11

C15 3.0199E−11 3.0199E−11 4.9752E−11 3.0199E−11 3.0199E−11 3.5923E−05 3.0199E−11

C16 9.9186E−11 3.0199E−11 9.9258E−02 3.0199E−11 3.0199E−11 4.2067E−02 5.3221E−03

C17 4.1997E−10 3.0199E−11 2.6077E−02 3.0199E−11 3.0199E−11 3.4783E−01 2.5721E−07

C18 2.0023E−06 3.0199E−11 3.3384E−11 3.0199E−11 3.0199E−11 3.6897E−11 3.0199E−11

C19 3.0199E−11 3.0199E−11 4.0772E−11 3.0199E−11 3.0199E−11 9.5332E−07 3.0199E−11

C20 6.1001E−01 3.0199E−11 1.5014E−02 3.0199E−11 3.0199E−11 8.6844E−03 1.2967E−01

 + / = /- 19/0/1 20/0/0 18/0/2 20/0/0 20/0/0 19/0/1 18/0/2

Table 6.  Wilcoxon rank-sum test results for the 100-dimensional problem in CEC2017.
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Gear train design problem
In mechanical engineering, designing gear trains is a complex combinatorial optimization challenge. The main 
goal is to minimize the gear ratio—the ratio of input shaft rotation to output wheel speed—to reduce overall 
transmission cost. This involves determining the optimal number of teeth for each gear. Specifically, Na(x1), 
Nb(x2), Nd(x3), and Nf (x4) represent the number of teeth on gears A, B, D, and F. The geometric constraint 
problem is that the size and shape of the gear need to meet specific geometric standards, so a reasonable range 
of gear parameters should be set in the optimization model, and the penalty function or constraint optimization 
algorithm is used to deal with these constraints. Finding the best combination of these variables is crucial for 
achieving the lowest gear ratio while maintaining functionality and efficiency.

Function

	
minf (x) =

( 1
6.931 − x2x3

x1x4

)2

Value range

	 12 ≤ xi ≤ 60, i = 1,2, 3,4

The optimization challenge for the gear train design problem is effectively addressed by DKCBKA, demonstrating 
strong stability and convergence, as illustrated in Table 11 and Fig. 6. According to the information provided in 
Table 11, the adaptation value determined by the DKCBKA calculation is the lowest. This lowers construction 
costs to varying degrees in comparison to the comparative algorithms, demonstrating the validity and potential 
usefulness of DKCBKA in real-world engineering applications.

Reducer design issues
The speed reducer design issue is a mechanical optimization challenge aimed at minimizing the weight of the 
speed reducer by optimizing seven parameters while adhering to constraints related to shaft stresses, bending 

Function Optimization indicator DKCBKA GO NOA PO SOA SSA

FC1

Min. 1 1 2.1637E+08 1 1.0306E+00 1

Mean 1 4.2238E+08 4.7517E+08 1 3.8301E+06 1

Std. 0 4.7827E+08 1.9054E+08 5.9344E−17 6.0493E+06 0

FC2

Min. 4.1848E+00 4.2841E+00 1.4020E+04 4.2235E+00 5 5.0000E+00

Mean 4.3750E+00 1.6764E+04 1.9023E+04 4.5012E+00 3.0909E+03 5.0000E+00

Std. 1.4536E−01 1.5260E+04 3.2965E+03 3.1097E−01 2.7167E+03 5.0944E−09

FC3

Min. 1.000000017 1.4096E+00 1.0823E+01 1.4143E+00 4.5051E+00 1.4092E+00

Mean 1.3955E+00 8.6849E+00 1.1833E+01 4.2123E+00 6.9551E+00 2.1849E+00

Std. 7.4697E−02 2.5938E+00 3.8518E−01 1.7249E+00 1.5707E+00 1.0621E+00

FC4

Min. 8.9600E+00 2.5874E+01 1.0161E+02 1.3553E+01 4.5664E+01 3.1844E+01

Mean 2.2897E+01 7.7498E+01 1.1893E+02 3.7823E+01 7.2076E+01 6.5937E+01

Std. 1.1907E+01 2.9727E+01 1.1409E+01 1.2806E+01 1.9509E+01 2.3839E+01

FC5

Min. 1.1348E+00 1.1403E+00 5.0126E+01 1.2627E+00 3.1495E+01 1.9790E+00

Mean 1.4864E+00 2.8990E+00 1.0989E+02 2.1977E+00 6.6455E+01 6.6793E+00

Std. 2.4535E−01 2.1391E+00 2.8961E+01 9.7002E−01 2.2127E+01 3.3662E+00

FC6

Min. 2.2865E+00 9.5083E+00 1.0996E+01 3.3344E+00 7.7423E+00 8.2595E+00

Mean 4.3633E+00 1.2117E+01 1.3398E+01 6.4015E+00 1.0332E+01 1.0544E+01

Std. 1.1171E+00 1.1399E+00 8.8722E−01 1.4872E+00 1.1462E+00 1.3750E+00

FC7

Min. 2.4169E+02 1.0588E+03 2.1076E+03 3.5538E+02 1.3400E+03 7.8192E+02

Mean 6.3606E+02 1.5035E+03 2.4035E+03 1.0227E+03 2.1270E+03 1.2890E+03

Std. 2.5670E+02 2.6591E+02 1.6866E+02 3.7526E+02 3.0874E+02 3.1111E+02

FC8

Min. 2.5185E+00 4.1815E+00 4.9836E+00 3.4864E+00 4.0875E+00 3.8335E+00

Mean 3.5087E+00 5.0728E+00 5.2594E+00 4.2373E+00 4.7497E+00 4.7602E+00

Std. 4.4290E−01 3.6765E−01 1.1538E−01 2.7424E−01 2.4012E−01 4.0788E−01

FC9

Min. 1.0869E+00 1.1173E+00 3.3288E+00 1.1177E+00 1.2978E+00 1.1080E+00

Mean 1.2575E+00 1.3269E+00 4.4102E+00 1.3016E+00 2.9348E+00 1.3460E+00

Std. 1.2710E−01 1.9621E−01 5.1402E−01 1.3761E−01 1.1256E+00 1.4708E−01

FC10

Min. 1.0090E+00 2.0985E+01 2.1391E+01 2.1017E+01 2.1456E+01 2.0983E+01

Mean 1.7389E+01 2.1006E+01 2.1760E+01 2.1136E+01 2.1590E+01 2.0985E+01

Std. 7.5180E+00 2.5630E−02 2.0506E−01 1.0135E−01 8.5954E−02 1.4984E−03

Table 8.  CEC2019 different function optimization indicators.
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Fig. 4.  CEC2019 function convergence curves.
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Algorithm x1 x2 x3 x4 Result

WOA 52.8649 14.9602 25.5397 50.5625 2.3078E−11

HHO 52.7881 20.2659 13.1996 34.1497 2.3078E−11

GWO 23.1951 12 13.4163 47.1591 9.9216E−10

OOA 39.0758 12.0225 23.1911 49.2269 2.1808E−08

SO 50.9577 15.4184 26.3346 53.1509 2.3078E−11

BKA 60 15.0019 14.8132 26.3449 2.3576E−09

DKCBKA 42.8681 18.8402 15.9834 48.8304 2.7009E−12

Table 11.  Optimization results of the gear train design problem.

 

Algorithm Ts(x1) Th(x2) R(x3) L(x4) Result

WOA 1.1251 0.5076 49.7372 100.4441 7382.9426

HHO 1.1405 0.5554 57.9750 45.4366 6872.3033

GWO 1.1224 0.5550 58.1403 44.6336 6780.0796

OOA 8.0048 11.7142 56.5120 53.8409 164,444.3135

SO 1.1360 0.5615 58.8584 40.6022 6821.2336

BKA 1.2209 0.6036 63.2603 18.7373 7155.1961

DKCBKA 0.8586 0.4244 44.4884 149.1131 6037.6135

Table 10.  Optimization results for pressure vessel design problems.

 

Fig. 5.  Optimization convergence plot for pressure vessel design problem.

 

Function DKCBKA-GO DKCBKA-NOA DKCBKA-PO DKCBKA-SOA DKCBKA-SSA

FC1 6.8662E−07 6.8662E−07 3.5065E−01 1.2118E−12 1

FC2 2.8790E−06 3.0199E−11 3.0394E−01 3.0199E−11 6.4789E−12

FC3 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11

FC4 9.7555E−10 3.0199E−11 2.1327E−05 8.9934E−11 6.5183E−09

FC5 2.4913E−06 3.0199E−11 5.9706E−05 3.0199E−11 3.3384E−11

FC6 3.0199E−11 3.0199E−11 2.3800E−03 3.0199E−11 4.0772E−11

FC7 4.1825E−09 3.0199E−11 7.5991E−07 3.0199E−11 8.9934E−11

FC8 3.3384E−11 3.0199E−11 3.5708E−06 4.5043E−11 3.4971E−09

FC9 7.9590E−03 3.0199E−11 5.5699E−03 4.1997E−10 2.0058E−04

FC10 4.1191E−01 3.0199E−11 1.4733E−07 3.0199E−11 8.8411E−07

 + / = /− 9/0/1 10/0/0 8/0/2 10/0/0 9/0/1

Table 9.  CEC2019 Wilcoxon rank-sum test results.
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stresses on gear teeth, transverse shaft deflections, and surface pressures. The seven design variables are facial 
breadth (b), quantity of gear teeth (p), tooth component (m), length of the initial shaft between the bearings 
(l1), length of the secondary shaft between the bearings (l2), diameter of the initial shaft (d1), and diameter 
of the secondary shaft (d2) denoted as x1-x7. In order to ensure that the transmission ratio and efficiency of 
the reducer meet the design requirements, the target range of transmission ratio and efficiency is set in the 
optimization model, and the optimization algorithm is used to find the design that meets these conditions. The 
following delineates the mathematical treatment of the challenge:

Variant

	
−→x = [x1x2x3x4x5x6x7] = [bmpl1l2d1d2]

Function

	 minf (x) = (0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

− 1.508x1
(
x3

6 + x2
7
)

+ 7.4777
(
x3

6 + x3
7
)

+ 0.7854(x4x2
6 + x5x2

7)

Subject to

	
g1 (x) = 27

x1x2
2x3

− 1 ≤ 0

	
g2 (x) = 397.5

x1x2
2x3

− 1 ≤ 0

	
g3 (x) = 1.93x3

5

x1x4
6x3

− 1 ≤ 0

	
g4 (x) = 1.93x3

5

x2x4
7x3

− 1 ≤ 0

	
g5 (x) =

[(
745

(
x4

x2x3

))2 + 16.9 × 106
]1/2

110x3
6

− 1 ≤ 0

	
g6 (x) =

[(
745

(
x5

x2x3

))2 + 157.5 × 106
]1/2

85x3
7

− 1 ≤ 0

	
g7 (x) = x2x3

40 − 1 ≤ 0

	
g8 (x) = 5x2

x1
− 1 ≤ 0

	
g9 (x) = 5x1

12x2
− 1 ≤ 0

	
g10 (x) = 1.5x6 + 1.9

x4
− 1 ≤ 0

	
g11 (x) = 1.1x7 + 1.9

x5
− 1 ≤ 0

Fig. 6.  Optimization convergence plot for gear train design problem.
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Value range

	 2.6 ≤ x1 ≤ 3.6

	 0.7 ≤ x2 ≤ 0.8

	 17 ≤ x3 ≤ 28

	 7.3 ≤ x4

	 x5 ≤ 8.3

	 2.9 ≤ x6 ≤ 3.9

	 5.0 ≤ x7 ≤ 5.5

Table 12 displays the experimental findings for resolving the gearbox design’s minimum weight issue. The 
gearbox design problem’s optimization convergence plot is displayed in Fig. 7. According to Table 8’s data, the 
DKCBKA algorithm’s minimum weight is 2994.4711, indicating a good optimization accuracy and a 0.561% 
reduction over the traditional BKA. The convergence graph in Further evidence that DKCBKA is more capable 
of solving mechanical optimization problems comes from Fig. 7, which shows that it has a higher convergence 
efficiency than other methods.

Discussions
Improvements in a black-winged kite algorithm that incorporates a osprey optimization algorithm with a 
longitudinal crossover strategy can be attributed to the following. First, the black-winged kite algorithm’s assault 
phase is enhanced by the dynamic exponential factor, and the osprey optimization algorithm is incorporated 
to enhance the algorithm’s global search capability and convergence speed, as well as to prevent premature 
convergence. Following the migration phase, a stochastic differential mutation strategy is implemented 
to enhance the diversity of the population and balance the algorithm’s global search and local exploration 
capabilities. This strategy is based on the mutation behavior in the differential evolution algorithm. Lastly, the 
algorithm’s convergence accuracy is enhanced by the inclusion of the vertical and horizontal crossover strategy 
at the end. This strategy includes both horizontal and vertical crossover.

Secondly, the superiority between the strategies was compared through 15 functions in the benchmark 
test set, the superiority of DKCBKA in comparison with 6 good improved algorithms was tested through the 

Fig. 7.  Optimization convergence plot for the reducer design problem.

 

Algorithm x1 x2 x3 x4 x5 x6 x7 Result

WOA 3.5600 0.7000 17.0000 7.3000 8.2322 3.3502 5.4592 3143.1675

HHO 3.5848 0.7000 17.0000 7.4582 7.8696 3.3505 5.3091 3046.9514

GWO 3.5019 0.7000 17.0000 7.3429 7.8420 3.3513 5.2888 3000.0164

OOA 3.5537 0.7493 22.2984 8.2393 8.1938 3.8287 5.2843 3553.6520

SO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867 2994.4711

BKA 3.5103 0.7000 17.0049 7.8174 8.0035 3.3543 5.2868 3011.3531

DKCBKA 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867 2994.4711

Table 12.  Optimization results of the gear train design problem.
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CEC2017 test set as well as the performance of DKCBKA in comparison with 5 swarm intelligence algorithms 
through the CEC2019 test set.

Lastly, the efficacy of DKCBKA in real-world problems is evaluated using three real-world engineering 
examples: pressure vessel design issues, gear train design problems, and reducer design issues.

The above experimental analysis can be obtained:

	(1)	� The improved algorithm DKCBKA proposed in this paper occupies a relative advantage over the 15 com-
pared algorithms, and the optimization performance improves significantly and has a good overall perfor-
mance.

	(2)	� DKCBKA shows an absolute advantage in the 15 benchmark functions, and the optimization performance 
is greatly improved compared to the original algorithm. The optimization accuracy of DKCBK is known to 
be better than 6 improved optimization algorithms in 95% of the cases by 20 functions in CEC2017, and the 
optimization accuracy of DKCBKA is better than other 5 swarm intelligence algorithms in all 10 functions 
in CEC2019. And the nonparametric statistical verification of the simulation results by Wilcoxon rank sum 
test shows that DKCBKA dominates the disadvantage in absolutely few cases. Finally three engineering ex-
amples show that the optimization performance of DKCBKA is improved by 18.222%, 99.885% and 0.561% 
respectively compared to the original algorithm.

Although the algorithm proposed in this paper significantly enhances the optimization performance of the 
original algorithm, it still has certain constraints. Specifically, using the maximum number of iterations to test 
functional performance may lack fairness and can be used instead of using the objective function to evaluate the 
number of iterations. The application of DKCBKA in practical engineering can be more novel.

Future research may apply the DKCBKA to novel engineering examples, including offshore wind turbine 
structural foundation optimization and other related issues, while further verifying the algorithm’s performance 
through practical applications. Other test sets, such as CEC2011, can also be used to evaluate algorithm 
performance in the future. CEC2011, CEC2017, and CEC2019 test sets can be used to test the performance of the 
improved algorithm, including unimodal, multi-modal, composite problems, and support multiple dimensional 
testing. The difference is that CEC2011 has fewer problems and less complexity, which is suitable for preliminary 
algorithm verification; CEC2017 adds more composite and rotation problems, significantly improving the 
complexity, suitable for medium-complexity algorithm evaluation; CEC2019 further increases the complexity of 
the problem, making it more challenging and suitable for high-complexity algorithm evaluation.

Conclusion
This study provides a BKA that enhances the optimization power by integrating the Osprey optimization process 
with vertical and horizontal crossover techniques. The algorithm first alters the position update equation in the 
assault phase by integrating the dynamic index factor and the Osprey optimization technique. This approach 
enhances the method’s precision and convergence rate. The program employs the mutation principle from the 
differential evolution algorithm to improve population variety and promote movement away from local optima 
via random differential variation during the migration phase. A vertical and horizontal crossover technique 
is introduced for improving group variety and boost the accuracy of algorithm convergence. To assess the 
optimization efficacy using the improved technique, the DKCBK is evaluated against the original algorithm 
across 15 benchmark functions from CEC2005. This is further validated by analyzing 19 functions from 
CEC2017 alongside 10 functions from CEC2019, utilizing six improved algorithms, including IWKGJO, and 
five swarm intelligence optimization algorithms, including GO. Practical illustrations in the design of pressure 
tanks, gear train, and reducers exemplify DKCBKA’s engineering efficiency proficiency. The results show that the 
proposed DKCBKA has higher convergence speed and robustness, and the global search and local exploration 
capabilities are improved.

Data availability
The datasets utilized and/or analyzed in the current study are available from the corresponding author upon 
reasonable request.
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